Top quark: properties and beyond

Michele Gallinaro

Mass, Vtb, taus
Spin correlation
Charge asymmetry
Boosted topology
Searches for New Physics

at 13 TeV OI April

What's Next ?

Auditório, Complexo Interdisciplinar, IST

- > What's happening at the LHC
- > The Higgs discovery in 10 min
- > Past achievements
- Future challenges
- > Symmetries and supersymmetries
- > Probing large energy scales in rare decays
- > Bectronics developments at LHC
- > Grid and cloud computing at LHC.
- Working in big collaborations.
- Opportunities for students

Organised by

Information for Students

a tool for discoveries" - March 30, 2015

Contents

- Introduction (discovery, object ID)
- Top pair production at the Tevatron
- Top pair production at LHC
- (differential) cross section
- Mass, heavy flavor content, taus
- Search for top partners and 4th generation quarks
- Search for ttbar resonances
- Spin correlation, charge asymmetry
- Single top production
- Flavor Changing Neutral Currents (FCNC)

today

Top quark mass

Top quark mass: why do we care?

- Top is the only fermion with the mass of the order of EWSB scale
- Discovered Higgs boson fits well with precise determinations of m_W and m_{top}
 - Highly fine-tuned situation
 - ~1GeV is all it takes to tip the scales
- Run2 will likely allow for discrimination between SM and MSSM scenario
- The fate of the Universe might depend on $\Delta m_{top} \sim 1 \text{ GeV}$

Measuring the top mass

- It is challenging
- Lepton+jets
 - Undetected neutrino
 - $\bullet\,\mathsf{P}_x$ and P_y from E_{T} conservation
 - 2 solutions for P_z from $\mathsf{M}_W\text{=}\mathsf{M}_{\mathsf{lv}}$
 - Combinatorics (leading 4 jets)
 - 12 possible jet-parton assignment
 - •6 (with 1 b-tag)
 - •2 (with 2 b-tags)
 - -ISR+FSR
- Dileptons
 - Two undetected neutrinos
 - -Less combinatorics (only 2 jets)

Jet energy correction from Top

- Use semi-leptonic events
 - −1 isol μ (p_T>30 GeV)+≥4 jets (40 GeV)
- Estimate jet energy corrections by applying event-by-event kinematical fit to W and top quark masses
- Likelihood is used to assign jets
- Kinematical fit returns $P(\chi^2)$
- Find best JES by minimizing χ^2

Lepton+jet channel

Lepton+jet channel

• in-situ calibration of the light quark JES from $W \rightarrow qq'$

Dilepton channel: challenges

- Combinatorics
 - Identify top quark decay products
 - Ambiguity
 - ISR/FSR introduces further complexity for selection
 - (~70% of the events have both b-jets reconstructed and selected)

Missing transverse energy

- Constrains the contribution from undetected particles
- In the dilepton channel: 2 neutrinos $\Rightarrow \quad \vec{E}_T^{miss} = \vec{p}_T^{\nu} + \vec{p}_T^{\rho}$
- Jet energy scale
 - m_{top} reconstruction requires measuring the parton energy
 - parton \rightarrow jet affected by resolution and absolute energy scale
- Pile-up
 - Jet energy scale, MET measurement, extra jets/leptons
 - N_{pileup}≈ 6 (21) for most of data collected in 2011 (2012)

Ó p^{l} p, Different ī mtop Jet/MET hypothesis resolution effect

Top mass: Reconstructed mass EPJC C72 (2012) 2202

CMS-PAS-TOP-11-016

- Select events
- Reconstruct mass

Process	Pre-selection	KINb	=1 b-tag	\geq 2 b-tags
Di-bosons	73 ± 14	55 ± 10	18 ± 4	4 ± 1
Single top	247 ± 92	182 ± 68	88 ± 33	76 ± 29
W+jets	22 ± 10	16 ± 8	8 ± 6	-
$Z/\gamma^* \to \ell\ell$	1091 ± 97	756 ± 71	238 ± 29	47 ± 11
other tī	32 ± 4	28 ± 3	11 ± 2	14 ± 2
tī dileptons	5057 ± 463	4209 ± 385	1379 ± 127	2623 ± 240
total expected	6522 ± 482	5246 ± 398	1742 ± 134	2765 ± 242
data	6358	5047	1692	2620

Signal and background

- Signal component in the mass spectrum modelled: simulation
- Fit: Landau+Gaussian
- Categories: =1 and ≥2 b-tags

- Background component in the mass spectrum modelled with data +simulation
- Fit: Landau

Reconstructed mass

- Top quark mass is reconstructed in different categories
- Signal and background shapes

Correct for the bias

 Check and correct for the bias CMS simulation in the measurement Fitted m_{top} [GeV/c²] Bias Generated m_{top} [GeV/c²]

Do not forget the systematics

	Source	$\Delta m_{\rm t} ({\rm GeV})$
	Jet energy scale	$^{+0.90}_{-0.97}$
Jet energy scale (JES) is the largest unc. – JES is varied up and down and difference in m _{top} is	b-jet energy scale	-0.66
	Jet energy resolution	± 0.14
accounted for as systematics	Lepton energy scale	±0.14
- Flavor (b) specific uncertainty added in quadrature	Unclustered $E_{\rm T}^{\rm miss}$	±0.12
 Other systematics: Difference with respect to reference sample used to 	b-tagging efficiency	± 0.05
signal	Mistag rate	± 0.08
 MC: compare Alpgen and Powheg with Madgraph 	Fit calibration	±0.40
 Vary factorization/matching scale, ISR/FSR 	Background normalization	± 0.05
	Matching scale	±0.19
	Renormalisation and factorisation scale	±0.55
	Pileup	±0.11
	PDFs	±0.09
	Underlying event	±0.26
	Colour reconnection	±0.13
	Monte Carlo generator	±0.04
	Total	±1.48

Final fit

CMS mass combination

CMS-TOP-14-015

Mass: Run 2 and beyond

CMS-FTR-13-017

- Might be able to measure m_{top} with a precision of 200 MeV
- Differential study of m_{top}
- Differential cross sections with full NLO tools
- No truly dominant systematic uncertainty
- b-fragmentation studies – Measure in-situ in ttbar events
- Interpretation will require theory understanding improvement

Top-antiTop mass difference

- Test of CPT invariance: particle and anti-particle have same mass
 - If masses are different \rightarrow CPT violation
 - Top quark is unique because it decays before hadronizing
- use μ +jet ttbar events: positive/negative muons (L=19/fb)
 - Compare mass measured from $\mu^{\scriptscriptstyle +}\!/\mu^{\scriptscriptstyle -}$ +jets
 - Use hadronic side

Top mass from cross section

PLB 728(2014)496

- Direct m_{top} measurements rely on details of kinematics, reconstruction, calibration
- Extract mass from cross section
 - determine top quark pole mass using the experimental ttbar production cross section
- Comparatively large systematics
- Pole mass vs reconstructed mass
- Results consistent with standard measurements and EWK fits
 - Constrain α_{S} at the scale of the Z boson mass and derive $m_{\text{top}}{}^{\text{pole}}$
 - Constrain $m_{\text{top}}{}^{\text{pole}}$ to the measured value and derive α_{S}

$$m_{top} = 176.7^{+3.8}_{-3.4} GeV$$

 \Rightarrow It works but the uncertainty is large

 $\alpha_{\rm S}(m_{\rm Z}) = 0.1151^{+0.0033}_{-0.0032}$

Not just cross sections

Interesting physics with Top quark

PRODUCTION

...

Cross section Resonances X→tt Fourth generation t' Spin-correlations New physics (SUSY) Flavour physics (FCNC)

PROPERTIES

Mass Kinematics Charge Lifetime and width W helicity Spin

...

DECAY

...

Branching ratios Charged Higgs (non-SM) Anomalous couplings Rare decays CKM matrix elements Calibration sample @LHC

Spin correlation

- Important tool for precise studies of top quark interactions
- Top quark produced are not polarized
 - ... but spins between quark and anti-quark are correlated
- Top quark decays before spins decorrelate
 - Top quark decays before hadronization (τ~10⁻²⁵ sec) ⇒ spin information transmitted to the decay products (W boson, b quark)
- Spin correlation depends on the production mode $\kappa = \frac{n_{\pm\pm} - n_{\pm\mp}}{n_{\pm\pm} + n_{\pm\mp}}$ $\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_1 d\cos\theta_2} = \frac{1}{4} \left(1 + \kappa \cos\theta_1 \cos\theta_2\right)$

Off Diagonal Basis

- Analyze spin using angular distributions of decay products
 - $-\theta_1$ and θ_2 are the angles of decay products wrt a "quantization axis"
 - value of κ depends on spin basis (for example, off-diagonal vs maximal)

Spin correlation

• Spin correlation may differ from that expected in the SM

- top quark decays into a charged Higgs boson and a b quark (t \rightarrow H⁺b)
- Other BSM scenarios

Spin correlation: Tevatron vs LHC

- beam axis as spin quantisation axis **NLO QCD:** A = 0.78Bernreuther, Brandenburg, Si, Uwer, Nucl. Phys. B690, 81 (2004)
- optimised "off-diagonal" basis

- tt pairs far off the threshold
- helicity basis as spin guantisation axis NLO OCD: A = 0.32

maximal basis

complementary between Tevatron and LHC

Spin correlation

- Access spin information via the angular distributions of its decay products
 - Most sensitive probes are leptons/d-type quarks
- Strategy: fit $\Delta \phi$ dilepton distribution
 - binned SM distribution and with uncorrelated spin distribution

$$A = \frac{N_{like} - N_{unlike}}{N_{like} + N_{unlike}}$$

- Translate result to maximal/helicity basis
- Main systematics: ISR/FSR and signal modelling
- Results in agreement with SM

Charge asymmetry

- In qqbar→ttbar (Tevatron): top quarks are emitted in the direction of the incoming quark, anti-top quarks in the direction of the incoming anti-quark
- No FB asymmetry in gg→ttbar (LHC)
- **<u>SM</u>**: Only small asymmetry due to ISR/FSR

New physics: production mechanisms with new exchange bosons couldenhance the charge asymmetryAt LHC quarks have larger momentum than anti-quarks

At LHC quarks have larger momentum than anti-quarks (larger average momentum fraction of quarks leads to an excess of top quarks produced in the forward directions)

Asymmetry A_{FB} anomaly?

- Tevatron experiments observe a differential dependency on charge asymmetry
- Sign of new physics?

CDF: PRD 83(2011)112003 D0: PRL 100(2008)142002 CDF Note 10807

- At high mass, a 3σ discrepancy
- Study asymmetry vs mass of ttbar system

Charge asymmetry at LHC

$$A_C = \frac{N^+ - N^-}{N^+ + N^-}$$

Anomalous axial-vector coupling of gluons to quarks could explain the Tevatron anomaly [PRD84:054017,2011]

 $N^+(N^-)$: number of events with positive (negative) values in the sensitive variable

 \Rightarrow Good agreement between data and SM expectations

Constraints on New Physics EPJC 72(2012)2039

Michele Gallinaro - "The top quark: a tool for discoveries" - March 30, 2015

Heavy flavor content (i.e. V_{tb})

Top quark decays

000000

q.

top decay t \rightarrow Wb, but is it really 100%?

Indirect measurement using the CKM matrix:

- Elements $|V_{ub}|$ and $|V_{cb}|$ measured to be very small from decay of B mesons
- Unitarity and only three generations implies |V_{tb}| is 0.998 @ 90% CL

With top quark samples we can measure it directly as "R":

$$R = \frac{BR(t \rightarrow Wb)}{BR(t \rightarrow Wq)} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2} \quad \text{where } q = \{d, s, b\}$$

Use the ability to identify jets with a distinguished secondary vertex: b-tagging

•The number of b-tagged jets depends strongly on R and b-tagging efficiency ϵ_{b}

Classify the ttbar sample based on the number of b-tagged jets

• The relative rates of events with 0/1/2 b-tags is very sensitive to R

Measure V_{tb}

- Measurement with the single top production final state
- direct measurement of |Vtb|
- sensitive to non-SM phenomena (W', FCNC)

Is BR(t->Wb)~100%?

• In the SM, R=

$$\frac{\mathsf{BR}(t \rightarrow \mathsf{Wb})}{\mathsf{BR}(t \rightarrow \mathsf{Wq})} \sim |\mathsf{V}_{tb}|^2 \qquad 0.9980 < \mathsf{R} < 0.9984$$

- measure R by comparing the number of ttbar events with 0, 1 and 2 b-tags
- SM: R=1 constrained by CKM unitarity. R<1 could indicate new physics (e.g. 4th generation hep/ph-0607115)

Measure R simultaneously with ttbar cross section:

CDF prelim. 7.5 fb⁻¹ lepton+jets channel

D0 5.4 fb⁻¹ I+jets & dilepton PRL 107, 121802 (2011)

Not yet sensitive to SM

Measure R in dilepton channel N.Cim. B125(2010)983, PLB 736(2014)33

- Probe heavy flavor content of ttbar events
- Use ttbar dilepton final state
- Advantages:

Events

less background

$$\mathbf{R} = \frac{BR(t \rightarrow Wb)}{BR(t \rightarrow Wq)}$$

- Selection:
 - 2 leptons+ ≥2 jets + MET
 - no b-tagging in preselection
- Clean signature
- · Goals:
 - measure $\epsilon(b)$ and R

Signal or background?

• Use tail to model background in signal region
Signal vs. background

N.Cim. B125(2010)983, PLB 736(2014)33

Scale shape to match spectrum observed with M_{li} >180 GeV

Heavy flavor content

N.Cim. B125(2010)983, PLB 736(2014)33

• Fully data-driven measurement

- b-tagging multiplicity parametrized as function of R $\epsilon_{b},\,\epsilon_{q},$ top contribution
- Number of reconstructed t→Wq is estimated from lepton-jet invariant mass

• R=1.01±0.03 (stat. + syst.)

– Lower boundary with confidence interval @95%CL after requiring R≤1 ⇒ R>0.955 @95%CL

Measure R

- Variation of the likelihood used to measure R from data
- Fit different categories

Michele Gallinaro - "The top quark: a tool for discoveries" - March 30, 2015

Summary of R results

b-tagging efficiency

Top quark decays and taus

Probing the Wtb vertex

- Measurement of ttbar cross section with tau leptons in final state is important:
 - channel not well explored
 - Cross-check to other channels
 - increase acceptance of ttbar events
 - involves only 3rd generation leptons/quarks
 - probe non-standard physics (t \rightarrow H[±]b, ...)

Channel	Signature	BR
Dilepton(e/µ)	ee,μμ,eμ + 2 <i>b</i> -jets	4/81
Single lepton	e,μ + jets + 2 <i>b</i> -jets	24/81
All-hadronic	jets + 2 <i>b</i> -jets	36/81
Tau dilepton	<i>e</i> τ, μτ +2 <i>b</i> -jets	4/81
Tau+jets	τ + jets + 2 <i>b</i> -jets	12/81

- If top quark plays special role in EWK symmetry breaking, couplings to W may change
- Charged Higgs may alter coupling to W
- Search for final states with taus

Charged Higgs

- Study non-SM Higgs in two mass regimes:
- Low mass: m_H<m_{top}
 - -Mostly produced in top quark decays
 - −Large tan β : H[±]→ τ ⁺ ν
 - –Small tanβ (<1): H⁺→cs
- High mass: m_H>m_{top}
 - -Produced in gluon-gluon fusion
 - -Main decays: $H^+ \rightarrow tb$, $H^+ \rightarrow \tau^+ v$
- Main backgrounds: ttbar, W+jets

Charged Higgs

 Tau dilepton channel is of particular interest as existence of charged Higgs can give rise to anomalous tau lepton production

⇒directly observable in this channel

Charged Higgs

Taus in top quark decays

- Selection:
 - one isolated lepton (e/ μ)
 - OS tau
 - at least two jets (one b-tagged)
 - MET>30 (45) GeV
- Determine $\boldsymbol{\tau}$ fakes from data
 - Expected to be dominated by quark/gluon jets
 - Conservative approach: average W+jets and QCD

Tau dilepton channel

 $\sigma_{tt} = 257 \pm 3 \text{ (stat)} \pm 24 \text{ (syst)} \pm 7 \text{ (lumi) pb} \pm 10\%$

Is there a charged Higgs?

JHEP 07(2012)143, CMS-HIG-12-052, CMS-HIG-14-020, CMS-HIG-13-026

 If anomalous tau/lepton production in ttbar decays there may be contribution from charged Higgs

Yields in agreement with expectations ⇒ set limits m_H: 80-160 GeV $\mathcal{B}(t \rightarrow bH^+) < 1.2-0.6\%$ 200-600 GeV $\sigma(pp \rightarrow \bar{t}(b)H^+) < 4-1 \text{ pb}$

ttbar resonances

How else is top quark produced?

Top quark pair resonance

- No resonance expected in SM
- Why is the top quark so heavy?
 - new physics?
 - is third generation 'special'?
 - couples predominantly to 3rd generation quarks
- Top quark is relatively unknown experimentally
- Experimental check
 - search for a bump in the invariant mass spectrum

Search for resonances

- Semi-leptonic (muon+jets) channel
- Z' →ttbar cross section normalized to SM ttbar
- Progressive loss in reconstruction ability due to jet merging

Search for heavy resonances

Events / 10 GeV

10³

10²

10

10-1

1.5⊢

l+tau

ATLAS

JHEP1212(2012)015

Data W+jet

Ζ→ττ

v.(500GeV

ŧŦ ww Single Top

- search for massive neutral bosons decaying via a ttbar quark pair
- use dilepton/lepton+jet final states (electron and muon)
 - Reconstruct M_{ttbar} in different categories (e/ μ , *n*-jets, *n* b-tags)
 - I+jet events: full event reconstruction
 - Dileptons: use NN approach to improve S-B separation
- systematics include shape (JES, b-tag, theory model) and rates (eff. bkg yields)

Searches for tt/tb resonances

- Two benchmark models considered:
- Leptophobic topcolor Z'
 - ⇒ narrow resonances

 \Rightarrow broad resonances

 Kaluza-Klein gluons from Randall-Sundrum models

Boosted topology

Jets and boosted topology

Boosted topology

 In many models there is high potential to discover new physics in the top sector in search for heavy resonances

$$pp \to X \to t\bar{t}$$

Simple approach to merge neighboring jets

- At LHC energy, EWK scale particles produced beyond threshold
- Jets are highly collimated
- Decay products and FSR collected in a fat jet

Michele Gallinaro - "The top quark: a tool for discoveries" - March 30, 2015

Merged Jet

Mass jet $\sim M_{top}$

Boosted jet topology

Michele Gallinaro - "The top quark: a tool for discoveries" - Mar

tī mass (GeV/c²)

Jet/Event selection

- Locate hadronic energy deposit in detector by choosing initial jet finding algorithm
- Impose jet selection cuts on fat jet
 - Recombine jet constituents with new algorithm
 - Filtering: recombine n sub-jets min d(i,j)
 - Trimming: recombine sub-jets with min $\ensuremath{p_{\text{T}}}$
- Minimum distance between jets is R

UE, ISR, Pile-up, hard interaction

Boosted top topology

- Highly boosted top: three hadronic decays of the top are merged in one top jet
- Moderately boosted top: three hadronic decays of the top are merged in one W jet plus and one b jet candidates

Boosted top topology

Top quark and new physics

- Top quark production is main background in many searches for new physics
- Top quark sample may be contaminated by NP processes
- Is top quark sample compatible with top quark SM hypothesis?
- Need to compare distributions, gain good understanding of top sample

SUSY and 4th generation

Top as window to BSM physics

Top quark affects stability of Higgs mass

Contributions grow with Λ :

 $m^2 = m_0^2 + g^2 \Lambda^2$

Cancellation?

Problem:

- "low" value of Higgs mass is a problem
- Virtual SM particles in quantum loops contribute to Higgs mass
- Ad-hoc cancelations are needed to keep the Higgs mass <1 TeV

Top as window to BSM physics

Top quark affects stability of Higgs mass

t W/Z h

Contributions grow with Λ :

 $m^2 = m_0^2 + g^2 \Lambda^2$

Cancellation?

Solutions:

- Naturalness: There is no problem
- Weakly-coupled model at TeV scale
 - -New particles to cancel SM divergences
 - -Top partners: new scalar/vectors coupled to top, exotic top decays
- Strongly-coupled model at TeV scale
 - ttbar resonances, bound states, 4-top production, etc.
- New space-time structure
 - Introduce extra space dimensions to lower Planck scale cutoff to ~1TeV
 - KK excitations

Scalar top quark

- SUSY is one plausible extension of the SM
- due to the heavy top quark, mass splitting between \tilde{t}_1 and \tilde{t}_2 can be large, such that the lighter stop \tilde{t}_1 can be even lighter than the top quark
- Decays dictated by mass spectrum of other SUSY particles

• Heavy stop:

Michele Gallinaro - "The top quark: a tool for discoveries" - March 30, 2015

i.e. similar

signature as in

Top and SUSY

- Due to the large top mass, the scalar top quark can be lighter than the top quark
- Direct stop production
- 1st and 2nd generation squarks can be very heavy
- Similar to ttbar lepton+jet and dilepton final states

 $egin{aligned} & ilde{t} o t ilde{\chi}_1^0 o bW ilde{\chi}_1^0 \ & ilde{t} o b ilde{\chi}_1^+ o bW ilde{\chi}_1^0 \end{aligned}$

Taus

- Assume each stop decays to tau and b (R-parity violation)
 - $\tilde{t}_1 \overline{\tilde{t}}_1 \rightarrow \tau^+ \tau^- b \overline{b}$
- Similar final state as in ttbar dilepton with taus
- Look for $e/\mu + \ge 2$ jets + MET
- Define 6 regions in: m_T(I,MET) vs N_{iet} plane
- Find 2 evts in signal region (2.2 expected)

70

Multi-top production

- Production of 4 tops is an attractive scenario in a number of new physics models
- The SM cross section is a few fb
- Search for same-sign dileptons
- Several models studied
- consider multiple search regions defined by MET, hadronic energy, number of (b-) jets, and transverse momenta of the leptons in the events

ttbar+Higgs

ttbar produced in association with H

-ttbar is a "clean" tag

direct measurement of Higgs couplings

ttbar+Higgs (cont.)

$\sqrt{s} = 7$ TeV, 5.0-5.1 fb $\sqrt{s} = 8$ TeV, 19.3-19.7 fb bb, tt, yy, WW, ZZ CMS Search for associated SM Higgs production: ttH 95% CL limit on $\sigma\!/\sigma_{SM}$ Observed - Both "dilepton" and "I+jets" channels Expected (sig. inj.) Simultaneous fit for S and B fractions Expected $\pm 1\sigma$ 4-5 times SM Expected $\pm 2\sigma$ - different categories: jet and b-jet multiplicity. Higgs BR + Total Uncert WW bb gg ZZ ττ 110 115 120 125 130 135 140 m_H (GeV) CMS √s = 8 TeV, 19.3-19.7 fb⁻¹ CC ¥ ttH, H \rightarrow bb, $\tau\tau$, $\gamma\gamma$, WW, ZZ m_u = 125.6 GeV Zγ 10⁻³ Best fit 68% CL 10 95% CL 200 300 400 90 1000 SM Higgs M_н [GeV] κ_v Michele Gallinaro - "The top guark: a tool for discoveries" - March 30, 2015

arXiv:1410.2751

Cross sections at the LHC

Michele Gallinaro - "The top quark: a tool for discoveries" - March 30, 2015

