Course on Physics at the LHC

LIP Lisbon, February - June 2015

The standard model of particle physics Prof. João Varela (LIP. IST) 23, 26 February Standard Model of Particle Physics

Detector physics and experimental methods

Top quark physics

Standard model Higgs and beyond

Supersymmetry

B physics and rare decays

Matter at high density and temperature

r. Michola Cillina (LL), HCC Silva (CERN)

Dr. Pedro Silva (CERN), Dr. André David (CERN), Dr. Patricia Muino (LIP), Dr. Ricardo Gonçalo (LIP)

J. Nuno Leonardo (LIP)

Prof. João Seixas (LIP, IST), Dr. Pietro Faccioli (LIP)

9. 16 March

23, 30 March, 13 Apri

20, 27 April 4, 11 May 8, 25 May

8, 15 June

The lectures will take place on Mondays, between 17:00 and 18:30 at LIP, Av. Elias Garcia 4 r/c, 1000 Lisbon - Portugal

More info at http://idpasc.lip.pt/LIP/events/2015_lhc_physics

Course coordinator: João Varela, Michele Gallinaro (LIP, IST)

The Standard Model at LHC

- 1. Hadron interactions
- 2. QCD and parton densities
- 3. Monte Carlo generators
- 4. Luminosity and cross-section measurements
- 5. Minum bias events
- 6. Jet physics
- 7. W and Z physics

Hadron Interactions

Natural units $\hbar = 1, c = 1$

$$\hbar c = 197.3 \text{ MeV fm}$$

 $(\hbar c)^2 = 0.3894 \text{ GeV}^2 \text{ mb}$

Four-vector kinematics

$$p = (E, \vec{p})$$
$$p^2 = E^2 - \vec{p}^2 = m^2$$
$$\beta = p/E, \ \gamma = E/m$$

Lorentz invariance

Cross-sections should be function of scalar products of 4-vectors

$$p_1 \cdot p_2 = E_1 E_2 - \vec{p_1} \cdot \vec{p_2}$$

4-vector scalar product Lorentz invariant

Kinematical variables

Relevant kinematic variables:

- Transverse momentum: pT
- Rapidity: $y = \frac{1}{2} \cdot \ln (E p_z)/(E + p_z)$
- Pseudorapidity: $\eta = -\ln \tan \frac{1}{2}\theta$
- Azimuthal angle: ϕ

Invariant mass

Invariant Mass:

$$M^{2} = (p_{1} + p_{2})^{2}$$

= $(E_{1} + E_{2})^{2} - (\vec{p}_{1} + \vec{p}_{2})^{2}$
= $m_{1}^{2} + m_{2}^{2} + 2E_{1}E_{2}(1 - \vec{\beta}_{1}\vec{\beta}_{2})$

Center of mass energy

Center-of-mass Energy:

$$E_{\rm cm} = \left[(E_1 + E_2)^2 - (\vec{p_1} + \vec{p_2})^2 \right]^{\frac{1}{2}}$$

Particle 2 at rest:

$$\sqrt{s} = E_{\rm cm} = \left[m_1^2 + m_2^2 + 2E_1m_2\right]^{\frac{1}{2}}$$

Particle Collider:

$$[E_1 = E_2; \ \vec{p_1} = -\vec{p_2}; \ m_1 = m_2 \approx 0]$$

 $E_{\rm cm} = 2E$

Cross section Matrix element Phase space

Differential
Cross Section:

$$d\sigma = \frac{(2\pi)^4 |\mathscr{M}|^2}{4\sqrt{(p_1 \cdot p_2)^2 - m_1^2 m_2^2}}$$

$$\times d\Phi_n (p_1 + p_2; p_3, \dots, p_{n+2})$$

$$\stackrel{n\text{-body}}{\xrightarrow{}}_{p\text{hase space}} d\Phi_n = \dots$$

$$\dots = \delta^4 (P - \sum_{i=1}^n p_i) \prod_{i=1}^n \frac{d^3 p_i}{(2\pi)^3 2E_i}$$
with $P = p_1 + p_2$

Parton distributions Bjorken-x

Proton-proton cross section

Parton distributions
Bjorken-x
Proton-proton cross section

$$\sigma = \sum_{ii} \int dx_1 dx_2 f_i(x_1, Q^2) f_j(x, Q^2) \hat{\sigma}(Q^2)$$

- $x_{1,2}$: Bjorken-x fractional momentum of parton involve in hard process
- Q^2 : scale; spacial resolution invariant parton-parton mass
- : Parton Distribution function

Parton content: $f(x,Q^2) = q(x,Q^2)$ or $q(x,Q^2)$

Proton-proton scattering

Example: Drell-Yan Process

QCD Matrix Elements

Subprocess	÷	$ \mathcal{M} ^2/g_s^4$	$ \mathcal{M}(90^\circ) ^2/g_s^4$
$\left.\begin{array}{c} qq' \rightarrow qq' \\ q\bar{q}' \rightarrow q\bar{q}' \end{array}\right\}$	$\frac{4}{9} \; \frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^{2}} \;$		2.2
$qq \rightarrow qq$	$\frac{4}{9}\left(\frac{\hat{s}^2+\hat{u}^2}{\hat{t}^2}\right.$	$+rac{\hat{s}^2+\hat{t}^2}{\hat{u}^2}ig)-rac{8}{27}\;rac{\hat{s}^2}{\hat{u}\hat{u}\hat{u}\hat{u}\hat{u}\hat{u}\hat{u}\hat{u}\hat{u}$	$\frac{1}{\tilde{t}}$ 3.3
$q\bar{q} ightarrow q' \bar{q}'$	$\frac{4}{9} \; \frac{\hat{t}^{2} + \hat{u}^2}{\hat{s}^2}$		0.2
$q\bar{q} \to q\bar{q}$	$\frac{4}{9}\left(\frac{\hat{s}^2+\hat{u}^2}{\hat{t}^2}\right)$	$+ + \frac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2} - \frac{8}{27} \frac{\hat{u}}{\hat{s}}$	$\frac{2}{\hat{t}}$ 2.6
$q \overline{q} ightarrow g g$	${32\over 27} \; {{\hat u}^2 + {\hat t}^2\over {\hat u}{\hat t}}$	$-{8\over 3} \; {{\hat u}^2 + {\hat t}^{\;2}\over{{\hat s}^2}}$	1.0
gg ightarrow q ar q	$\frac{1}{6} \; \frac{\hat{u}^2 + \hat{t}^{2}}{\hat{u}\hat{t}} \;$	$-rac{3}{8} rac{\hat{u}^2 + \hat{t}^2}{\hat{s}^2}$	0.1
qg ightarrow qg	$\frac{\hat{s}^2+\hat{u}^2}{\hat{t}^2}-\frac{\hat{s}^2}{\hat{t}^2}$	$\frac{4}{9} \; rac{\hat{s}^2 + \hat{u}^2}{\hat{u}\hat{s}}$	6.1
$gg \to gg$	${9\over 4}\left({{\hat s}^2+{\hat u}^2\over{{\hat t}^2}} ight.$	$+rac{\hat{s}^2+\hat{t}^2}{\hat{u}^2}+rac{\hat{u}^2+\hat{t}^2}{\hat{s}^2}$	$\left(\frac{3}{2}+3\right)$ 30.4

Proton-Proton Scattering @ LHC

- Hard interaction: qq, gg, qg fusion
- Initial and final state radiation (ISR,FSR)
- Secondary interaction ["underlying event"]

Proton-Proton Scattering @ LHC

Proton-Proton Scattering @ LHC

QCD & parton densities

Lepton-proton scattering

Structure Function F₂

1/3

[see e.g. Halzen/Martin]

Scaling violation

19

Scaling violation

Proton quark dominated: $Q^2 \uparrow \Rightarrow F_2 \downarrow$ for fixed x Proton gluon dominated: $Q^2 \uparrow \Rightarrow F_2 \uparrow$ for fixed x

Q²-evolution described by DGLAP Equations

Proton parton densities

Running Coupling α_s

Running Coupling α_s

Monte Carlo Generators

From Partons to Jets

From partons to color neutral hadrons:

Fragmentation:

Parton splitting into other partons [QCD: re-summation of leading-logs] ["Parton shower"]

Hadronization:

Parton shower forms hadrons [non-perturbative, only models]

Decay of unstable hadrons [perturbative QCD, electroweak theory]

Hadronization & Decays

Monte Carlo overview

Monte Carlo simulation ...

Numerical process generation based on random numbers

Method very powerful in particle physics

Event generation programs:

Pythia, Herwig, Isajet Sherpa ...

Hard partonic subprocess + fragmentation & hadronization ...

Detector simulation:

Geant ...

interaction & response of all produced particles ...

MC simulations in particle physics

Event Generator

simulate physics process (quantum mechanics: probabilities!)

Detector Simulation simulate interaction with detector material

Digitization

translate interactions with detector into realistic signals

Reconstruction/Analysis as for real data

Event Generator types

Type II: Leading order matrix element, parton shower & merging

i.e.: MEs for 2 → n processes (e.g. W/Z + jets)
PS with LO generator [Pythia or Herwig]
Examples: ALPGEN, MadGraph, Sherpa

Challenge: Remove overlap between jets from ME and jets from parton shower [MLM matching, CKKW]

Pythia sub-processes

No. Subprocess	No. Subprocess	No. Subprocess	No. Subprocess	No. Subprocess	No. Subprocess	No. Subprocess
Hard QCD processes:	$36 f_i \gamma \to f_k W^{\pm}$	New gauge bosons:	Higgs pairs:	Compositeness:	210 $f_i \overline{f}_j \to \tilde{\ell}_L \tilde{\nu}_\ell^* +$	$250 f_i g \to \tilde{q}_{iL} \tilde{\chi}_3$
11 $f_i f_j \rightarrow f_i f_j$	$69 \gamma \gamma \to \mathrm{W}^+\mathrm{W}^-$	141 $f_i \overline{f}_i \rightarrow \gamma/Z^0/Z'^0$	297 $f_i \overline{f}_j \rightarrow H^{\pm} h^0$	$146 e\gamma \to e^*$	211 $f_i \overline{f}_i \to \tilde{\tau}_1 \tilde{\nu}_{\tau}^* +$	$251 f_i g \rightarrow \tilde{q}_{iR} \tilde{\chi}_3$
12 $f_i \overline{f}_i \to f_k \overline{f}_k$	$70 \gamma W^{\pm} \to Z^0 W^{\pm}$	142 $f_i \overline{f}_i \to W'^+$	298 $f_i \overline{f}_i \rightarrow H^{\pm} H^0$	$147 \mathrm{dg} \to \mathrm{d}^*$	212 $f_i \overline{f}_i \to \tilde{\tau}_2 \tilde{\nu}_{\pi}^* +$	252 $f_{ig} \rightarrow \tilde{q}_{iL} \tilde{\chi}_4$
13 $f_i \overline{f}_i \rightarrow gg$	Prompt photons:	144 $f_i \overline{f}_i \to \mathbf{R}$	299 $f_i \overline{f}_i \rightarrow A^0 h^0$	$148 ug \rightarrow u^*$	213 $f_i \overline{f}_i \rightarrow \tilde{\nu}_e \tilde{\nu}_e^*$	253 $f_{ig} \rightarrow \tilde{q}_{iR} \tilde{\chi}_4$
$28 f_i g \rightarrow f_i g$	14 $f_i \overline{f}_i \rightarrow g\gamma$	Heavy SM Higgs:	$300 f_i \overline{f}_i \rightarrow A^0 H^0$	167 $q_i q_j \rightarrow d^* q_k$	214 $f_i \overline{f}_i \rightarrow \tilde{\nu}_{\pi} \tilde{\nu}_{\pi}^*$	254 $f_{ig} \rightarrow \tilde{q}_{jL} \tilde{\chi}_{1}^{\pm}$
53 $gg \rightarrow f_k \overline{f}_k$	18 $f_i \overline{f}_i \rightarrow \gamma \gamma$	$5 Z^0 Z^0 \rightarrow h^0$	$301 f_i \overline{f}_i \rightarrow H^+ H^-$	168 $q_i q_j \rightarrow u^* q_k$	$\begin{array}{ccc} 211 & f_i f_i & \bar{\nu}_i \bar{\nu}_i \\ 216 & f_i \overline{f}_i \rightarrow \tilde{\nu}_1 \tilde{\nu}_1 \end{array}$	256 $f_{ig} \rightarrow \tilde{q}_{jL} \tilde{\chi}_2^{\pm}$
$68 gg \rightarrow gg$	29 $f_i g \rightarrow f_i \gamma$	$\begin{array}{ccc} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & &$	Leptoquarks:	169 $q_i \overline{q}_i \to e^{\pm} e^{*\mp}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	258 $f_{ig} \rightarrow \tilde{q}_{iL}\tilde{g}$
Soft QCD processes:	114 $gg \rightarrow \gamma\gamma$	71 $Z_r^0 Z_r^0 \rightarrow Z_r^0 Z_r^0$	145 $q_i \ell_i \rightarrow L_0$	165 $f_i \overline{f}_i (\to \gamma^* / Z^0) \to f_k \overline{f}_k$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$259 f_i g \to \tilde{q}_{iR} \tilde{g}$
91 elastic scattering	115 $gg \rightarrow g\gamma$	72 $Z_{I}^{\overline{0}} Z_{L}^{\overline{0}} \rightarrow W_{I}^{+} W_{I}^{-}$	$162 qg \rightarrow \ell L_Q$	166 $f_i \overline{f}_j (\to W^{\pm}) \to f_k \overline{f}_l$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$261 \mathbf{f}_i \mathbf{\overline{f}}_i \to \mathbf{\widetilde{t}}_1 \mathbf{\widetilde{t}}_1^*$
92 single diffraction (XB)	Deeply Inel. Scatt.:	73 $Z_r^0 W_r^{\pm} \rightarrow Z_r^0 W_r^{\pm}$	$163 gg \rightarrow LoLo$	Extra Dimensions:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$262 f_i \overline{f}_i \to \tilde{t}_2 \tilde{t}_2^*$
93 single diffraction (AX)	$10^{\circ} f_i f_j \rightarrow f_k f_l$	76 $W_r^+ W_r^- \rightarrow Z_r^0 Z_r^0$	$164 q_{\overline{q}} \rightarrow L_{0}\overline{L_{0}}$	$391 f\overline{f} \to G^*$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	263 $f_i \overline{f}_i \rightarrow \tilde{t}_1 \tilde{t}_2^* +$
94 double diffraction	99 $\gamma^* q \rightarrow q$	77 $W_{r}^{\pm}W_{r}^{\pm} \rightarrow W_{r}^{\pm}W_{r}^{\pm}$	Technicolor:	$392 gg \rightarrow G^*$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$264 gg \rightarrow \tilde{t}_1 \tilde{t}_1^*$
95 low- p_{\perp} production	Photon-induced:	BSM Neutral Higgs:	149 $gg \rightarrow n_{tc}$	$393 q\overline{q} \rightarrow gG^*$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$265 gg \to \tilde{t}_2 \tilde{t}_2^*$
Open heavy flavour:	$33 f_i \gamma \to f_i g$	151 $f_i \overline{f}_i \to H^0$	191 $f_i \overline{f}_i \rightarrow \rho_{t_i}^0$	$394 qg \rightarrow qG^*$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	271 $f_i f_j \rightarrow \tilde{q}_{iL} \tilde{q}_{jL}$
(also fourth generation)	$34 f_i \gamma \to f_i \gamma$	$152 gg \rightarrow H^0$	$\begin{array}{ccc} 101 & f_i f_i & p_{tc} \\ 192 & f_i \overline{f}_i & \rightarrow a^+ \end{array}$	$395 gg \to gG^*$	$\begin{array}{ccc} 224 & \mathrm{I}_i\mathrm{I}_i \to \chi_2\chi_4 \\ 225 & \mathrm{f}\overline{\mathrm{f}} & \tilde{\mathrm{f}} & \tilde{\mathrm{f}} \end{array}$	272 $f_i f_j \rightarrow \tilde{q}_{iR} \tilde{q}_{jR}$
81 $f_i \overline{f}_i \to Q_k \overline{Q}_k$	54 $g\gamma \rightarrow f_k \overline{f}_k$	153 $\gamma \gamma \rightarrow H^0$	$102 f_{i}f_{j} \rightarrow \omega^{0}$	Left–right symmetry:	$\begin{array}{ccc} 225 & \mathrm{I}_i\mathrm{I}_i \to \chi_3\chi_4 \\ 226 & \mathrm{f}_{\overline{\mathbf{c}}} & 2^+ 2^{\pm} \end{array}$	$273 f_i f_j \to \tilde{q}_{iL} \tilde{q}_{jR} +$
82 $gg \rightarrow Q_k \overline{Q}_k$	58 $\gamma \gamma \rightarrow f_k \overline{f}_k$	171 $f_i \overline{f}_i \rightarrow Z^0 H^0$	$\begin{array}{ccc} 100 & f_i f_i & \to & \text{f}_i \\ 104 & f_i \overline{f}_i & \to & \text{f}_i \overline{f}_i \end{array}$	$341 \ell_i \ell_j \to \mathcal{H}_L^{\pm\pm}$	$\begin{array}{ccc} 226 & I_i I_i \rightarrow \chi_1^- \chi_1' \\ 227 & C \overline{C} & 2^+ 2^{\pm} \end{array}$	$274 f_i \overline{f}_j \to \tilde{q}_{iL} \tilde{q}_{jL}^*$
83 $q_i f_j \rightarrow Q_k f_l$	131 $f_i \gamma^*_T \to f_i g$	172 $f_i \overline{f}_i \rightarrow W^{\pm} H^0$	$195 f_i \overline{f}_i \to f_k \overline{f}_k$	$342 \ell_i \ell_j \to \mathbf{H}_R^{\pm \pm}$	$\begin{array}{ccc} 227 & \mathbf{f}_i \mathbf{f}_i \to \chi_2^+ \chi_2^+ \\ 2200 & \mathbf{f}_i \overline{\mathbf{f}} & \mathbf{z}_i^+ \mathbf{z}_i^{\pm} \end{array}$	275 $f_i \overline{f}_j \to \tilde{q}_{iR} \tilde{q}_{jR}^*$
84 $g\gamma \rightarrow Q_k \overline{Q}_k$	$132 f_i \gamma_L^* \to f_i g$	173 $f_i f_j \rightarrow f_i f_j H^0$	$\begin{array}{ccc} 100 & f_{i}f_{j} \rightarrow f_{k}f_{l} \\ 361 & f_{i}\overline{f}_{i} \rightarrow W^{+}W^{-} \end{array}$	343 $\ell_i^{\pm} \gamma \to \mathrm{H}_L^{\pm\pm} \mathrm{e}^{\mp}$	228 $I_i I_i \rightarrow \chi_1^+ \chi_2^+$	276 $f_i \overline{f}_j \to \tilde{q}_{iL} \tilde{q}_j^* R +$
85 $\gamma \gamma \to \mathbf{F}_k \overline{\mathbf{F}}_k$	133 $f_i \gamma^*_T \to f_i \gamma$	174 $f_i f_j \rightarrow f_k f_l H^0$	$\begin{array}{ccc} 361 & \mathbf{I}_{i}\mathbf{I}_{i} \rightarrow \mathbf{W}_{\mathrm{L}}\mathbf{W}_{\mathrm{L}} \\ 362 & \mathbf{f}_{i}\mathbf{\overline{f}}_{i} \rightarrow \mathbf{W}^{\pm}\pi^{\mp} \end{array}$	$344 \ell_i^{\pm} \gamma \to \mathbf{H}_R^{\pm\pm} \mathbf{e}^{\mp}$	229 $f_i f_j \rightarrow \chi_1 \chi_1^+$	277 $f_i \overline{f}_i \to \tilde{q}_{jL} \tilde{q}_{jL}^*$
Closed heavy flavour:	$134 f_i \gamma_L^* \to f_i \gamma$	181 gg $\rightarrow Q_k \overline{Q}_k H^0$	$\begin{array}{ccc} 362 & f_i f_i & \forall V_L \pi_{tc} \\ 363 & f_r \overline{f}_r \longrightarrow \pi^+ \pi^- \end{array}$	$345 \ell_i^{\pm} \gamma \to \mathbf{H}_L^{\pm\pm} \mu^{\mp}$	$\begin{array}{ccc} 230 & \mathbf{f}_i \mathbf{f}_j \to \chi_2 \chi_1^{\pm} \\ & & & & \\ \end{array}$	278 $f_i \overline{f}_i \to \tilde{q}_{jR} \tilde{q}_{jR}^*$
86 $gg \rightarrow J/\psi g$	135 $g\gamma_T^* \to f_i \overline{f}_i$	182 $q_i \overline{q}_i \rightarrow Q_k \overline{Q}_k H^0$	$\begin{array}{ccc} 303 & \mathbf{I}_i \mathbf{I}_i \rightarrow \pi_{\mathrm{tc}} \pi_{\mathrm{tc}} \\ 264 & \mathbf{f}_i \mathbf{\overline{f}}_i \rightarrow \alpha \pi^0 \end{array}$	$346 \ell_i^{\pm} \gamma \to \mathbf{H}_R^{\pm\pm} \mu^{\mp}$	$231 f_i f_j \to \hat{\chi}_3 \hat{\chi}_1^{\pm}$	279 gg $\rightarrow \tilde{q}_{iL}\tilde{q}_{iL}^*$
$87 \mathrm{gg} \to \chi_{0\mathrm{c}}\mathrm{g}$	136 $g\gamma_L^* \to f_i \overline{f}_i$	183 $f_i \overline{f}_i \rightarrow g H^0$	$265 f_i \overline{f}_i \rightarrow \gamma \pi_{tc}^{\prime 0}$	$347 \ell_i^{\pm} \gamma \to \mathrm{H}_L^{\pm\pm} \tau^+$	$232 f_i f_j \to \chi_4 \chi_1^{\perp}$	$280 gg \to \tilde{q}_{iR} \tilde{q}_{iR}^*$
88 $gg \rightarrow \chi_{1c}g$	137 $\gamma_{\rm T}^* \gamma_{\rm T}^* \to {\rm f}_i \overline{{\rm f}}_i$	184 $f_i g \rightarrow f_i H^0$	$303 I_i I_i \rightarrow \gamma \pi_{\text{tc}}$	$348 \ell_i^{\pm} \gamma \to \mathbf{H}_R^{\pm\pm} \tau^+$	233 $f_i f_j \to \tilde{\chi}_1 \tilde{\chi}_2^+$	$281 \mathrm{bq}_i \to \tilde{\mathrm{b}}_1 \tilde{\mathrm{q}}_{iL}$
89 $\mathrm{gg} \to \chi_{2\mathrm{c}}\mathrm{g}$	138 $\gamma_{\rm T}^* \gamma_{\rm L}^* \to {\rm f}_i \overline{\rm f}_i$	185 $gg \rightarrow gH^0$	$300 I_i I_i \rightarrow Z \pi_{tc}$	$349 f_i \underline{f}_i \to \mathbf{H}_L^{++} \mathbf{H}_L^{}$	234 $f_i f_j \to \tilde{\chi}_2 \tilde{\chi}_2^\perp$	282 $bq_i \rightarrow \tilde{b}_2 \tilde{q}_{iR}$
$104 \mathrm{gg} \to \chi_{0\mathrm{c}}$	139 $\gamma_{\rm L}^* \gamma_{\rm T}^* \to {\rm f}_i \overline{{\rm f}}_i$	156 $f_i \overline{f}_i \to A^0$	$307 I_i I_i \rightarrow Z \pi_{tc}$	$350 f_i f_i \to H_R^{++} H_R^{}$	235 $f_i f_j \to \tilde{\chi}_3 \tilde{\chi}_2^{\pm}$	283 bq _i $\rightarrow \tilde{b}_1 \tilde{q}_{iR} +$
$105 \mathrm{gg} \to \chi_{2\mathrm{c}}$	140 $\gamma_{\rm L}^* \gamma_{\rm L}^* \to {\rm f}_i \overline{{\rm f}}_i$	157 $gg \rightarrow A^0$	$\begin{array}{ccc} 368 & \mathrm{I}_i \mathrm{I}_i \to \mathrm{W}^+ \pi_{\mathrm{tc}}^+ \\ 370 & \mathrm{f} \overline{\mathrm{f}} & \mathrm{W}^+ \mathrm{70} \end{array}$	$351 f_i f_j \to f_k f_l H_{L_j}^{\pm \pm}$	236 $f_i f_j \to \tilde{\chi}_4 \tilde{\chi}_2^{\pm}$	284 $b\overline{q}_i \rightarrow \tilde{b}_1 \tilde{q}_i^* L$
$106 gg \to J/\psi\gamma$	80 $q_i \gamma \to q_k \pi^{\pm}$	158 $\gamma \gamma \to A^0$	$\begin{array}{ccc} 370 & I_i I_j \rightarrow W_{\overline{L}} Z_{\overline{L}} \\ 371 & C \overline{C} & W^{\pm} \end{array}$	$352 f_i f_j \to f_k f_l H_R^{\pm \pm}$	237 $f_i \underline{f}_i \to \tilde{g} \tilde{\chi}_1$	285 $b\overline{q}_i \rightarrow \tilde{b}_2 \tilde{q}_i^* R$
$107 \mathrm{g}\gamma \to \mathrm{J}/\psi\mathrm{g}$	Light SM Higgs:	$176 f_i \overline{f}_i \to Z^0 A^0$	$\begin{array}{ccc} 3/1 & \mathrm{I}_i \mathrm{I}_j \to \mathrm{W}_{\mathrm{L}}^+ \pi_{\mathrm{tc}}^- \\ \mathrm{oral} & \mathrm{c} \overline{\mathrm{c}} & \pm \mathrm{rz}^0 \end{array}$	$353 f_i f_i \to Z_R^0$	238 $f_i f_i \to \tilde{g} \tilde{\chi}_2$	286 $b\overline{q}_i \rightarrow \tilde{b}_1 \tilde{q}_i^* B^+$
$108 \gamma\gamma \to J/\psi\gamma$	$3 f_i \overline{f}_i \to h^0$	177 $f_i \overline{f}_j \to W^{\pm} A^0$	$\begin{array}{ccc} 372 & \mathbf{I}_i \mathbf{I}_j \to \pi_{\mathrm{tc}}^+ \mathbf{Z}_{\mathrm{L}}^* \\ \mathbf{z} & \mathbf{z} & \mathbf{z} & \pm & 0 \end{array}$	$354 f_i f_j \to W_R^{\pm}$	239 $f_i \underline{f}_i \to \tilde{g} \tilde{\chi}_3$	287 $f_i \overline{f}_i \to \tilde{b}_1 \tilde{b}_1^*$
W/Z production:	$24 \mathbf{f}_i \mathbf{\overline{f}}_i \to \mathbf{Z}^0 \mathbf{h}^0$	178 $f_i f_j \rightarrow f_i f_j A^0$	$\begin{array}{ccc} 373 & \mathbf{f}_i \mathbf{f}_j \to \pi_{\mathrm{tc}}^\pm \pi_{\mathrm{tc}}^\bullet \\ \mathbf{c} & \mathbf{c} & \mathbf{c} \end{array}$	SUSY:	240 $f_i f_i \to \tilde{g} \tilde{\chi}_4$	288 $f_i \overline{f}_i \to \tilde{b}_2 \tilde{b}_2^*$
$1 f_i f_i \to \gamma^* / Z^0$	$26 f_i \overline{f}_j \to W^{\pm} h^0$	$179 f_i f_j \to f_k f_l A^0$	$374 f_i f_j \rightarrow \gamma \pi_{tc}^+$	$201 f_i \underline{f}_i \to \tilde{\mathbf{e}}_L \tilde{\mathbf{e}}_L^*$	241 $f_i \underline{f}_j \to \tilde{g} \tilde{\chi}_1^{\pm}$	289 gg $\rightarrow \tilde{b}_1 \tilde{b}_1^*$
$2 f_i f_j \to W^{\pm}$	$32 f_i g \to f_i h^0$	186 $gg \to Q_k \overline{Q}_k A^0$	$375 f_i f_j \rightarrow Z^o \pi_{tc}^{\pm}$	$202 f_i \underline{f}_i \to \tilde{\mathbf{e}}_R \tilde{\mathbf{e}}_R^*$	242 $f_i \underline{f}_j \to \tilde{g} \tilde{\chi}_2^{\pm}$	$290 \text{gg} \rightarrow \tilde{b}_2 \tilde{b}_2^*$
$22 f_i f_i \to Z^0 Z^0$	$102 gg \rightarrow h^0$	187 $q_i \overline{q}_i \rightarrow Q_k \overline{Q}_k A^0$	$376 f_i f_j \rightarrow W^{\pm} \pi_{tc}^{\circ}$	203 $f_i f_i \rightarrow \tilde{e}_L \tilde{e}_R^* +$	243 $f_i f_i \rightarrow \tilde{g}\tilde{g}$	$\begin{array}{ccc} 291 & bb \rightarrow \tilde{b}_1 \tilde{b}_1 \end{array}$
$23 f_i f_j \to Z^0 W^{\pm}$	$103 \gamma\gamma ightarrow h^0$	$188 f_i \overline{f}_i \to g A^0$	$377 f_i f_j \to W^\perp \pi'_{tc}$	$204 f_i \underline{f}_i \to \tilde{\mu}_L \tilde{\mu}_L^*$	$244 gg \to \tilde{g}\tilde{g}$	$292 \text{ bb} \rightarrow \tilde{b}_2 \tilde{b}_2$
$25 f_i \underline{f}_i \to W^+ W^-$	$110 f_i \overline{f}_i \to \gamma h^0$	189 $f_i g \to f_i A^0$	$\begin{array}{ccc} 381 & \mathbf{q}_i \mathbf{q}_j \to \mathbf{q}_i \mathbf{q}_j \\ 200 & - \end{array}$	$205 f_i \overline{f}_i \to \tilde{\mu}_R \tilde{\mu}_R^*$	246 $f_i g \to \tilde{q}_{iL} \tilde{\chi}_1$	$\begin{array}{ccc} 202 & bb \rightarrow 5252 \\ 293 & bb \rightarrow \tilde{b}_1 \tilde{b}_2 \end{array}$
$15 f_i f_i \to g Z^0$	111 $f_i \overline{f}_i \to gh^0$	$190 gg \to gA^0$	$\begin{array}{ccc} 382 & \mathbf{q}_i \mathbf{q}_i \to \mathbf{q}_k \overline{\mathbf{q}}_k \\ 282 & \mathbf{q}_i \overline{\mathbf{q}}_i \end{array}$	$206 f_i \overline{f}_i \to \tilde{\mu}_L \tilde{\mu}_R^* +$	$\begin{array}{ccc} 247 & \mathbf{f}_i \mathbf{g} \to \tilde{\mathbf{q}}_{iR} \tilde{\chi}_1 \\ & & \tilde{\mathbf{q}}_{iR} \tilde{\chi}_1 \end{array}$	$\begin{array}{ccc} 294 & bg \rightarrow \tilde{b}_1 \tilde{g}_2 \\ 294 & bg \rightarrow \tilde{b}_1 \tilde{g} \end{array}$
16 $f_i f_j \to g W^{\pm}$	$112 f_i g \to f_i h^0$	Charged Higgs:	$\begin{array}{cccc} 383 & \mathbf{q}_i \mathbf{q}_i \to \mathbf{g}\mathbf{g} \\ 284 & \mathbf{f} \mathbf{g} & \mathbf{f} \mathbf{g} \end{array}$	$207 f_i \overline{f}_i \to \tilde{\tau}_1 \tilde{\tau}_1^*$	$\begin{array}{ccc} 248 & \mathbf{f}_{ig} \to \tilde{\mathbf{q}}_{iL} \tilde{\chi}_2 \\ 240 & \tilde{\mathbf{c}} & \tilde{\mathbf{c}} \end{array}$	$295 \text{ bg} \rightarrow \tilde{b}_0 \tilde{g}$
$30 f_i g \to f_i Z^0$	$113 gg \to gh^0$	143 $f_i \overline{f}_j \to H^+$	$304 I_i g \rightarrow I_i g$ 285 gg $g = 2$	$208 f_i \overline{f}_i \to \tilde{\tau}_2 \tilde{\tau}_2^*$	249 $f_i g \to \tilde{q}_{iR} \tilde{\chi}_2$	$\begin{array}{ccc} 200 & \underline{b_8} \rightarrow \underline{b_2}\underline{b_8} \\ 296 & \underline{b_8} \rightarrow \underline{b_1}\underline{b_8} \pm \end{array}$
$31 f_i g \to f_k W^{\pm}$	121 $\operatorname{gg} \to \operatorname{Q}_k \overline{\operatorname{Q}}_k \mathrm{h}^0$	$161 f_i g \to f_k H^+$	$gg \rightarrow q_k q_k$	$209 f_i \overline{f}_i \to \tilde{\tau}_1 \tilde{\tau}_2^* +$		250 $00 \rightarrow 0102 \mp$
$19 f_i f_i \to \gamma Z^{o}$	$122 \mathbf{q}_i \overline{\mathbf{q}}_i \to \mathbf{Q}_k \overline{\mathbf{Q}}_k \mathbf{h}^0$	$401 gg \to \overline{t}bH^+$	$gg \rightarrow gg$ 287 f.f. $O \overline{O}$			
$20 f_i f_j \to \gamma W^{\pm}$	$123 f_i f_j \to f_i f_j h_j^0$	$402 q\overline{q} \to \overline{t}bH^+$	$\begin{array}{ccc} 301 & 1_i 1_i \rightarrow Q_k Q_k \\ 289 & \pi\pi \rightarrow Q_k \overline{Q_k} \end{array}$			
$35 f_i \gamma \to f_i Z^{\circ}$	$124 f_i f_j \rightarrow f_k f_l h^0$		$300 gg \rightarrow Q_k Q_k$			

Detector simulation

GEANT Geometry And Tracking

Detailed description of detector geometry [sensitive & insensitive volumes]

Tracking of all particles through detector material ...

→ Detector response

Developed at CERN since 1974 (FORTRAN) [Today: Geant4; programmed in C⁺⁺]

Luminosity and cross-section measurements

Cross section & Luminosity

Background

measured from data or calculated from theory

$$\sigma = \frac{N^{\text{obs}} - N^{\text{bkg}}}{\int \mathcal{L} \, \mathrm{d}t \cdot \varepsilon}$$

Luminosity

determined by accelerator, triggers, ...

Efficiency

many factors, optimized by experimentalist

Cross section & Luminosity

$$\Phi_a = \frac{N_a}{A} = n_a v_a$$

 Φ_a : flux

- na: density of particle beam
- va: velocity of beam particles

$$\dot{N} = \Phi_a \cdot N_b \cdot \sigma_b$$

- N : reaction rate
- N_b : target particles within beam area σ_a : effective area of single
- scattering center

$$L = \Phi_a \cdot N_b$$

L : luminosity

$$\dot{N} \equiv L \cdot \sigma$$
$$N = \sigma \cdot \int L \, dt \qquad \sigma = N/L$$

integrated luminosity

Collider experiment:

$$\Phi_{a} = \frac{\dot{N}_{a}}{A} = \frac{N_{a} \cdot n \cdot v/U}{A} = \frac{N_{a} \cdot n \cdot f}{A}$$

$$L = f \frac{nN_{a}N_{b}}{A} = f \frac{nN_{a}N_{b}}{4\pi\sigma_{x}\sigma_{y}}$$
HC:
$$\overset{\text{Na:}}{\underset{A \sim 0005 \text{ mm}^{2}}{\underset{n \sim 2800}{\text{ f}}} = 10^{11} \text{ kHz}$$

$$\overset{\text{Na:}}{\underset{L \sim 10^{34} \text{ cm}^{-2} \text{ s}^{-1}}{\underset{\alpha \sim 0}{\text{ Na}}}$$

$$\overset{\text{Na:}}{\underset{\alpha \sim 0}{\text{ Na}}} = \frac{N_{a} \cdot n \cdot f}{\underset{\alpha \sim 0}{\text{ Nb}}}$$

$$\overset{\text{Na:}}{\underset{\alpha \sim 0}{\text{ Nb}}} = \frac{N_{a} \cdot n \cdot f}{\underset{\alpha \sim 0}{\text{ Nb}}}$$

$$\overset{\text{Na:}}{\underset{\alpha \sim 0}{\text{ Nb}}} = \frac{N_{a} \cdot n \cdot f}{\underset{\alpha \sim 0}{\text{ Nb}}}$$

$$\overset{\text{Na:}}{\underset{\alpha \sim 0}{\text{ Nb}}} = \frac{N_{a} \cdot n \cdot f}{\underset{\alpha \sim 0}{\text{ Nb}}}$$

$$\overset{\text{Na:}}{\underset{\alpha \sim 0}{\text{ Nb}}} = \frac{N_{a} \cdot n \cdot f}{\underset{\alpha \sim 0}{\text{ Nb}}}$$

$$\overset{\text{Na:}}{\underset{\alpha \sim 0}{\text{ Nb}}} = \frac{N_{a} \cdot n \cdot f}{\underset{\alpha \sim 0}{\text{ Nb}}}$$

$$\overset{\text{Na:}}{\underset{\alpha \sim 0}{\text{ Nb}}} = \frac{N_{a} \cdot n \cdot f}{\underset{\alpha \sim 0}{\text{ Nb}}}$$

$$\overset{\text{Na:}}{\underset{\alpha \sim 0}{\text{ Nb}}} = \frac{N_{a} \cdot n \cdot f}{\underset{\alpha \sim 0}{\text{ Nb}}}$$

$$\overset{\text{Na:}}{\underset{\alpha \sim 0}{\text{ Nb}}} = \frac{N_{a} \cdot n \cdot f}{\underset{\alpha \sim 0}{\text{ Nb}}}$$

$$\overset{\text{Na:}}{\underset{\alpha \sim 0}{\text{ Nb}}} = \frac{N_{a} \cdot n \cdot f}{\underset{\alpha \sim 0}{\text{ Nb}}}$$

$$\overset{\text{Na:}}{\underset{\alpha \sim 0}{\text{ Nb}}} = \frac{N_{a} \cdot n \cdot f}{\underset{\alpha \sim 0}{\text{ Nb}}}$$

$$\overset{\text{Na:}}{\underset{\alpha \sim 0}{\text{ Nb}}} = \frac{N_{a} \cdot n \cdot f}{\underset{\alpha \sim 0}{\text{ Nb}}}$$

$$\overset{\text{Na:}}{\underset{\alpha \sim 0}{\text{ Nb}}} = \frac{N_{a} \cdot n \cdot f}{\underset{\alpha \sim 0}{\text{ Nb}}}$$

$$\overset{\text{Na:}}{\underset{\alpha \sim 0}{\text{ Nb}}} = \frac{N_{a} \cdot n \cdot f}{\underset{\alpha \sim 0}{\text{ Nb}}}$$

$$\overset{\text{Na:}}{\underset{\alpha \sim 0}{\text{ Nb}}} = \frac{N_{a} \cdot n \cdot f}{\underset{\alpha \sim 0}{\text{ Nb}}}$$

$$\overset{\text{Na:}}{\underset{\alpha \sim 0}{\text{ Nb}}} = \frac{N_{a} \cdot n \cdot f}{\underset{\alpha \sim 0}{\text{ Nb}}}$$

$$\overset{\text{Na:}}{\underset{\alpha \sim 0}{\text{ Nb}}} = \frac{N_{a} \cdot n \cdot f}{\underset{\alpha \sim 0}{\text{ Nb}}}$$

$$\overset{\text{Na:}}{\underset{\alpha \sim 0}{\text{ Nb}}} = \frac{N_{a} \cdot n \cdot f}{\underset{\alpha \sim 0}{\text{ Nb}}}$$

$$\overset{\text{Na:}}{\underset{\alpha \sim 0}{\text{ Nb}}} = \frac{N_{a} \cdot n \cdot f}{\underset{\alpha \sim 0}{\text{ Nb}}}$$

Luminosity determination @ LHC

Particle counting; LUCID @ ATLAS; HF, Pixels @ CMS [needs to be calibrated for absolute luminosity]

Aim: Luminosity accuracy of 2-3% ...

Van-der-Meer separation scan

Instantaneous and integrated Luminosity

2010: 2011:

Instantaneous (max) $2.x10^{32} \text{ cm}^{-2}\text{s}^{-1}$ $3.5x10^{33} \text{ cm}^{-2}\text{s}^{-1}$

Integrated 47 pb⁻¹ 5.7 fb-1

Minimum bias events

Characteristics of inelastic p-p collisions

Particle density in minimum bias events

Soft QCD (PT threshold on tracks: 50 MeV)

Particle density in data rises faster than in model predictions. Tuning of MC generators was needed.

Charged particle p_T spectrum

Jet physics

Jet production @ LHC

At least next-to-leading order (NLO) required to compare to precision measurements [First NNLO calculations becoming available ...]

Various divergencies; artifacts of perturbation theory; the full theory gives finite results ... [But we don't know how to solve it]

Ultraviolet (UV) divergences, i.e. at very large momenta Solution: renormalization; choice of correct scale ... ["Status of peaceful coexistence with divergences", S.D. Drell]

Infrared (IR) divergences, i.e. at very small momenta Solution: cancellations, factorization, IR-safe observables

The default renormalization and factorization scales (μ_R and μ_F respectively) are defined to be equal to the p_T of the leading jet in the event

Scale uncertainty estimation: vary μ_R , μ_F within [$\mu_R/2$, $2\mu_R$] and [$\mu_F/2$, $2\mu_F$]

"Measurement"

Jet properties measurement

Calorimeter Jet

[extracted from calorimeter clusters]

Understanding of detector response Knowledge about dead material Correct signal calibration Potentially include tracks

Hadron Jet

[might include electrons, muons ...]

Hadronization Fragmentation Parton shower Particle decays

Parton Jet [quarks and gluons]

Proton-proton interactions Initial and final state radiation Underlying event

om particle energy to

excitation ...

"Theory"

to particle energy

Compensate energy loss

due to neutrinos, nuclear

From measured energy

From particle energy to original parton energy

Compensate hadronization; energy in/outside jet cone

Needs Calibration

Jet

Jet properties measurement

Jets may look different at different levels Robust jet definition → stable on all jet levels

Jet reconstruction

Iterative cone algorithms:

Jet defined as energy flow within a cone of radius R in (y, ϕ) or (η, ϕ) space:

 $R = \sqrt{(y - y_0)^2 + (\phi - \phi_0)^2}$

Sequential recombination algorithms:

Define distance measure d_{ij} ... Calculate d_{ij} for all pairs of objects ... Combine particles with minimum d_{ij} below cut ... Stop if minimum d_{ij} above cut ...

e.g. k⊤-algorithm: [see later]

$$d_{ij} = \min\left(k_{T,i}^2, k_{T,j}^2\right) \frac{\Delta R_{ij}}{R}$$

Jet algorithms performance

Anti-kt clustering algorithm:

in distance formula replace P_T^2 by P_T^{2p}

p=1 : standard Kt p=-1 : anti-Kt

$$D_{ij} = \min(P_{Ti}^2, P_{Tj}^2) \frac{\Delta R_{ij}^2}{R^2}$$

Jet energy calibration

['bin-by-bin' unfolding]

 $N_{\rm part} = N_{\rm meas}$

part

meas

Resolution unfolding

Measured spectrum = Real spectrum

Experim. resolution

Inclusive jet cross-section

Cross section is huge (~ Tevatron x 100)

Very good agreement with NLO QCD over nine orders of magnitude

PT extending from 20 to 500 GeV

Main uncertainty:

Jet Energy Scale (3-4%)

Inclusive jet cross-section

[ATLAS Collaboration; arXiv:1009.5908v2; Tab. 1]

0 < y	< 0).3									
		$p_{\rm T} [{\rm GeV}]$	60-80	80-110	110-160	160-210	210-260	260-310	310-400	400-500	500-600
		Measured cross section [nb/GeV]	$3.5e \pm 0.4$	7 9e±03	$1.4e \pm 0.3$	<u>2 7e∔02</u>	43	22	8.8	2.0	
NLO 1	- 0 < y < 0.3										
		$p_{\rm T} [{\rm GeV}]$								60-80	
		Measured cross section [pb/GeV]								3.5e+04	
		NLO pQCD (CTEQ 6.6) \times non-pert. corr. [pb/GeV]								4.1e+04	
		Non-perturbative correction								0.92	
0.3 <		Statistical uncertainty								0.011	
NLO 1		Absolute JES uncertainty								$+0.25 \\ -0.22$	
		Unfolding uncertainty								0.04	
		Total systematic uncertainty								$+0.3 \\ -0.2$	
	PDF uncertainty								0.02		
	Scale uncertainty								$+0.006 \\ -0.04$		
			α_s une	certai	nty					0.03	
Table		Non-perturb	ative o	correc	tion ı	incert	ainty			+0.00 -0	5
pQCD the me where		Tota	l theor	y uno	certai	nty				+0.07 -0.05	7
- 1											

Inclusive jet cross sections: 3-jet / 2-jet ratio

hep-ex 1106.0647, PLB 702 (2011) 336

Jets: angular correlations

Difference in azimuth of the two leading jets Probe of QCD high-order processes Very slight dependence on JES No dependence on luminosity

Dijet mass

Very early search for numerous resonances BSM: string resonance, excited quarks, axi-gluons, colorons, E6 diquarks, W' and Z', RS gravitons

Four-parameter fit to describe QCD shape:

$$\frac{d\sigma}{dm} = p_0 \frac{\left(1 - \frac{m}{\sqrt{s}}\right)^{p_1}}{\left(\frac{m}{\sqrt{s}}\right)^{B}};$$
$$B = p_2 + p_3 \left(\frac{m}{\sqrt{s}}\right)$$

W and Z bosons

Vector boson production

- At LHC energies these processes take place at low values of Bjorken-x
- Only sea quarks and gluons are involved
- At EW scales sea is driven by the gluon, i.e. x-sections dominated by gluon uncertainty
- ► Constraints on sea and gluon distributions

Examples of high-order processes

W and Z boson decays

Leptonic decays (e/µ): very clean, but small(ish) branching fractions Hadronic decays: two-jet final states; large QCD dijet background Tau decays: somewhere in between...

W and Z boson signatures

[CERN-OPEN-2008-020]

Additional hadronic activity → recoil, not as clean as e⁺e⁻ Precision measurements: only leptonic decays Starting point for many hadron collider analyses: isolated high-p_T leptons \rightarrow discriminate against QCD jets ...

QCD jets can be mis-reconstructed as leptons ("fake leptons")

QCD jets may contain real leptons e.g. from semileptonic B decays $[B \rightarrow IvX]$

→ soft and surrounded by other particles

"Tight" lepton selection ...

Require e/μ with $p_T > (at least) 20 \text{ GeV}$ Track isolation, e.g. $\sum p_T$ of other tracks in cone of $\Delta R=0.1$ less than 10% of lepton p_T

Calorimeter isolation, e.g. energy deposition from other particles in cone of ΔR =0.2 less than 10%

Dilepton mass spectrum at 7 TeV

Example: CMS W Analysis

Select isolated electrons and muons ... [muons: p_T>9 GeV; electrons: p_T>20 GeV]

Investigate transverse mass ... [Use $E_{T,miss}$; $M_T = (p_{lep} + E_{T,miss})^{\frac{1}{2}}$]

The W signal yield is extracted from a binned likelihood fit to the M_T distribution. Three different contributions:

- W signal
- QCD background
- other (EWK) backgrounds.

W/Z production at 7 TeV

W, Z cross-section v.s. \sqrt{s}

hep-ex 1012.2466, JHEP 01 (2011) 080

W+/W- charge asymmetry

NNLO cross sections: scale uncertainties very small

W rapidity: asymmetry [sensitivity to PDFs]

$$A_W(y) = \frac{\mathrm{d}\sigma(W^+)/\mathrm{d}y - \mathrm{d}\sigma(W^-)/\mathrm{d}y}{\mathrm{d}\sigma(W^+)/\mathrm{d}y + \mathrm{d}\sigma(W^-)/\mathrm{d}y}$$

Proton-Proton Collider:

symmetry around y=0 ...

PDFs:

u(x) > d(x) for large x ... more W⁺ at positive rapidity d/u ratio < 1 ... always more W⁺ than W⁻

W + Jets multiplicity

$|\eta| < 2.8$ and $p_{\rm T} > 20$ GeV

arXiv:1012.5382

W + Jets P_T

Tails are important in several Exotica and SUSY searches

SM processes measured at LHC

70

W Mass Determination

Very challenging measurement

Template method:

Fit templates (from MC simulation) with different m_W to data

→ W mass from best fit

Requires very good modeling of physics & detector

Present

systematic uncertainties: [DØ-Experiment]

Lepton energy scale: 34 MeV

→ calibrated to known Z mass [calorimeter: 3.6% for 50 GeV]

Hadronic recoil: 6 MeV

W production model [PDFs, ...]: 12 MeV

Templates for $m_W = 80.4 \pm 1.6 \text{ GeV}$

Ultimate LHC goal: m_W uncertainty of 15 MeV [via combination]

End of Lecture 3
Additional material

Electroweak theory

Cross section: using Feynman diagrams

From the Lagrangian to cross sections

$$\sigma \sim \langle f | \mathbf{S} | i \rangle^2$$
 Inelastic
[for | i
angle \neq | f
angle]
[Def.: $|t = +\infty \rangle \equiv \mathbf{S} | t = -\infty \rangle$]

Time Evolution

From Schrödinger-Equation [Dirac picture]

$$|t\rangle = |t_0\rangle - i \int_{t_0}^t dt' \mathbf{H}'(t') |t'\rangle$$

$$\mathbf{H}'(t) = -\int \mathcal{L}'(x,t) \, \mathrm{d}^3 x$$
Lagrangian of Interaction

Matrix element

$$\langle f | \mathbf{S} | i \rangle \cong \delta_{fi} - i \int_{-\infty}^{\infty} \mathrm{d}t' \langle f | \mathbf{H}'(t') | i \rangle$$

$$\Rightarrow \text{Feynman rules}$$

Hadron Interactions

Reference frames

$$p = (E, \vec{p}\,)$$

Particle momentum as seen in laboratory frame ...

$$p^* = (E^*, \vec{p^*})$$

Particle momentum as viewed from a frame moving with velocity β_f ...

Lorentz transformation

Lorentz Transformation:

$$E^* = \gamma_f \cdot E - \gamma_f \beta_f \cdot p_{\parallel}$$
$$p_{\parallel}^* = \gamma_f \cdot p_{\parallel} - \gamma_f \beta_f \cdot E$$
$$p_T^* = p_T$$

with $\gamma_f = (1 - \beta_f^2)^{-\frac{1}{2}}_{_{82}}$

Mandelstam variables Feynman diagrams

$$s = (p_1 + p_2)^2 = (p_3 + p_4)^2$$

$$t = (p_1 - p_3)^2 = (p_2 - p_4)^2$$

$$u = (p_1 - p_4)^2 = (p_2 - p_3)^2$$

Particle decays

Partial Decay Rate:

Hard processes with quarks and gluons

Q² evolution equations

QCD & parton densities

Lepton-proton scattering

Proton parton densities

Monte Carlo Generators

Monte Carlo interfacing

Many specialized processes already available in Pythia ... but, processes usually only implemented in lowest non-trivial order ...

Need external programs that ...

include higher order loop corrections or, alternatively, do kinematic dependent rescaling

allow matching of higher order ME generators [otherwise need to trust parton shower description ...]

provide correct spin correlations often absent in Pythia ... [e.g. top produced unpolarized, while t \rightarrow bW \rightarrow blv decay correct]

simulate newly available physics scenarios ... [appear at rapid pace; need for many specialized generators]

Les Houches Accord ...

Specifies how parton-level information about the hard process and sequential decays can be encoded and passed on to a general-purpose generator.

Les Houches generator files

Specialized Generators: [some examples]

AcerMC	:	ttbb,
ALPGEN	:	
AMEGIC++	:	generic LO
CompHEP	:	generic LO
GRACE [+Bases/Spring]	:	generic LO [+ some NLO loops]
GR@PPA	:	bbbb
MadCUP	:	W/Z+ ≤ 3j, ttbb
HELAS & MadGraph	:	generic LO
MCFM	:	NLO W/Z+ $\leq 2j$, WZ, WH, H+ $\leq 1j$
O'Mega & WHIZARD	:	generic LO
VECBOS	÷	$W/Z+ \le 4j$

From Partons to Jets

[T. Gleisberg et al., JHEP02 (2004) 056]

Parton splitting

$$d\mathcal{P}_{a\to bc} = \frac{\alpha_s}{2\pi} \frac{dQ^2}{Q^2} P_{a\to bc}(z) dz$$

$$P_{q \to qg} = \frac{4}{3} \frac{1+z^2}{1-z}$$
$$P_{g \to gg} = 3 \frac{(1-z(1-z))^2}{z(1-z)}$$

$$P_{\rm g \to q\bar{q}} = \frac{n_f}{2} (z^2 + (1-z)^2)$$

Iteration yields parton shower ...

Splitting probability determined by splitting functions P_{q→qg}

Same splitting functions as used for PDF evolution

z : fractional momentum of radiated parton n_f : number of quark flavours

Need soft/collinear cut-offs to avoid non-perturbative regions ... [divergencies!]

Details model-dependent

e.g.
$$Q > m_0 = min(m_{ij}) \approx 1$$
 GeV,
 $z_{min}(E,Q) < z < z_{max}(E,Q)$ or
 $p_{\perp} > p_{\perp min} \approx 0.5$ GeV

Non-perturbative transition from partons to hadrons ... [Modeling relies on phenomenological models available]

Models based on MC simulations very successful:

Generation of complete final states ... [Needed by experimentalists in detector simulation]

Caveat: tunable ad-hoc parameters

Most popular MC models:

Pythia : Lund string model Herwig : Cluster model

Lund String Model

Lund String Model [Andersson et al., Phys. Rep. 97 (1983) 31]

QCD potential:

$$V(r) = -\frac{4}{3}\frac{\alpha_s(1/r^2)}{r} + kr$$

String formation between initial quark-antiquark pair

String breaks up if potential energy large enough new quark-antiquark pair

Gluons = 'kinks' in string

At low energy: hadron formation

Very widely used ... [default in Pythia]

After: Ellis et al., QCD and Collider Physics

Overview of MC generators

Structure of basic generator process [by order of consideration] From the 'simple' to the 'complex' or from 'calculable' at large scales to 'modeled; at small

Matrix elements (ME)

1. Hard subprocess: |M|², Breit Wigners, PDFs

2. Resonance decays: Includes particle correlations

Parton Shower (PS)

[from G.Herten]

Overview of MC generators

Structure of basic generator process [by order of consideration]

From the 'simple' to the 'complex' or from 'calculable' at large scales to 'modeled; at small

Underlying Event (UE)

5. Multi-parton interaction:

6. Beam remnants:

Stable Particle State

[from G.Herten] 100

Luminosity and cross-section measurements

Cross section & Luminosity

Luminosity and elastic scattering

Shape of elastic scattering distribution can also be used to determine total cross section, σ_{tot} , and the parameters ρ and b ...

Perform fit to:

Roman Pots (Totem and Alfa)

- Measurement of p-p elastic scattering
- Roman Pots used to move detectors near to stable beam.

Luminosity determination @ LHC

Methods as summarized in ATLAS TDR

[ATLAS Technical Design Report, Vol. I]

Minimum bias events

Underlying event

Underlying event

From these comparisons: determine best "tunes" for underlying event. In practice: tuning of soft QCD model in PYTHIA

Tuning is important for data-MC agreement further down; particle isolation (e.g. in lepton identification) and missing energy (ME_T)

Acknowledgments

We are thankful to Hans-Christian Schultz-Coulon Kirchhoff-Institut fur Physic

for allowing to use material of the course Advanced Topics in Particle Physics University of Heidelberg