The Top quark

Michele Gallinaro

LIPListon

Discovery of the Top quark

Object reconstruction
 Decay and production
 Cross section measurements

Contents

- Introduction (discovery, object ID)
- Top pair production at the Tevatron
- Top pair production at LHC
- Properties: differential cross section
- Mass measurements
- Spin correlation, charge asymmetry
- Single top production
- Flavor Changing Neutral Currents (FCNC)
- Search for top partners and 4th generation quarks
- Search for ttbar resonances

Introduction

- Discovery
- introduction to the top quark

1974

With the discovery of the J/ Ψ :

quarks

 $\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix}$

 $\begin{pmatrix} \boldsymbol{v}_e \\ \boldsymbol{\rho} \end{pmatrix} \begin{pmatrix} \boldsymbol{v}_\mu \\ \boldsymbol{\mu} \end{pmatrix}$ leptons

1975-1977

- Tau (τ) lepton in Mark I data (v_{τ} from the decay $\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} b \\ b \end{pmatrix}$ kinematics)
- Discovery of the Y at Fermilab

 $\begin{pmatrix} \boldsymbol{v}_{e} \\ \boldsymbol{e} \end{pmatrix} \begin{pmatrix} \boldsymbol{v}_{\mu} \\ \boldsymbol{\mu} \end{pmatrix} \begin{pmatrix} \boldsymbol{v}_{\tau} \\ \boldsymbol{\tau} \end{pmatrix}$

- b: non SM? iso-singlet? SM iso-doublet?
- 1984: DESY measurement of $e^+e^- \rightarrow b\overline{b}$ FB asymmetry: (22.5 ± 6.5)% - cf. 25.2% SM iso-doublet, 0% iso-singlet
- If SM is correct there must be a iso-doublet partner, the top quark
- Mass? b/c/s 4.5/1.5/0.5: Mass=15 GeV?

The theory: Why?

- The SM is not a "renormalizable" gauge theory in the absence of the top quark
- Renormalizability is a crucial feature, enabling the SM to be theoretically consistent and be usable as a tool to compute the rate of subnuclear processes between quarks, leptons, and gauge bosons
- Diagrams containing so-called "triangle $I_{3A} Q$ anomalies" (right), cancel their contributions, thus avoid breaking the renormalizability of the SM, only if the sum of electric charges of all fermions circulating in the triangular loop is zero: $\Sigma Q = -1 + 3 \times [2/3 + (-1/3)] = 0$

lepton electric charge quark (up/down) charge

Searches in e⁺e⁻ collisions

PETRA could reach ~20 GeV (late '70s)

- Search for narrow resonance
- Look for increase in R=(# of hadron events)/(# of $\mu\mu$ events)
- -Global event characteristics: look for spherical component
- -Negative results. Set limits: M_t>23 GeV
- TRISTAN built to study the top quark (early '80s)
 - Similar search technique:
 - $-M_t$ >30 GeV

• SLC/LEP

- –Look for Z→tt̄
- $-M_t$ >45 GeV

• Reached kinematic limit for direct searches at e⁺e⁻ colliders

Indirect searches from e⁺e⁻ colliders

• In the SM, various EWK observables depend on the mass of the top quark

- Precision measurement of the Z decay \Rightarrow predictions of M_{top} (consistency)
- In the period 1990- up to the discovery:
 - Prediction upper limit<200-220 GeV

Early searches at hadron colliders

CERN SppS ($\sqrt{s}=540$ GeV) built to observe W,Z

- Access to much higher energies
- Large backgrounds, low event rates
- Difficult reconstruction: jets
- 1984: UA1
- W→tb→lvbb
- Isolated high-p_T lepton
- 2 or 3 hadronic jets
- Observe 5 events (e+ \geq 2 jets), 4 events (μ + \geq 2 jets)
- Expected background: 0.2 events
 - Fake leptons dominate; bbar/ccbar negligible
- Result consistent with M_{top} =40±10 GeV
- Stop before claiming discovery...

⇒W+jet background was underestimated

Searches at hadron colliders

- 1988 UA1
- Larger data sample (x6, 600nb⁻¹)
- Improved understanding of the backgrounds
- Fake leptons, W+jets, DY, J/ Ψ , bbar/ccbar

<u>channel</u>	observed	expected background
μ + \geq 2 jets	10 events	11.5 ± 1.5 events
$e + \ge 1$ jets	26 events	23.4 ± 2.8 events
	$(+23 \text{ expected if } M_{top} = 40 \text{ GeV})$	

⇒conclude M_{top}>44 GeV

Fermilab joins the hunt

- 1988-89: at CERN, UA2 remains after the upgrades
- $\sqrt{1.8}$ TeV@FERMILAB **vs.** $\sqrt{0.63}$ TeV@CERN
- Much better reach for larger mass (only 75 GeV@UA2)
- At Tevatron, pair production dominates: tt→ Wb Wb

%	ev	μν	τν	<i>qq</i>
ev	1.2	2.5	2.5	14.8
μν		1.2	2.5	14.8
τν			1.2	14.8
<i>q</i> q				44.4

Tevatron

Proton-antiproton collision at 1.8-2.0 TeV

12 countries, 62 institutions 767 physicists

Searches at CDF

ev+ ≥2 jets

- Dominant background: W+jets
- Discriminant: ev transverse mass
 - Background: W on-shell
 - Signal: W off-shell for M_{top} =40-80 GeV

⇒M_{top}>77 GeV

UA2 uses similar technique: M_{top}>69 GeV

Searches at CDF (cont.)

$e\mu$ channel

- Event rate much lower: $2xBR(W \rightarrow e_V)$
- Background very small
- No W+jets
- No Drell-Yan
- Dominant background is $Z \rightarrow \tau \tau \rightarrow e \mu X$ (expect 1 event)
- Observe 1 event

⇒M_{top}>72 GeV (expect 7 events for M_{top}=70 GeV)

Change of strategy: M_{top}>M_b+M_W

- Top quark decays to on-shell Ws: no $M_T(I_V)$ discriminant
- Main differences:
 - -background: W+jets (largely quarks and gluons)
 - -signal: W+jets (2 jets are b-jets)
- CDF publication on 88-89 data:
 - Dilepton: include ee, $\mu\mu$, $e\mu$ (require missing ET, Z-veto)
 - -Single lepton: require low p_T muon (semi-leptonic b-decays)

 \Rightarrow M_{top}>91 GeV

83 institutions, 664 physicists

D0 joins the hunt

DØ Detector

Searches at Tevatron: CDF and D0

1992-1995

- Tevatron with higher luminosity
- D0: excellent calorimetry, large solid angle and coverage
- CDF: precision vertex detector, good tracker, magnetic spectrometer
- Run 1A:
- D0: optimized search for M_{top} =100 GeV

–eμ+≥1jet+MET	1 evt	(1.1 bkg)
–ee+≥1jet+MET	1	(0.5)
–e+≥4jets+MET	1	(2.7)
− μ+≥4jets+MET	0	(1.6)

⇒M_{top}>131 GeV@95%CL

Detecting the top quark at CDF

- Strategy
 - dilepton: +2 jets
 - single lepton: b-tagging
 - 1) soft e/ μ : semi-leptonic b-decay
 - 2) secondary vertex

Tagging b-jets

- Top events contain B hadrons
- Only 1-2% of dominant W+jets background contains heavy flavor

1993

Coll. Meeting, Aug. 1993:

- Status report from each group (dilepton, single lepton)
- Small, not significant excess in all channels

- In total, an excess of events
- Background fluctuation probability: 2.8σ
- Skepticism, additional studies, cross-checks
- Additional 8 months before making the results public

Final steps: CDF and D0

CDF: counting experiment yields 2.8σ

- Few checks: no major discrepancy
- Other checks consistent with presence of signal
- Mass distribution looked good
- There were also other analyses at CDF
 - Difference of jet E_T spectra for signal and bkg
 - Separate two component for signal and bkg
 - -CDF chose not to use those for first publication
- Use "counting" experiment
- D0: added more data and re-optimized for heavy top (single and dilepton)
- Observed 7 events (expect 4-6 from bkg)
- No independent evidence

First evidence (1994)

VOLUME 73, NUMBER 2

PHYSICAL REVIEW LETTERS

11 JULY 1994

Evidence for Top Quark Production in $\bar{p}p$ Collisions at $\sqrt{s} = 1.8$ TeV

We summarize a search for the top quark with the Collider Detector at Fermilab (CDF) in a sample of $\bar{p}p$ collisions at $\sqrt{s} = 1.8$ TeV with an integrated luminosity of 19.3 pb⁻¹. We find 12 events consistent with either two W bosons, or a W boson and at least one b jet. The probability that the measured yield is consistent with the background is 0.26%. Though the statistics are too limited to establish firmly the existence of the top quark, a natural interpretation of the excess is that it is due to $t\bar{t}$ production. Under this assumption, constrained fits to individual events yield a top quark mass of $174 \pm 10 \pm 12$ GeV/ c^2 . The $t\bar{t}$ production cross section is measured to be 13.9 ± 4.8 pb.

First measurements

VOLUME 74, NUMBER 14

PHYSICAL REVIEW LETTERS

3 April 1995

Observation of Top Quark Production in $\overline{p}p$ Collisions with the Collider Detector at Fermilab

We establish the existence of the top quark using a 67 pb⁻¹ data sample of $\overline{p}p$ collisions at $\sqrt{s} = 1.8$ TeV collected with the Collider Detector at Fermilab (CDF). Employing techniques similar to those we previously published, we observe a signal consistent with $t\bar{t}$ decay to $WWb\bar{b}$, but inconsistent with the background prediction by 4.8σ . Additional evidence for the top quark is provided by a peak in the reconstructed mass distribution. We measure the top quark mass to be $176 \pm 8(\text{stat}) \pm 10(\text{syst}) \text{ GeV}/c^2$, and the $t\bar{t}$ production cross section to be $6.8^{+3.6}_{-2.4}$ pb.

First measurements

VOLUME 74, NUMBER 14

PHYSICAL REVIEW LETTERS

3 April 1995

Observation of Top Quark Production in $\overline{p}p$ Collisions with the Collider Detector at Fermilab

First measurements

VOLUME 74, NUMBER 14

PHYSICAL REVIEW LETTERS

3 April 1995

Observation of Top Quark Production in $\overline{p}p$ Collisions with the Collider Detector at Fermilab

Top quark and its relevance

- Basics
- How to detect the top quark
- Tevatron vs LHC

About the top quark

- The heaviest known elementary particle
- Large mass, coupling to the Higgs ~1
 ⇒no hadronization
- Several open questions
 - Is top mass generated by the Higgs mechanism?
 - Special role in EWSB mechanism?
 - Does it play a role in non-SM physics?
 - Are the couplings affected?
- Main background for many New Physics searches
- Top quark measurements may provide insight into physics beyond SM

The Large Hadron Collider

- Built to explore new energy frontiers
- First colliding beams in 2009
- started with "low" luminosity in 2010
- •~5 fb⁻¹@7TeV delivered in 2011
- •~20 fb⁻¹@8TeV in 2012
- re-establish SM measurements
- access to new physics processes

⇒ Top quarks give access to SM and BSM (?)

Tevatron vs LHC

25

20

15

10

1 May

CMS Preliminary

2 Jun

| **H(**)

2 Jul

1 AUG

1 sep

20ct

2 NOV

Total Integrated Luminosity ($m fb^{-1}$)

Energy: 1.96 TeV Int. Luminosity: 12 fb⁻¹ Age: ~25 years Events/exp (5.4 fb⁻¹) 350 ee eµµµ 3500 lepton + jets Energy: 7/8 TeV Int. Luminosity: 5/20 fb⁻¹ Age: ~3 years Events/exp (1 fb⁻¹) 2500 ee eµµµ 15000 lepton + jets

Data included from 2012-04-04 22:37 to 2012-12-16 20:49 UTC

HC Delivered: 23.30 fb^{-1}

CMS Validated: 20.65 fb⁻¹

Recorded: 21.79 fb⁻¹

Michele Gallinaro - "The top quark" - March 23, 2015

25

20

15

10

5

2 Dec

What is the Top quark?

- It is the heaviest fundamental particle $- M_{top} = 174.3 \pm 0.6 \text{ GeV}$ (arXiv:1407.2682)
- Weak isospin partner of the b-quark
- Completes the SM of quarks and leptons

How is the top quark produced?

Predicted cross sections:

Collider	$\sigma_{ m tot}$ [pb]	scales [pb]	PDF [pb]
Tevatron	7.164	+0.110(1.5%) -0.200(2.8%)	+0.169(2.4%) -0.122(1.7%)
LHC 7 TeV	172.0	+4.4(2.6%) -5.8(3.4%)	+4.7(2.7%) -4.8(2.8%)
LHC 8 TeV	245.8	+6.2(2.5%) -8.4(3.4%)	$^{+6.2(2.5\%)}_{-6.4(2.6\%)}$
LHC 14 TeV	953.6	+22.7(2.4%) -33.9(3.6%)	+16.2(1.7%) -17.8(1.9%)

Czakon et al. PRL 110, 252004 (2013)

Michele Gallinaro - "The top quark" - March 23, 2015

Tevatron

~10%

~90%

LHC

gg

qq

~85%

~15%

How does a top quark decay?

- almost always t \rightarrow Wb (i.e. $V_{tb} \sim 1$)
- lifetime is short, and it decays before hadronizing
- the W is real:
 - − can decay W→Iv (I=e,µ,τ), BR~1/9 per lepton
 - can decay W→qq, BR~2/3

How do ttbar pairs decay?

tt decay modes

⇒ use all decay channels

Interesting physics with Top quark

PRODUCTION

...

Cross section Resonances X→tt Fourth generation t' Spin-correlations New physics (SUSY) Flavour physics (FCNC)

PROPERTIES

Mass Kinematics Charge Lifetime and width W helicity Spin

DECAY

...

Branching ratios Charged Higgs (non-SM) Anomalous couplings Rare decays CKM matrix elements Calibration sample @LHC

Michele Gallinaro - "The top quark" - March 23, 2015

...
Particle identification

Object identification and reconstruction

Selection of top quark events

- Trigger:
 - -single or double (isolated) lepton
- Leptons:
 - $-e/\mu$, p_T>20/30 GeV, | η |<2.5
 - Identification/reconstruction
 - Tracker/calorimeter isolation

- Jets:
 - at least 2 jets, p_T>30 GeV, $|\eta|$ <2.5
 - -anti-kT algorithm, with cone 0.4-0.5
 - b-tagging is optional
- Missing transverse energy:
 - Typically require 30-40 GeV

Particle Flow event reconstruction

- Particle Flow (PF) combines information from all subdetectors to reconstruct particles produced in the collision
 - charged hadrons, neutral hadrons, photons, muons, electrons
 - use complementary info. from separate detectors to improve performance
 - tracks to improve calorimeter measurements
- From list of particles, can construct higher-level objects

– Jets, b-jets, taus, isolated leptons and photons, MET, etc.

Challenge: Pile-up

Jet reconstruction

- A "jet" is a cluster of energy deposited in a "small" η-φ region of the detector
 - It is not a unique object, it is defined by the jet algorithm (different choices yield different jets)
- The jet algorithm uses detector reconstructed objects (clusters, tracks, combined objects)
- It is "safe" to higher order effects when it does not change jet quantities
- Efficient and pure: jets correspond to partons

Missing transverse momentum

- Neutrinos (and "dark matter") escape the detector without detection
 - Also longitudinal momentum and energy of other final state particles escape undetected (along the beam-pipe)
 - Momentum is not measured along the z-direction
 - Missing momentum along z is unknown
- The momentum of the neutrinos can be reconstructed in the transverse plane
- Momentum which is missing to balance the total momentum to zero

transverse energy vector

$$E_T^{\text{miss}} = -\sum_i p_T(i)$$

where the sum runs over the transverse momenta of all visible final state particles.

Challenge: MET

- Performance of the MET measurement depends on the measurement of ALL particles in the event
- Measurement is affected by:
 - Noise, mis-calibration, various calorimeter problems (dead channels, etc)
 - Modeling of QCD background events, pile-up, multiple interactions, …
 - Muon momentum measurement (muons inside jets)
 - Cosmic background events
 - Beam halo (i.e. collisions upstream of detector, parallel to beam)
- MET significance

Challenge: b-tagging

- •Lifetime: $\tau_b \sim 1-2$ psec
- Reduction of background obtained by identifying jets from b-quarks
- •Two methods:
 - Secondary vertex tagging
 - Semileptonic decays of b-hadrons in jets $(b \rightarrow l \nu_l X)$

Michele Gallinaro - "The top quark" - March 23, 2015

b-tag: fake rates and efficiencies

- b-tag optimization: trade-off between fake rate and efficiency
- studied the performance of several different tagging working points
 - Example: Track counting algorithms
 N_{tracks}=2,3 have ``working points'' with fake rates approx. 10%, 1%, 0.1%
- Uncertainty on data/MC scale factor, depending on algorithms:
 - ~10-15% for mistags
 - $-\sim 5\%$ for efficiencies
- Impact on top: amount and uncertainty of light flavor background for all tagged analysis

Interesting physics with top quarks

- Cross section
- Mass
- Kinematical properties
 - Is there a $X \rightarrow ttbar?$
 - -W polarization
 - Spin correlations
- Rare decays
- Single top
- Top quark is unusually heavy: maybe is it different?

Role of top quark physics

- Top quark physics after the Higgs discovery
 - Special role in EWSB mechanism?
 - Does it play a role in non-SM physics?
 - Are the couplings affected?
 - Main background for many NP searches
- Monitoring of production mechanism
- Interpretation of m_{top}: top, W, Higgs masses
- Are properties consistent with our understanding of EWSB?
- Is there any sign of NP in top production/decay?

Measurements

Measurement of the cross section

Top quark decays

Top quark events

- LHC@13TeV cross section ~100 times larger than Tevatron
- goal of the LHC is searching for New Physics
- select ttbar events at LHC:
 - -understand/calibrate detector
 - -Measure SM quantities
- event selection includes SM control events
- ttbar final state is complex (i.e. not a mass peak)
- Top quarks and new physics:
 - ttbar sample may contain new physics
 - look at jet multiplicity bins (since ttbar is background e.g. for SUSY), or other variables

Theory cross sections: TeV vs LHC

Collider	$\sigma_{ m tot}$ [pb]	scales [pb]	PDF [pb]	
Tevatron	7.164	+0.110(1.5%) -0.200(2.8%)	+0.169(2.4%) -0.122(1.7%)	
LHC 7 TeV	172.0	+4.4(2.6%) -5.8(3.4\%)	+4.7(2.7%) -4.8(2.8\%)	
LHC 8 TeV	245.8	+6.2(2.5%) -8.4(3.4\%)	+6.2(2.5%) -6.4(2.6\%)	
LHC 14 TeV	953.6	+22.7(2.4%) -33.9(3.6%)	+16.2(1.7%) -17.8(1.9%)	

Including NNLO+NNLL approximations PRL 110, 252004 (2013) (M. Czakon et al.)

Top cross section at 7/8 vs 14 TeV

- LHC collisions started at 7/8 TeV
- LHC design is at 14 TeV
- Top cross section drops faster than background processes at lower sqrt{s}
- Top cross section drops by factor of ~5:
 - Cacciari, Frixione, Mangano, Nason, Ridolfi arXiv:0804.2800
 - Top σ (14TeV)=950 pb
 - Top σ(7TeV)=172 pb
- Background is more "flat"

A word about QCD background

- QCD may still be large background in Top events
- From Tevatron to LHC
 - σ (ttbar) increases by 100
 - $\sigma(W)$ increases by 10

...however...

σ(W+4 jets) increases 100 times
 ⇒W+jet background is large

Slide by Michelangelo Mangano

σxB(W→e∨)[pb]	N jet=l	N jet=2	N jet=3	N jet=4	N jet=5	N jet=6
LHC	3400	1130	340	100	28	7
Tevatron	230	37	5.7	0.75	0.08	0.009

 E_T (jets) > 20 GeV , $|\eta| < 2.5$, $\Delta R > 0.7$

- Ratios almost constant over a large range of multiplicities
- O(α_s) at Tevatron, but much bigger at LHC

29

Cross section measurement

$$\sigma_{t\bar{t}} = \frac{N_{obs} - N_{bgd}}{\varepsilon_{t\bar{t}} \cdot \int Ldt}$$

✓ testing non-SM top production mechanisms

✓ top sample may contain an admixture of exotic processes

Dilepton channel

Branching Ratio (BR) ~5% background: small

≻two leptons + ≥2 jets + ∉_T
 ≻more kinematical variables

Dilepton channel

- Branching ratio (BR) ~5%
- Background: small
- Clean final state
 - two leptons + ≥2 jets + MET
 - kinematic variables
- Signal visible w/without b-tagging
- Measure cross section:
 - ee, $\mu\mu$, $e\mu$ final states
 - -btag (CSV): eff 85%, misID 10%
 - -Cut and count
- Main systematics: JES, lepton ID, (pileup, b-tag, signal modeling)

 $\sigma_{
m t\bar{t}} = 239 \pm 2 \, ({
m stat.}) \pm 11 \, ({
m syst.}) \pm 6 \, ({
m lum.}) \, {
m pb}$ $\pm 5\%$

b-jet multiplicity

57

JHEP 02(2014)024

Tau_h+lepton final state

PLB 739(2014)23

dominant syst.: τ fakes, b-tag

±10%

Good agreement between measurement and

 $\sigma_{t\bar{t}}(e\tau_h) = 255 \pm 4 (stat) \pm 24 (syst) \pm 7 (lumi) pb;$

 $\sigma_{t\bar{t}}(\mu\tau_{h}) = 258 \pm 4 \text{ (stat)} \pm 24 \text{ (syst)} \pm 7 \text{ (lumi) pb}$

Lepton + jets

BR ~30% background: moderate

>one lepton + ≥3 jets + ∉_T
>may require b-tag

Single lepton channel

- Include both muon and electron channels (untagged)
- Use kinematical differences between ttbar and W+jets

 $\sigma_{t\bar{t}} = 179.0 \pm 3.9 \,(\text{stat}) \pm 9.0 \,(\text{syst}) \pm 6.6 \,(\text{lumi}) \,\text{pb}$

Michele Gallinaro - "The top quark" - March 23, 2015

Single lepton channel

Main backgrounds:

- Hadronic multijet: rejected by m_T,MET, controlled from sidebands
- -W+jets (heavy flavor)
- Use kinematics to select ttbar
 - -Mass of sec. vertex
 - topology

Categorize events and extract σ_{tt} from fit

ATLAS 179.0±3.9 (stat)±9.0 (syst)±6.6 (lumi) pb

 $\begin{array}{ll} 158.1 \pm 2.1 \, (\text{stat.}) \pm 10.2 \, (\text{syst.}) \pm 3.5 \, (\text{lum.}) \, \text{pb.} \\ \text{CMS} & \text{arXiv:} 1212.6682 \end{array}$

All hadronic

BR ~44% background: large

≻≥6 jets + kinematical selection
> optimize S/√B
> require b-tag

All-hadronic: cross section

JHEP 05(2013)065. EPJC 74(2014)2758

- Fully hadronic final state (BR~46%)
- · Six jets and no leptons in the final state
- Reconstruct ttbar system and fit with least χ^2 method
 - reconstruct both W bosons
 - $m_{top1} = m_{top2}$ are free parameters
 - b-jets are taken as b-quark candidates
 - take permutation with smallest χ^2
- Multijet QCD is main background (from data)
 - Use same selection without b-tag req.
 - Re-weigh mass spectrum from anti-tagged sample
- Templates are inputs for likelihood fit for cross section measurement
 - Signal and background templates
 - Signal fraction is a free parameter

 $\sigma_{
m t\bar{t}} = 139 \pm 10$ (stat.) \pm 26 (syst.) \pm 3 (lum.) pb

Dominant syst.: JES, b-tag

Michele Gallinaro - "The top quark" - March 23, 2015

±20%

LHC cross section measurements

7 TeV

8 TeV

Cross sections

Michele Gallinaro - "The top quark" - March 23, 2015

√*s* [TeV

Cross sections (cont.)

CMS-TOP-14-016

Collider	$\sigma_{ m tot}~[m pb]$	scales [pb]	pdf [pb]
Tevatron	7.164	+0.110(1.5%) -0.200(2.8%)	+0.169(2.4%) -0.122(1.7%)
LHC 7 TeV	172.0	+4.4(2.6%) -5.8(3.4%)	+4.7(2.7%) -4.8(2.8\%)
LHC 8 TeV	245.8	+6.2(2.5%) -8.4(3.4%)	+6.2(2.5%) -6.4(2.6%)
LHC 14 TeV	953.6	+22.7(2.4%) -33.9(3.6%)	+16.2(1.7%) -17.8(1.9%)

±3-5%

Differential cross sections

CMS-TOP-12-041, arXiv:1404.3171

- Measurements performed in fiducial volume to minimize model dependency
- Improve ttbar modeling and reduce uncertainties
- Sensitive to BSM effects
- Correct for detector effects ("unfolding" to particle level) and acceptances
- Good agreement in dilepton and lepton+jet channels, at different energies
- Large uncertainties at high jet multiplicities dominated by JES and MC modeling

Differential cross section

- Measure differential cross section
 - Test perturbative QCD
 - Test BSM scenarios (Z' decays, etc) with narrow resonance
- Reconstruct event kinematic properties

- Cross sections measured as a function of p_T , η , invariant mass of the final state leptons, the top quarks, and the ttbar system
- Good agreement found in dilepton and lepton+jet channels
 - NNLO approx better describes data

Differential cross section

- Measure differential cross section
 - Test perturbative QCD
 - Test BSM scenarios (Z' decays, etc) with narrow resonance
- Reconstruct event kinematic properties

- Cross sections measured as a function of p_T , η , invariant mass of the final state leptons, the top quarks, and the ttbar system
- Good agreement found in dilepton and lepton+jet channels

Jet energy correction from Top

- Use semi-leptonic events

 –1 isol μ (p_T>30 GeV)+≥4 jets (40 GeV)
- Estimate jet energy corrections by applying event-by-event kinematical fit to W and Top masses
- Likelihood is used to assign jets
- Kinematical fit returns P(χ²)
- Find best JES by minimizing χ^2

Measuring the top mass

Challenging:

Lepton+jets

- undetected neutrino
 - P_x and P_y from E_T conservation
 - 2 solutions for P_z from $M_W = M_{Iv}$
- leading 4-jet combinatorics
 - 12 possible jet-parton assignments
 - 6 with 1 b-tag
 - 2 with 2 b-tags
- ISR + FSR

Dileptons

- (less statistics)
- two undetected neutrinos
- · less combinatorics: 2 jets

experiment sees:

