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Particle polarizations in LHC physics 
Pietro Faccioli 

• Motivations 

• Basic principles: angular momentum conservation, helicity conservation, 
parity properties 

• Example: dilepton decay distributions of quarkonium and vector bosons 

• Reference frames for polarization measurements 

• Frame-independent polarization 

• Understanding the production mechanisms of vector particles: 
The Lam-Tung relation and its generalizations 

• Polarization as a discriminant of physics signals: 
new resonances vs continuum background in the Z Z channel 



Why do we study particle polarizations? 

• test of perturbative QCD [Z and W decay distributions]  

• constrain universal quantities [sinθW and/or proton PDFs from Z/W/ γ* decays] 

• accelerate discovery of new particles or characterize them 
[Higgs, Z’, anomalous Z+γ, graviton, ...] 

• understand the formation of hadrons (non-perturbative QCD) 

Measure polarization of a particle = 
measure the angular momentum state 
in which the particle is produced, 
by studying the angular distribution 
of its decay 

Very detailed piece of information! Allows us to 
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Example: how are hadron properties generated? 
A look at quarkonium (J/ψ andϒ) formation 

Presently we do not yet understand how/when the observed Q-Qbar bound states 
(produced at the LHC in gluon-gluon fusion) acquire their quantum numbers. 
Which of the following production processes are more important? 
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Example: how are hadron properties generated? 
A look at quarkonium (J/ψ andϒ) formation 

Presently we do not yet understand how/when the observed Q-Qbar bound states 
(produced at the LHC in gluon-gluon fusion) acquire their quantum numbers. 
Which of the following production processes are more important? 

• Colour-singlet processes: 
quarkonia produced 
directly as observable 
colour-neutral Q-Qbar pairs 

+ analogous colour 
combinations 

colour-singlet state 
J = 1 red 

          antired 

purely perturbative 
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Example: how are hadron properties generated? 
A look at quarkonium (J/ψ andϒ) formation 

Presently we do not yet understand how/when the observed Q-Qbar bound states 
(produced at the LHC in gluon-gluon fusion) acquire their quantum numbers. 
Which of the following production processes are more important? 

• Colour-singlet processes: 
quarkonia produced 
directly as observable 
colour-neutral Q-Qbar pairs 

+ analogous colour 
combinations 

• Colour-octet processes: 
quarkonia are produced 
through coloured Q-Qbar 
pairs of any possible 
quantum numbers 

colour-octet state 
J = 0, 1, 2, … 

colour-singlet state 
J = 1 red 

          antired 

anti
blue 

green 

purely perturbative 
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Example: how are hadron properties generated? 
A look at quarkonium (J/ψ andϒ) formation 

Presently we do not yet understand how/when the observed Q-Qbar bound states 
(produced at the LHC in gluon-gluon fusion) acquire their quantum numbers. 
Which of the following production processes are more important? 

• Colour-singlet processes: 
quarkonia produced 
directly as observable 
colour-neutral Q-Qbar pairs 

+ analogous colour 
combinations 

• Colour-octet processes: 
quarkonia are produced 
through coloured Q-Qbar 
pairs of any possible 
quantum numbers 

Transition to the 
observable state. 

Quantum numbers change! 
J can change! → polarization! 

colour-octet state 
J = 0, 1, 2, … 

colour-singlet state 
J = 1 red 

          antired 

anti
blue 

green 

red 

          antired 
J = 1 

perturbative 
⊗ 

non-perturbative 

purely perturbative 
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Polarization of vector particles 
J = 1  → three Jz eigenstates  | 1, +1 〉,  | 1, 0 〉,  | 1, -1 〉  wrt a certain z 

Measure polarization = measure (average) angular momentum composition 

Method: study the angular distribution of the particle decay in its rest frame 

The decay into a fermion-antifermion pair is an especially clean case to be studied  
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Polarization of vector particles 
J = 1  → three Jz eigenstates  | 1, +1 〉,  | 1, 0 〉,  | 1, -1 〉  wrt a certain z 

Measure polarization = measure (average) angular momentum composition 

Method: study the angular distribution of the particle decay in its rest frame 

The decay into a fermion-antifermion pair is an especially clean case to be studied  

NO YES 
f 

1)  “helicity conservation” 

  γ* , Z
 
, 

g
 
, ... 

The shape of the observable angular distribution is determined by 
a few basic principles: 
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Measure polarization = measure (average) angular momentum composition 
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  γ* , Z
 
, 

g
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The shape of the observable angular distribution is determined by 
a few basic principles: 
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1: helicity conservation 

EW and strong forces preserve the chirality (L/R) of fermions. 
In the relativistic (massless) limit,  chirality = helicity = spin-momentum alignment 
→ the fermion spin never flips in the coupling to gauge bosons: 

  γ* , Z
 
, 

g
 
, ... 
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NO 

NO 

YES 

YES 
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example: dilepton decay of J/ψ 

ℓ − 

c 

c 

ℓ + 

J/ψ   γ* 
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example: dilepton decay of J/ψ 

ℓ − 

c 

c 

ℓ + 

J/ψ   γ* 

z' 

z 

ℓ+ 

ℓ− 

J/ψ rest frame: 
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example: dilepton decay of J/ψ 

J/ψ angular momentum component along the polarization axis z: 
  MJ/ψ  =  -1,  0,  +1 

ℓ − 

c 

c 

ℓ + 

J/ψ   γ* 

z' 

z 

ℓ+ 

ℓ− 

J/ψ rest frame: 

| 1, MJ/ψ 〉 

(determined by production mechanism) 
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example: dilepton decay of J/ψ 

J/ψ angular momentum component along the polarization axis z: 
  MJ/ψ  =  -1,  0,  +1 

ℓ − 

c 

c 

ℓ + 

J/ψ   γ* 

z' 

z 

ℓ+ 

ℓ− 

+1/2 

J/ψ rest frame: 

+1/2 

| 1, MJ/ψ 〉 

(determined by production mechanism) 
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example: dilepton decay of J/ψ 

J/ψ angular momentum component along the polarization axis z: 
  MJ/ψ  =  -1,  0,  +1 

ℓ − 

c 

c 

ℓ + 

J/ψ   γ* 

z' 

z 

ℓ+ 

ℓ− 

+1/2 

J/ψ rest frame: 

(–1/2) 

+1/2 
(–1/2) 

| 1, MJ/ψ 〉 

(determined by production mechanism) 
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example: dilepton decay of J/ψ 

J/ψ angular momentum component along the polarization axis z: 
  MJ/ψ  =  -1,  0,  +1 

ℓ − 

c 

c 

ℓ + 

J/ψ   γ* 

z' 

z 

ℓ+ 

ℓ− 

+1/2 

0 is forbidden 

J/ψ rest frame: 

(–1/2) 

+1/2 
(–1/2) 

| 1, MJ/ψ 〉 

The two leptons can only have total angular momentum component  

  M’ℓ+ℓ−  =  +1  or  -1   along their common direction z’ 

(determined by production mechanism) 
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2: rotation of angular momentum eigenstates 

z' 

z 

| J, M 〉 

θ,φ 

change of quantization frame: 
  R(θ,φ): z  → z’ 
 y  → y’ 
 x  → x’ 

Jz  eigenstates  
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2: rotation of angular momentum eigenstates 

z' 

z 

| J, M 〉 

θ,φ 

change of quantization frame: 
  R(θ,φ): z  → z’ 
 y  → y’ 
 x  → x’ 

Jz  eigenstates  

Wigner D-matrices 

| J, M’ 〉  =         DMM’(θ,φ)  | J, M 〉 J Σ 
M = - J 

+ J 
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2: rotation of angular momentum eigenstates 
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change of quantization frame: 
  R(θ,φ): z  → z’ 
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Example: 
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2: rotation of angular momentum eigenstates 
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change of quantization frame: 
  R(θ,φ): z  → z’ 
 y  → y’ 
 x  → x’ 

Jz  eigenstates  

Wigner D-matrices 

| J, M’ 〉  =         DMM’(θ,φ)  | J, M 〉 J Σ 
M = - J 

+ J 

z' 

z 
90° 
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, +
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〉 

Example: 

Classically, we would expect  | 1, 0 〉 
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2: rotation of angular momentum eigenstates 
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change of quantization frame: 
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Wigner D-matrices 

| J, M’ 〉  =         DMM’(θ,φ)  | J, M 〉 J Σ 
M = - J 

+ J 

z' 

z 
90° 

| 1
, +

1 
〉 

Example: 
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example: M = 0 

J/ψ rest 
frame 

z' 

z 

| 1, 0 〉 

θ 

ℓ+ 

ℓ− 

J/ψ (MJ/ψ = 0) → ℓ+ℓ−(M’ℓ+ℓ− = +1) 
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example: M = 0 

J/ψ rest 
frame 

z' 

z 

| 1, 0 〉 

θ 

ℓ+ 

ℓ− 

J/ψ (MJ/ψ = 0) → ℓ+ℓ−(M’ℓ+ℓ− = +1) 

| 1, +1 〉  =  D−1,+1(θ,φ)  | 1, −1 〉  +  D0,+1(θ,φ)  | 1, 0 〉  + D+1,+1(θ,φ)  | 1, +1 〉 1 1 1 
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example: M = 0 

J/ψ rest 
frame 

z' 

z 

| 1, 0 〉 

θ 

ℓ+ 

ℓ− 

J/ψ (MJ/ψ = 0) → ℓ+ℓ−(M’ℓ+ℓ− = +1) 

→ the  Jz’ eigenstate | 1, +1 〉  “contains” the  Jz  eigenstate | 1, 0 〉 
     with component amplitude D0,+1(θ,φ)  
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example: M = 0 
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→ the decay distribution is 

ℓ+ℓ−   ←   J/ψ 
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example: M = 0 
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3: parity 

z 
θ 

ℓ+ 

ℓ− 

| 1, −1 〉 
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3: parity 

z 

z 
θ 

ℓ+ 

ℓ− 

| 1, −1 〉 

∝  |D−1,+1(θ,φ)|2  dN 
dΩ ∝  1  +  cos2θ − 2cos θ 1* 
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3: parity 
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3: parity 

z 

| 1, −1 〉 and | 1, +1 〉 
distributions 

are mirror reflections 
of one another 
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3: parity 

z 
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3: parity 

z 
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3: parity 
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“Transverse” and “longitudinal” 

y 

x 

z 

| J/ψ 〉  =  | 1, +1 〉 
or  | 1, −1 〉 

    ∝   1  +  cos2θ dN 
dΩ 

(parity-conserving case) 
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“Transverse” and “longitudinal” 

“Transverse” polarization, 
like for real photons. 
The word refers to the 
alignment of the field vector, 
not to the spin alignment! 
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“Transverse” and “longitudinal” 
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z 

| J/ψ 〉  =  | 1, 0 〉 

    ∝   1  –  cos2θ dN 
dΩ 

“Transverse” polarization, 
like for real photons. 
The word refers to the 
alignment of the field vector, 
not to the spin alignment! 
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dΩ 

(parity-conserving case) 
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“Transverse” and “longitudinal” 

y 

x 

z 

| J/ψ 〉  =  | 1, 0 〉 

    ∝   1  –  cos2θ dN 
dΩ 

“Transverse” polarization, 
like for real photons. 
The word refers to the 
alignment of the field vector, 
not to the spin alignment! 

“Longitudinal” polarization 
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x 

z 

| J/ψ 〉  =  | 1, +1 〉 
or  | 1, −1 〉 

    ∝   1  +  cos2θ dN 
dΩ 

(parity-conserving case) 
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Why “photon-like” polarizations are common 

q 

V 

q 

We can apply helicity conservation at the production vertex to predict that 
all vector states produced in fermion-antifermion annihilations (q-q or e+e–) at Born level 
have transverse polarization 

V = γ*, Z, W 
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Why “photon-like” polarizations are common 
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z 

(             ) (             ) (–1/2) 
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q-q rest frame 
= V rest frame 

We can apply helicity conservation at the production vertex to predict that 
all vector states produced in fermion-antifermion annihilations (q-q or e+e–) at Born level 
have transverse polarization 

V = γ*, Z, W 
|V 〉  =  | 1, +1 〉 
           (| 1, −1 〉) 

11 



Why “photon-like” polarizations are common 

The “natural” polarization axis in this case is 
the relative direction of the colliding fermions 
(Collins-Soper axis) 
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Why “photon-like” polarizations are common 

ϒ(2S+3S) 

Drell-Yan 

pT  [GeV/c] 0 1 2 
- 0 . 5 

1 . 0 

0 . 0 

0 . 5 

1 . 5 

E866, Collins-Soper frame 

dN 
dΩ     ∝  1  + λ cos2θ 

Drell-Yan is a paradigmatic case 
But not the only one 

The “natural” polarization axis in this case is 
the relative direction of the colliding fermions 
(Collins-Soper axis) 
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The most general distribution 
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221 co sin2 coss sin cos2
dN
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Polarization frames 
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The observed polarization depends on the frame 
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All reference frames are equal… 
but some are more equal than others 

Gedankenscenario: 
• dileptons are fully transversely polarized in the CS frame 
• the decay distribution is measured at the ϒ(1S) mass 

by 6 detectors with different dilepton acceptances: 

CDF |y| < 0.6 

D0 |y| < 1.8 

ATLAS & CMS |y| < 2.5 

ALICE e+e− |y| < 0.9 

ALICE μ+μ− 2.5 < y < 4 

LHCb 2 < y < 4.5 

What do different detectors measure with arbitrary frame choices? 

16 



The lucky frame choice 
(CS in this case) 

ALICE μ+μ− / LHCb 
ATLAS / CMS 
D0 
ALICE e+e− 
CDF 

dN 
dΩ     ∝  1  +  cos2θ 
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Less lucky choice 
(HX in this case) 

λθ  = +0.65 

λθ  = −0.10 

+1/3 

−1/3 

ALICE μ+μ− / LHCb 
ATLAS / CMS 
D0 
ALICE e+e− 
CDF 
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Less lucky choice 
(HX in this case) 

λθ  = +0.65 

λθ  = −0.10 

+1/3 

−1/3 

ALICE μ+μ− / LHCb 
ATLAS / CMS 
D0 
ALICE e+e− 
CDF 

artificial (experiment-dependent!) 
kinematic behaviour 
→ measure in more than one frame! 

18 



Frames for Drell-Yan, Z and W polarizations 
V = γ*, Z, W 

Due to helicity conservation at the q-q-V  (q-q*-V) vertex, 
Jz = ± 1  along the q-q (q-q*) scattering direction z 

_ 
_ 

z 

• polarization is always fully transverse... 
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V = γ*, Z, W 

• ...but with respect to a subprocess-dependent quantization axis 

z = relative dir. of incoming q and qbar 
      (∼ Collins-Soper frame) 

z = dir. of one incoming quark 
      (∼ Gottfried-Jackson frame) 

z = dir. of outgoing q 
      (= parton-cms-helicity      lab-cms-helicity) 

q 
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q 

g 

g 

0( )SO α

1( )SO α
QCD 

corrections 

Due to helicity conservation at the q-q-V  (q-q*-V) vertex, 
Jz = ± 1  along the q-q (q-q*) scattering direction z 

_ 
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z 

important only up to pT = O(parton kT) 

• polarization is always fully transverse... 
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“Optimal” frames for Drell-Yan, Z and W polarizations 
Different subprocesses have different “natural” quantization axes 

For s-channel processes the natural axis is 
the direction of the outgoing quark 
(= direction of dilepton momentum) 

→ optimal frame (= maximizing polar anisotropy): HX 

V 

q 

q* 
q 

g 

HX 
CS 
PX 
GJ1 
GJ2 

example: Z 
y = +0.5 

(negative beam) 
(positive beam) 

(neglecting parton-parton-cms 
vs proton-proton-cms difference!) 

−1/3 
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“Optimal” frames for Drell-Yan, Z and W polarizations 
Different subprocesses have different “natural” quantization axes 

For t- and u-channel processes the natural axis is 
the direction of either one or the other incoming parton 
(∼ “Gottfried-Jackson” axes) 

→ optimal frame: geometrical average of GJ1 and GJ2 axes = CS (pT < M) and PX (pT > M) 

V V q q 

q* q* 
q 
_ 

g 

HX 
CS 
PX 
GJ1 = GJ2 MZ 

example: Z 
y = +0.5 

−1/3 
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A complementary approach: 
frame-independent polarization 

The shape of the distribution is (obviously) frame-invariant (= invariant by rotation) 

22 



A complementary approach: 
frame-independent polarization 

3

1
ϑ ϕ

ϕ

λ λ
λ

λ
+

=
−


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z 

rotations in the production plane 

The shape of the distribution is (obviously) frame-invariant (= invariant by rotation) 
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Reduces acceptance dependence 
Gedankenscenario: vector state produced in this subprocess admixture: 
•  60% processes with natural transverse polarization in the CS frame 
•  40% processes with natural transverse polarization in the HX frame 

assumed indep. 
of kinematics, 
for simplicity 
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•  60% processes with natural transverse polarization in the CS frame 
•  40% processes with natural transverse polarization in the HX frame 

CDF |y| < 0.6 
D0 |y| < 1.8 
ATLAS/CMS |y| < 2.5 
ALICE e+e− |y| < 0.9 
ALICE μ+μ− 2.5 < y < 4 
LHCb 2 < y < 4.5 

assumed indep. 
of kinematics, 
for simplicity 

• Immune to “extrinsic” 
kinematic dependencies 

→ less acceptance-dependent 
→ facilitates comparisons 
• useful as closure test 

M = 10 GeV/c2 
CS HX 

polar 

azimuthal 
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invariant 
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Physical meaning: Drell-Yan, Z and W polarizations 
V = γ*, Z, W 

• ...but with respect to a subprocess-dependent quantization axis 

Due to helicity conservation at the q-q-V  (q-q*-V) vertex, 
Jz = ± 1  along the q-q (q-q*) scattering direction z 

_ 
_ 

z 

• polarization is always fully transverse... 
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λ = +1 ~ 
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In all these cases the q-q-V lines are in the production plane (planar processes); 
The CS, GJ, pp-HX and qg-HX axes only differ by a rotation in the production plane 
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λθ  vs  λ ~ 
Example: Z/γ*/W polarization (CS frame) as a function of contribution of LO QCD corrections: 
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λθ  vs  λ ~ 
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λθ  vs  λ ~ 
Example: Z/γ*/W polarization (CS frame) as a function of contribution of LO QCD corrections: 

λ = +1 ~ 

fQCD 

(indep. of y) 

M = 150 GeV/c2  

Case 1: dominating q-qbar QCD corrections 

λ = +1 ~ 

fQCD 

M = 150 GeV/c2  

Case 2: dominating q-g QCD corrections 

λ = +1 ~ 

fQCD 

(indep. of y) 

M = 80 GeV/c2  

λ = +1 ~ 

fQCD 

M = 80 GeV/c2  mass dependent! 

Measuring λθ(CS) as a function of rapidity gives information on the gluon content 
of the proton 

~ On the other hand, λ forgets about the direction of the quantization axis. 
This information is crucial if we want to disentangle the qg contribution, 
the only one resulting in a rapidity-dependent λθ  
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The Lam-Tung relation 

A fundamental result of the theory of vector-boson polarizations (Drell-Yan, directly 
produced Z and W) is that, at leading order in perturbative QCD, 

Lam-Tung relation, Pysical Review D 18, 2447 (1978) 
ϑ ϕλ λ+ =4 1 independently of the polarization frame 

This identity was considered as a surprising result of cancellations in the calculations 
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The Lam-Tung relation 

A fundamental result of the theory of vector-boson polarizations (Drell-Yan, directly 
produced Z and W) is that, at leading order in perturbative QCD, 

3
4 11

1
ϑ ϕ

ϕ
ϑ ϕλ λ

λ λ
λ

λ
+

= = + ⇒ +
−

=

Today we know that it is only a special case of general frame-independent polarization 
relations, corresponding to a transverse intrinsic polarization: 

Lam-Tung relation, Pysical Review D 18, 2447 (1978) 

It is, therefore, not a “QCD” relation, but a consequence of 
1) rotational invariance 
2) properties of the quark-photon/Z/W couplings (helicity conservation) 

ϑ ϕλ λ+ =4 1 independently of the polarization frame 

This identity was considered as a surprising result of cancellations in the calculations 
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Beyond the Lam-Tung relation 

λ can always be defined and is always frame-independent 
Even when the Lam-Tung relation is violated, 
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1 (0.1)

1 fo 0r Tp

λ = + −

→ + →

 O → vector-boson – quark – quark couplings in 
     non-planar processes (higher-order contributions) 

λ can always be defined and is always frame-independent 
Even when the Lam-Tung relation is violated, 
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Beyond the Lam-Tung relation 

1λ = + → Lam-Tung. New interpretation: only vector boson – quark – quark 
couplings (in planar processes) → automatically verified in DY at QED & 
LO QCD levels and in several higher-order QCD contributions 

1
1

λ
λ

+
> +











1 (0.1)

1 fo 0r Tp

λ = + −

→ + →

 O → vector-boson – quark – quark couplings in 
     non-planar processes (higher-order contributions) 

→ contribution of different/new couplings or processes 
 (e.g.: Z from Higgs, W from top, triple ZZγ coupling, 
  higher-twist effects in DY production, etc…) 

λ can always be defined and is always frame-independent 
Even when the Lam-Tung relation is violated, 
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Polarization can be used to distinguish 
between different kinds of physics signals, 
or between “signal” and “background” processes 
(→improve significance of new-physics searches) 
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Example: W from top ↔ W from q-qbar and q-g 
30 



Example: W from top ↔ W from q-qbar and q-g 

≅SM −0.65λϑ wrt W direction in 
the top rest frame 
(top-frame helicity) 

longitudinally polarized: 

independently of top production 
mechanism 

W 
t 

b 

≅SM 0λϕ

The top quark decays almost 
always to W+b 
→ the longitudinal polarization 
of the W is a signature of the top 
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Example: W from top ↔ W from q-qbar and q-g 

transversely polarized, 
                     wrt 3 different axes: 

≅SM −0.65λϑ wrt W direction in 
the top rest frame 
(top-frame helicity) 

W 

W W 

q 

q q 

q 
_ 

W 

q 

relative direction of q and qbar 
(“Collins-Soper”) 

direction of 
q  or qbar 
(“Gottfried-
Jackson”) 

direction of outgoing q 
(cms-helicity) 

longitudinally polarized: 

q 
_ 

g 

g 

q 

&= = +1  0   λ λϕϑ

independently of top production 
mechanism 

W 
t 

b 

≅SM 0λϕ

The top quark decays almost 
always to W+b 
→ the longitudinal polarization 
of the W is a signature of the top 
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a) Frame-dependent approach 
We measure λθ choosing the helicity axis 
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yW = 0 

W from top t 

directly 
produced W 
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a) Frame-dependent approach 
We measure λθ choosing the helicity axis 

yW = 0 

W from top 

The polarization of W from q-qbar / q-g  

• is generally far from being maximal 
• depends on pT and y 

→ integration in pT and y degrades significance 
• depends on the actual mixture of processes 

→ we need pQCD and PDFs to evaluate it 

t 

+ … 

directly 
produced W + 

+ 
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b) Rotation-invariant approach 

t 

+ … 

+ 

+ The invariant 
polarization of 
W from q-qbar / q-g 
is constant and fully 
transverse 

• independent of PDFs 
• integration over kinematics does 

not smear it  
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Example: the q-qbar → ZZ continuum background 

The distribution of the 5 angles depends on the kinematics 
W( cosΘ, cosθ1, φ1, cosθ2, φ2 | MZZ, p(Z1), p(Z2) ) → → 

dominant Standard Model background for new-signal searches 
in the ZZ → 4ℓ channel with m(ZZ) > 200 GeV/c2 

Z1 

Z2 

ℓ1
+ 

ℓ2
+ 

Θ 

θ2 φ2 

θ1 φ1 

Z q 

q 
_ 

Z q 

q 
_ 

t-channel u-channel 

• for helicity conservation each of the two 
Z’s is transverse along the direction of one 
or the other incoming quark 

1
1 cos− Θ

• t-channel and u-channel amplitudes are 
proportional to              and             
for MZ/MZZ → 0 

1
1 cos+ Θ

The new Higgs-like 
resonance was discovered 
also thanks to these 
techniques 
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Z Z from Higgs ↔ Z Z from q-qbar 

Discriminant nº1:  Z polarization 

34 



Z Z from Higgs ↔ Z Z from q-qbar 

Discriminant nº1:  Z polarization 

The invariant 
polarization of 
Z from q-qbar 
is fully transverse 

+ 
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Z Z from Higgs ↔ Z Z from q-qbar 

Z bosons from H → ZZ are 
longitudinally polarized 
(stronger polarization for heavier H) 

H 

mH = 200 GeV/c2 

mH = 300 GeV/c2 

Discriminant nº1:  Z polarization 

The invariant 
polarization of 
Z from q-qbar 
is fully transverse 

+ 
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Z Z from Higgs ↔ Z Z from q-qbar 

Discriminant nº2:  Z emission direction 
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Z Z from Higgs ↔ Z Z from q-qbar 

MZZ = 200 GeV/c2 

MZZ = 300 GeV/c2 

MZZ = 500 GeV/c2 

Discriminant nº2:  Z emission direction 

Z from q-qbar 
is emitted mainly 
close to the beam 
if MZZ/MZ is large 

+ 
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Z Z from Higgs ↔ Z Z from q-qbar 

Z bosons from H decay 
are emitted isotropically 

H 

MZZ = 200 GeV/c2 

MZZ = 300 GeV/c2 

MZZ = 500 GeV/c2 

Discriminant nº2:  Z emission direction 

Z from q-qbar 
is emitted mainly 
close to the beam 
if MZZ/MZ is large 

+ 
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Putting everything together 
5 angles (Θ, θ1, φ1, θ2, φ2), with distribution depending on 
5 kinematic variables ( MZZ, pT(Z1), y(Z1), pT(Z2), y(Z2) ) 

1 shape discriminant: ξ =  ln 
PH→ZZ 
Pqq→ZZ  

_ 

event probabilities, including 
detector acceptance and 
efficiency effects 
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Putting everything together 
5 angles (Θ, θ1, φ1, θ2, φ2), with distribution depending on 
5 kinematic variables ( MZZ, pT(Z1), y(Z1), pT(Z2), y(Z2) ) 

1 shape discriminant: ξ =  ln 
PH→ZZ 
Pqq→ZZ  

_ 

event probabilities, including 
detector acceptance and 
efficiency effects 

ξ 

lepton selection: 
pT > 15 GeV/c 
|η| < 2.5 

√s = 14 TeV 
500 < MZZ < 900 GeV/c2 

MH = 700 GeV/c2  

|yZZ| < 2.5 

wB(ξ) 

wS(ξ) 
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β  = ratio of observed / expected signal events 
β > 0  → observation of something new 
β < 1  → exclusion of expected hypothetical signal 
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β  = ratio of observed / expected signal events 

μB = avg. number of BG events expected for the given luminosity 
μS = avg. number of Higgs events expected for the given luminosity 

PBGnorm(β)  ∝ 

N  = total number of events in the sample  

(μB + β μS)N −(μB + β μS) 

N! 

e 
1) 

signal = excess yield wrt expected number of BG events “integrated yield” constraint:  

crucially dependent on the 
expected BG normalization 

β > 0  → observation of something new 
β < 1  → exclusion of expected hypothetical signal 
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β  = ratio of observed / expected signal events 

P angular(β)  ∝ ∏ 
N 

i = 1 

μB = avg. number of BG events expected for the given luminosity 
μS = avg. number of Higgs events expected for the given luminosity 

β μS   
μB + β μS   

μB   
μB + β μS   

wB(ξi) + wS(ξi) 

PBGnorm(β)  ∝ 

N  = total number of events in the sample  

(μB + β μS)N −(μB + β μS) 

N! 

e 

2) 

1) 

signal = deviation from the shape of the BG angular distribution 

signal = excess yield wrt expected number of BG events 

constraint from angular distribution: 

“integrated yield” constraint:  

independent of 
luminosity and cross-
section uncertainties! 

crucially dependent on the 
expected BG normalization 

β > 0  → observation of something new 
β < 1  → exclusion of expected hypothetical signal 
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β  = ratio of observed / expected signal events 

P angular(β)  ∝ ∏ 
N 

i = 1 

μB = avg. number of BG events expected for the given luminosity 
μS = avg. number of Higgs events expected for the given luminosity 

β μS   
μB + β μS   

μB   
μB + β μS   

wB(ξi) + wS(ξi) 

PBGnorm(β)  ∝ 

N  = total number of events in the sample  

(μB + β μS)N −(μB + β μS) 

N! 

e 

2) 

1) 

3) 

signal = deviation from the shape of the BG angular distribution 

signal = excess yield wrt expected number of BG events 

constraint from angular distribution: 

“integrated yield” constraint:  

combination of the two methods P tot(β)   =  P angular(β)  x  P BGnorm(β) 

independent of 
luminosity and cross-
section uncertainties! 

crucially dependent on the 
expected BG normalization 

β > 0  → observation of something new 
β < 1  → exclusion of expected hypothetical signal 
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Confidence levels 

β 

P (β) 

0 

D 
 I 
 S 
  C 
  O 
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  E 
   R 
   Y 

β 

P (β) 

1 

     E 
     X 
   C 
   L 
    U 
   S 
   I 
 O 
N 

no signal 

expected  
signal 
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Limits vs mH
 

Variation with mass essentially due to varying BG level: 
30% for mH = 500 GeV/c2    →    70% for mH = 800 GeV/c2  
Angular method more advantageous with higher BG levels 

Discovery Exclusion 

“3σ” level 

line = avg. 
band = rms 
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Further reading 
• P. Faccioli, C. Lourenço, J. Seixas, and H.K. Wöhri, J/psi polarization from fixed-target to collider energies, 

Phys. Rev. Lett. 102, 151802 (2009) 

• HERA-B Collaboration, Angular distributions of leptons from J/psi's produced in 920-GeV fixed-target proton-nucleus collisions, 
Eur. Phys. J. C 60, 517 (2009) 

• P. Faccioli, C. Lourenço and J. Seixas, Rotation-invariant relations in vector meson decays into fermion pairs, 
Phys. Rev. Lett. 105, 061601 (2010) 
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Determination of chi_c and chi_b polarizations from dilepton angular distributions in radiative decays, 
Phys. Rev. D 83, 096001 (2011) 

• P. Faccioli and J. Seixas, Observation of χc and χb nuclear suppression via dilepton polarization measurements, 
Phys. Rev. D 85, 074005 (2012) 

• P. Faccioli, Questions and prospects in quarkonium polarization measurements from proton-proton to nucleus-nucleus collisions, 
invited “brief review”, Mod. Phys. Lett. A Vol. 27 N. 23, 1230022 (2012) 

• P. Faccioli and J. Seixas, Angular characterization of the Z Z → 4ℓ background continuum to improve sensitivity of new physics searches, 
Phys. Lett. B 716, 326 (2012) 

• P. Faccioli, C. Lourenço, J. Seixas and H. K. Wöhri, 
Minimal physical constraints on the angular distributions of two-body boson decays, 
submitted to Phys. Rev. D 
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