Physics at the LHC, LIP

Particle polarizations in LHC physics

Pietro Faccioli

- Motivations
- Basic principles: angular momentum conservation, helicity conservation, parity properties
- Example: dilepton decay distributions of quarkonium and vector bosons
- Reference frames for polarization measurements
- Frame-independent polarization
- Understanding the production mechanisms of vector particles:
 The Lam-Tung relation and its generalizations
- Polarization as a discriminant of physics signals:
 new resonances vs continuum background in the ZZ channel

Why do we study particle polarizations?

Measure **polarization** of a particle = measure the **angular momentum state** in which the particle is produced, by studying the **angular distribution** of its **decay**

Very **detailed** piece of information! Allows us to

- test of perturbative QCD [Z and W decay distributions]
- constrain universal quantities [$sin\theta_w$ and/or **proton PDFs** from $Z/W/\gamma^*$ decays]
- accelerate discovery of new particles or characterize them
 [Higgs, Z', anomalous Z+γ, graviton, ...]
- understand the formation of hadrons (non-perturbative QCD)

Example: how are hadron properties generated? A look at quarkonium (J/ ψ and Y) formation

Presently we do not yet understand how/when the observed **Q-Qbar bound states** (produced at the LHC in gluon-gluon fusion) acquire their quantum numbers. Which of the following production processes are more important?

Example: how are hadron properties generated? A look at quarkonium (J/ ψ and Y) formation

Presently we do not yet understand how/when the observed **Q-Qbar bound states** (produced at the LHC in gluon-gluon fusion) acquire their quantum numbers. Which of the following production processes are more important?

 Colour-singlet processes: quarkonia produced directly as observable colour-neutral Q-Qbar pairs

purely perturbative

Example: how are hadron properties generated? A look at quarkonium (J/ ψ and Υ) formation

Presently we do not yet understand how/when the observed **Q-Qbar bound states** (produced at the LHC in gluon-gluon fusion) acquire their quantum numbers. Which of the following production processes are more important?

 Colour-singlet processes: quarkonia produced directly as observable colour-neutral Q-Qbar pairs

purely perturbative

Colour-octet processes:
 quarkonia are produced
 through coloured Q-Qbar
 pairs of any possible
 quantum numbers

Example: how are hadron properties generated? A look at quarkonium (J/ ψ and Υ) formation

Presently we do not yet understand how/when the observed **Q-Qbar bound states** (produced at the LHC in gluon-gluon fusion) acquire their quantum numbers. Which of the following production processes are more important?

 Colour-singlet processes: quarkonia produced directly as observable colour-neutral Q-Qbar pairs

purely perturbative

Colour-octet processes:
 quarkonia are produced
 through coloured Q-Qbar
 pairs of any possible
 quantum numbers

perturbative ⊗
non-perturbative

 $J=1 \rightarrow$ three J_z eigenstates $|1,+1\rangle$, $|1,0\rangle$, $|1,-1\rangle$ wrt a certain z. Measure polarization = measure (average) angular momentum composition. Method: study the angular distribution of the particle decay in its rest frame. The decay into a fermion-antifermion pair is an especially clean case to be studied.

 $J=1 \rightarrow$ three J_z eigenstates $|1,+1\rangle$, $|1,0\rangle$, $|1,-1\rangle$ wrt a certain z. Measure polarization = measure (average) angular momentum composition. Method: study the **angular distribution of the particle decay** in its rest frame. The decay **into a fermion-antifermion pair** is an especially clean case to be studied. The shape of the observable angular distribution is determined by

a few basic principles:

 $J = 1 \rightarrow \text{three } J_z \text{ eigenstates } |1, +1\rangle, |1, 0\rangle, |1, -1\rangle \text{ wrt a certain } z$

Measure polarization = measure (average) angular momentum composition

Method: study the angular distribution of the particle decay in its rest frame

The decay into a fermion-antifermion pair is an especially clean case to be studied

The shape of the observable angular distribution is determined by

a few basic principles:

2) rotational covariance of angular momentum

of z' eigenstates $\frac{1}{2}|1,+1\rangle + \frac{1}{2}|1,-1\rangle - \frac{1}{\sqrt{2}}|1,0\rangle$

 $J = 1 \rightarrow \text{three } J_z \text{ eigenstates } |1, +1\rangle, |1, 0\rangle, |1, -1\rangle \text{ wrt a certain } z$

Measure polarization = measure (average) angular momentum composition

Method: study the angular distribution of the particle decay in its rest frame

The decay into a fermion-antifermion pair is an especially clean case to be studied

The shape of the observable angular distribution is determined by

a few basic principles:

2) rotational covariance of angular momentum eigenstates

$$\frac{1}{2} |1, +1\rangle + \frac{1}{2} |1, -1\rangle - \frac{1}{\sqrt{2}} |1, 0\rangle$$

$$Z$$

1) "helicity conservation"

3) parity properties

1: helicity conservation

EW and strong forces preserve the *chirality* (L/R) of fermions. In the relativistic (massless) limit, *chirality* = *helicity* = *spin-momentum* alignment → the fermion spin never flips in the coupling to gauge bosons:

$$J/\psi$$
 c
 γ^*
 c
 c
 c
 c
 c

 J/ψ angular momentum component along the polarization axis z:

 $M_{J/\psi} = -1$, 0, +1 (determined by production mechanism)

 J/ψ angular momentum component along the polarization axis Z:

 $M_{J/\psi} = -1$, 0, +1 (determined by production mechanism)

 J/ψ angular momentum component along the polarization axis Z:

 $M_{J/\psi} = -1$, 0, +1 (determined by production mechanism)

 J/ψ angular momentum component along the polarization axis z:

 $M_{J/\psi} = -1$, 0, +1 (determined by production mechanism)

The two leptons can only have total angular momentum component

$$M'_{e^+e^-} = +1$$
 or -1 along their common direction z'

0 is forbidden

$$R(\vartheta,\varphi)$$
: $\mathbf{z} \to \mathbf{z'}$
 $\mathbf{y} \to \mathbf{y'}$
 $\mathbf{x} \to \mathbf{x'}$

$$R(\vartheta,\varphi)$$
: $\mathbf{z} \to \mathbf{z'}$
 $\mathbf{y} \to \mathbf{y'}$
 $\mathbf{x} \to \mathbf{x'}$

$$|J, M'\rangle = \sum_{M=-J}^{+J} D_{MM'}^{J}(\vartheta, \varphi) |J, M\rangle$$
Wigner D-matrices

$$R(\vartheta,\varphi)$$
: $z \to z'$
 $y \to y'$
 $x \to x'$

$$|J, M'\rangle = \sum_{M=-J}^{+J} D_{MM'}^{J}(\vartheta, \varphi) |J, M\rangle$$
Wigner D-matrices

$$R(\vartheta,\varphi)$$
: $\mathbf{z} \to \mathbf{z}'$
 $\mathbf{y} \to \mathbf{y}'$
 $\mathbf{x} \to \mathbf{x}'$

$$|J, M'\rangle = \sum_{M=-J}^{+J} D_{MM'}^{J}(\vartheta, \varphi) |J, M\rangle$$
Wigner D-matrices

$$R(\vartheta,\varphi)$$
: $\mathbf{z} \to \mathbf{z}'$
 $\mathbf{y} \to \mathbf{y}'$
 $\mathbf{x} \to \mathbf{x}'$

$$|J, M'\rangle = \sum_{M=-J}^{+J} D_{MM'}^{J}(\vartheta, \varphi) |J, M\rangle$$
Wigner D-matrices

Example:
$$\frac{1}{2} | \mathbf{1}, \mathbf{1} \rangle + \frac{1}{2} | \mathbf{1}, \mathbf{1} \rangle - \frac{1}{\sqrt{2}} | \mathbf{1}, \mathbf{0} \rangle$$

$$|1, +1\rangle = D_{-1,+1}^{1}(\vartheta, \varphi) |1, -1\rangle + D_{0,+1}^{1}(\vartheta, \varphi) |1, 0\rangle + D_{+1,+1}^{1}(\vartheta, \varphi) |1, +1\rangle$$

$$|1, +1\rangle = D_{-1,+1}^{1}(\vartheta, \varphi) |1, -1\rangle + D_{0,+1}^{1}(\vartheta, \varphi) |1, 0\rangle + D_{+1,+1}^{1}(\vartheta, \varphi) |1, +1\rangle$$

 \rightarrow the J_z , eigenstate $|1, +1\rangle$ "contains" the J_z eigenstate $|1, 0\rangle$ with component amplitude $D^1_{0,+1}(\vartheta,\varphi)$

$$|1, +1\rangle = D_{-1,+1}^{1}(\vartheta, \varphi) |1, -1\rangle + D_{0,+1}^{1}(\vartheta, \varphi) |1, 0\rangle + D_{+1,+1}^{1}(\vartheta, \varphi) |1, +1\rangle$$

- \rightarrow the J_z , eigenstate $|1, +1\rangle$ "contains" the J_z eigenstate $|1, 0\rangle$ with component amplitude $D_{0,+1}^1(\vartheta,\varphi)$
- → the decay distribution is

$$|\langle \mathbf{1}, +\mathbf{1} | \mathcal{O} | \mathbf{1}, \mathbf{0} \rangle|^2 \propto |D_{\mathbf{0},+\mathbf{1}}^{1*}(\vartheta, \varphi)|^2 = \frac{1}{2} (\mathbf{1} - \cos^2 \vartheta)$$

$$\ell^+ \ell^- \leftarrow J/\psi$$

$$|1, +1\rangle = D_{-1,+1}^{1}(\vartheta, \varphi) |1, -1\rangle + D_{0,+1}^{1}(\vartheta, \varphi) |1, 0\rangle + D_{+1,+1}^{1}(\vartheta, \varphi) |1, +1\rangle$$

- \rightarrow the J_Z , eigenstate $|1, +1\rangle$ "contains" the J_Z eigenstate $|1, 0\rangle$ with component amplitude $D^1_{0,+1}(\vartheta,\varphi)$
- → the decay distribution is

$$|\langle \mathbf{1}, +\mathbf{1} | \mathcal{O} | \mathbf{1}, \mathbf{0} \rangle|^2 \propto |D_{0,+1}^{1*}(\vartheta, \varphi)|^2 = \frac{1}{2} (\mathbf{1} - \cos^2 \vartheta)$$

$$\ell^+ \ell^- \leftarrow J/\psi$$

3: parity

$$\frac{dN}{dO} \propto |D_{+1,+1}^{1*}(\vartheta,\varphi)|^2 \propto 1 + \cos^2\vartheta + 2\cos\vartheta$$

$$\mathcal{P}(-1) = \mathcal{P}(+1)$$

$$\mathcal{P}(-1) > \mathcal{P}(+1) \qquad \mathcal{P}(-1) = \mathcal{P}(+1) \qquad \mathcal{P}(-1) < \mathcal{P}(+1)$$

$$\frac{dN}{d\Omega} \propto 1 + \cos^2\vartheta + 2[\mathcal{P}(+1) - \mathcal{P}(-1)] \cos\vartheta$$

Decay distribution of $|1, 0\rangle$ state is always parity-symmetric:

$$\frac{dN}{d\Omega} \propto |D_{0,+1}^{1*}(\vartheta,\varphi)|^2 \propto 1 - \cos^2\vartheta$$

$$|J/\psi\rangle = |1, +1\rangle$$

or $|1, -1\rangle$

$$\frac{dN}{d\Omega} \propto 1 + \cos^2 \vartheta$$

y (parity-conserving case)

$$|J/\psi\rangle = |1, +1\rangle$$
 or $|1, -1\rangle$

$$\frac{dN}{d\Omega} \propto 1 + \cos^2 \vartheta$$

(parity-conserving case)

"Transverse" polarization, like for *real photons*. The word refers to the alignment of the *field* vector, not to the *spin* alignment!

$$|J/\psi\rangle = |1, +1\rangle$$
 or $|1, -1\rangle$

 $\frac{dN}{d\Omega} \propto 1 + \cos^2 \vartheta$

(parity-conserving case)

"Transverse" polarization, like for *real photons*. The word refers to the alignment of the *field* vector, not to the *spin* alignment!

$$|J/\psi\rangle = |1, 0\rangle$$

$$\frac{dN}{dQ} \propto 1 - \cos^2 \vartheta$$

$$|J/\psi\rangle = |1, +1\rangle$$
 or $|1, -1\rangle$

 $\frac{dN}{d\Omega} \propto 1 + \cos^2 \vartheta$

(parity-conserving case)

"Transverse" polarization, like for *real photons*. The word refers to the alignment of the *field* vector, not to the *spin* alignment!

$$|J/\psi\rangle = |1, 0\rangle$$

$$\frac{dN}{d\Omega} \propto 1 - \cos^2 \vartheta$$

"Longitudinal" polarization

We can apply **helicity conservation at the** *production* **vertex** to predict that all *vector* states produced in *fermion-antifermion annihilations* ($q-\overline{q}$ or e^+e^-) at Born level have *transverse* polarization

We can apply **helicity conservation at the** *production* **vertex** to predict that all *vector* states produced in *fermion-antifermion annihilations* ($q-\overline{q}$ or e^+e^-) at Born level have *transverse* polarization

We can apply **helicity conservation at the** *production* **vertex** to predict that all *vector* states produced in *fermion-antifermion annihilations* ($q-\overline{q}$ or e^+e^-) at Born level have *transverse* polarization

The "natural" polarization axis in this case is the relative direction of the colliding fermions (Collins-Soper axis)

We can apply **helicity conservation at the** *production* **vertex** to predict that all *vector* states produced in *fermion-antifermion annihilations* ($q-\overline{q}$ or e^+e^-) at Born level have *transverse* polarization

The "natural" polarization axis in this case is the relative direction of the colliding fermions (Collins-Soper axis)

Drell-Yan is a paradigmatic case
But not the only one

$$\frac{dN}{d\Omega} \propto 1 + \lambda_{\theta} \cos^{2}\theta + \lambda_{\varphi} \sin^{2}\theta \cos 2\varphi + \lambda_{\theta\varphi} \sin 2\theta \cos \varphi + 2A_{\theta} \cos \theta + 2A_{\varphi} \sin \theta \cos \varphi$$

$$\frac{dN}{d\Omega} \propto 1 + \lambda_{\theta} \cos^2\theta + \lambda_{\varphi} \sin^2\theta \cos 2\varphi + \lambda_{\theta\varphi} \sin 2\theta \cos \varphi + 2A_{\theta} \sin \theta \cos \varphi$$

$$+ 2A_{\theta} \cos \theta + 2A_{\varphi} \sin \theta \cos \varphi$$
parity violating

Helicity axis (HX): quarkonium momentum direction

h₁ h₂ hadron collision centre of mass frame

Helicity axis (HX): quarkonium momentum direction

Gottfried-Jackson axis (GJ): direction of one or the other beam

h₁ h₂ hadron collision centre of mass frame

Helicity axis (HX): quarkonium momentum direction

Gottfried-Jackson axis (GJ): direction of one or the other beam

Collins-Soper axis (CS): average of the two beam directions

production plane

Helicity axis (HX): quarkonium momentum direction

Gottfried-Jackson axis (GJ): direction of one or the other beam

Collins-Soper axis (CS): average of the two beam directions

Perpendicular helicity axis (PX): perpendicular to CS

production plane

$$|\psi\rangle = \frac{1}{2}|+1\rangle + \frac{1}{2}|-1\rangle \mp \frac{1}{\sqrt{2}}|0\rangle$$
 (mixed state)

All reference frames are equal... but some are more equal than others

What do different detectors measure with arbitrary frame choices?

Gedankenscenario:

- dileptons are fully transversely polarized in the CS frame
- the decay distribution is measured at the $\Upsilon(1S)$ mass by 6 detectors with different **dilepton acceptances**:

CDF	y < 0.6
D0	y < 1.8
ATLAS & CMS	y < 2.5
ALICE e ⁺ e ⁻	y < 0.9
ALICE $\mu^+\mu^-$	2.5 < y < 4
LHCb	2 < y < 4.5

The lucky frame choice

(CS in this case)

ALICE $\mu^+\mu^-$ / LHCb ATLAS / CMS D0 ALICE e^+e^- CDF

Less lucky choice

(HX in this case)

ALICE $\mu^+\mu^-$ / LHCb ATLAS / CMS D0 ALICE e^+e^- CDF

Less lucky choice

(HX in this case)

ALICE $\mu^+\mu^-$ / LHCb ATLAS / CMS D0 ALICE e^+e^- CDF

artificial (experiment-dependent!) kinematic behaviour

→ measure in more than one frame!

Frames for Drell-Yan, Z and W polarizations

• polarization is *always fully transverse*...

$$V = \gamma^*$$
, Z , W

Due to helicity conservation at the $q-\overline{q}-V$ $(q-q^*-V)$ vertex, $J_z = \pm 1$ along the $q-\overline{q}$ $(q-q^*)$ scattering direction z

Frames for Drell-Yan, Z and W polarizations

• polarization is always fully transverse...

$$V = \gamma^*$$
, Z , W

Due to helicity conservation at the $q-\overline{q}-V$ $(q-q^*-V)$ vertex, $J_z = \pm 1$ along the $q-\overline{q}$ $(q-q^*)$ scattering direction z

• ...but with respect to a *subprocess-dependent quantization axis*

z = relative dir. of incoming q and qbar
(~ Collins-Soper frame)

important only up to $p_T = \mathcal{O}(\text{parton } k_T)$

Frames for Drell-Yan, Z and W polarizations

• polarization is always fully transverse...

$$V = \gamma^*$$
, Z , W

Due to helicity conservation at the $q-\overline{q}-V$ $(q-q^*-V)$ vertex, $J_z = \pm 1$ along the $q-\overline{q}$ $(q-q^*)$ scattering direction z

• ...but with respect to a *subprocess-dependent quantization axis*

z = relative dir. of incoming q and qbar
(~ Collins-Soper frame)

important only up to $p_T = \mathcal{O}(\text{parton } k_T)$

z = dir. of one incoming quark
 (~ Gottfried-Jackson frame)

Frames for Drell-Yan, Z and W polarizations

• polarization is always fully transverse...

$$V = \gamma^*$$
, Z , W

Due to helicity conservation at the $q-\bar{q}-V$ $(q-q^*-V)$ vertex, $J_z = \pm 1$ along the $q-\bar{q}$ $(q-q^*)$ scattering direction z

• ...but with respect to a *subprocess-dependent quantization axis*

z = relative dir. of incoming q and qbar
(~ Collins-Soper frame)

important only up to $p_T = \mathcal{O}(\text{parton } k_T)$

z = dir. of one incoming quark
(~ Gottfried-Jackson frame)

z = dir. of outgoing q (= parton-cms-helicity \approx lab-cms-helicity)

"Optimal" frames for Drell-Yan, Z and W polarizations

Different subprocesses have different "natural" quantization axes

For *s*-channel processes the natural axis is the direction of the outgoing quark (= direction of dilepton momentum)

→ optimal frame (= maximizing polar anisotropy): HX

(neglecting parton-parton-cms vs proton-proton-cms difference!)

"Optimal" frames for Drell-Yan, Z and W polarizations

Different subprocesses have different "natural" quantization axes

For **t- and u-channel processes** the natural axis is the direction of either one or the other incoming parton (~ "Gottfried-Jackson" axes)

 \rightarrow optimal frame: geometrical average of GJ1 and GJ2 axes = CS ($p_T < M$) and PX ($p_T > M$)

The *shape* of the distribution is (obviously) frame-invariant (= invariant by rotation)

The *shape* of the distribution is (obviously) frame-invariant (= invariant by rotation)

$$\tilde{\lambda} = \frac{\lambda_{g} + 3\lambda_{\varphi}}{1 - \lambda_{\varphi}} \qquad \lambda^{*} = \frac{\lambda_{g} - 3\Lambda^{*}}{1 + \Lambda^{*}} \frac{1}{\Lambda^{*} = \frac{1}{4} \left\{ \lambda_{g} - \lambda_{\varphi} \pm \sqrt{\left(\lambda_{g} - \lambda_{\varphi}\right)^{2} + 4\lambda_{g\varphi}^{2}} \right\}} \qquad \tilde{\mathcal{A}} = \frac{\sqrt{A_{g}^{2} + A_{\varphi}^{2}}}{3 + \lambda_{g}}$$

The *shape* of the distribution is (obviously) frame-invariant (= invariant by rotation)

$$\tilde{\lambda} = \frac{\lambda_g + 3\lambda_{\varphi}}{1 - \lambda_{\varphi}}$$

$$\tilde{\lambda} = \frac{\lambda_{g} + 3\lambda_{\varphi}}{1 - \lambda_{\varphi}} \qquad \lambda^{*} = \frac{\lambda_{g} - 3\Lambda^{*}}{1 + \Lambda^{*}} \frac{1}{\Lambda^{*} = \frac{1}{4} \left\{ \lambda_{g} - \lambda_{\varphi} \pm \sqrt{\left(\lambda_{g} - \lambda_{\varphi}\right)^{2} + 4\lambda_{g\varphi}^{2}} \right\}}$$

$$\widetilde{\mathcal{A}} = \frac{\sqrt{A_g^2 + A_\varphi^2}}{3 + \lambda_g}$$

The *shape* of the distribution is (obviously) frame-invariant (= invariant by rotation)

$$\tilde{\lambda} = \frac{\lambda_g + 3\lambda_{\varphi}}{1 - \lambda_{\varphi}} \qquad \lambda^* = \frac{\lambda_g}{1 - \lambda_{\varphi}}$$

$$ilde{\lambda} = rac{\lambda_{g} + 3\lambda_{\varphi}}{1 - \lambda_{\varphi}} \qquad \qquad \lambda^{*} = rac{\lambda_{g} - 3\Lambda^{*}}{1 + \Lambda^{*}} \prod_{\Lambda^{*} = rac{1}{4} \left\{ \lambda_{g} - \lambda_{\varphi} \pm \sqrt{\left(\lambda_{g} - \lambda_{\varphi}\right)^{2} + 4\lambda_{g\varphi}^{2}}
ight\}}$$

$$\widetilde{\mathcal{A}} = \frac{\sqrt{A_g^2 + A_\varphi^2}}{3 + \lambda_g}$$

The *shape* of the distribution is (obviously) frame-invariant (= invariant by rotation)

$$\tilde{\lambda} = \frac{\lambda_g + 3\lambda_{\varphi}}{1 - \lambda_{\varphi}}$$

$$ilde{\lambda} = rac{\lambda_{g} + 3\lambda_{\varphi}}{1 - \lambda_{\varphi}} \qquad \qquad \lambda^{*} = rac{\lambda_{g} - 3\Lambda^{*}}{1 + \Lambda^{*}} \prod_{\Lambda^{*} = rac{1}{4} \left\{ \lambda_{g} - \lambda_{\varphi} \pm \sqrt{\left(\lambda_{g} - \lambda_{\varphi}\right)^{2} + 4\lambda_{g\varphi}^{2}}
ight\}}$$

$$\widetilde{\mathcal{A}} = \frac{\sqrt{A_g^2 + A_\varphi^2}}{3 + \lambda_g}$$

The *shape* of the distribution is (obviously) frame-invariant (= invariant by rotation)

$$\tilde{\lambda} = \frac{\lambda_{g} + 3\lambda_{\varphi}}{1 - \lambda_{\varphi}}$$

$$\tilde{\lambda} = \frac{\lambda_{g} + 3\lambda_{\varphi}}{1 - \lambda_{\varphi}} \qquad \lambda^{*} = \frac{\lambda_{g} - 3\Lambda^{*}}{1 + \Lambda^{*}} \prod_{\Lambda^{*} = \frac{1}{4} \left\{ \lambda_{g} - \lambda_{\varphi} \pm \sqrt{\left(\lambda_{g} - \lambda_{\varphi}\right)^{2} + 4\lambda_{g\varphi}^{2}} \right\}}$$

$$\widetilde{\mathcal{A}} = \frac{\sqrt{A_g^2 + A_\varphi^2}}{3 + \lambda_g}$$

Gedankenscenario: vector state produced in this subprocess admixture: (assumed indep.

- 60% processes with natural transverse polarization in the CS frame
- 40% processes with natural transverse polarization in the HX frame

assumed indep. of kinematics, for simplicity

Gedankenscenario: vector state produced in this subprocess admixture: assumed indep.

- 60% processes with natural transverse polarization in the CS frame
- 40% processes with natural transverse polarization in the HX frame

assumed indep of kinematics, for simplicity

$$M = 10 \text{ GeV}/c^2$$

CDF	y < 0.6
D0	y < 1.8
ATLAS/CMS	y < 2.5
ALICE e ⁺ e ⁻	y < 0.9
ALICE μ ⁺ μ ⁻	2.5 < y < 4
LHCb	2 < y < 4.5

Gedankenscenario: vector state produced in this subprocess admixture: assumed indep.

- 60% processes with natural transverse polarization in the CS frame
- 40% processes with natural transverse polarization in the HX frame

assumed indep. of kinematics, for simplicity

$$M = 10 \text{ GeV}/c^2$$

 $\begin{array}{lll} \text{CDF} & |y| < 0.6 \\ \text{D0} & |y| < 1.8 \\ \text{ATLAS/CMS} & |y| < 2.5 \\ \text{ALICE } e^+e^- & |y| < 0.9 \\ \text{ALICE } \mu^+\mu^- & 2.5 < y < 4 \\ \text{LHCb} & 2 < y < 4.5 \\ \end{array}$

Gedankenscenario: vector state produced in this subprocess admixture: assumed indep.

- 60% processes with natural transverse polarization in the CS frame
- 40% processes with natural transverse polarization in the HX frame

of kinematics, for simplicity

|y| < 0.6|y| < 1.8 |y| < 2.5 |y| < 0.9 2.5 < y < 42 < y < 4.5

Gedankenscenario: vector state produced in this subprocess admixture: assumed indep.

- 60% processes with natural transverse polarization in the CS frame
- 40% processes with natural transverse polarization in the HX frame

assumed indep. of kinematics, for simplicity

• polarization is always fully transverse...

$$V = \gamma^*$$
, Z , W

Due to helicity conservation at the $q-\overline{q}-V$ $(q-q^*-V)$ vertex, $J_z = \pm 1$ along the $q-\overline{q}$ $(q-q^*)$ scattering direction z

...but with respect to a subprocess-dependent quantization axis

• polarization is always fully transverse...

$$V = \gamma^*$$
, Z , W

Due to helicity conservation at the $q-\bar{q}-V$ $(q-q^*-V)$ vertex, $J_z = \pm 1$ along the $q-\bar{q}$ $(q-q^*)$ scattering direction z

• ...but with respect to a *subprocess-dependent quantization axis*

"natural" z = relative dir. of q and q bar $\rightarrow \lambda_{\vartheta}(\text{"CS"}) = +1$

wrt any axis: $\lambda = +1$

• polarization is always fully transverse...

$$V = \gamma^*$$
, Z , W

Due to helicity conservation at the $q-\bar{q}-V$ $(q-q^*-V)$ vertex, $J_z = \pm 1$ along the $q-\bar{q}$ $(q-q^*)$ scattering direction z

• ...but with respect to a *subprocess-dependent quantization axis*

corrections

"natural" z = relative dir. of q and q bar $\rightarrow \lambda_{\vartheta}(\text{"CS"}) = +1$

wrt any axis: $\lambda = +1$

z = dir. of one incoming quark $\rightarrow \lambda_{\vartheta}("GJ") = +1$ $\lambda = +1$

• polarization is *always fully transverse*...

$$V = \gamma^*$$
, Z , W

Due to helicity conservation at the $q-\bar{q}-V$ $(q-q^*-V)$ vertex, $J_z = \pm 1$ along the $q-\bar{q}$ $(q-q^*)$ scattering direction z

...but with respect to a subprocess-dependent quantization axis

corrections

"natural" z = relative dir. of q and q bar $\rightarrow \lambda_{\vartheta}(\text{"CS"}) = +1$

wrt *any* axis: $\lambda = +1$

z = dir. of one incoming quark $\rightarrow \lambda_{\vartheta}(\text{"GJ"}) = +1$ $\lambda = +1$

z = dir. of outgoing q $\rightarrow \lambda_{\vartheta}("HX") = +1$ $\tilde{\lambda} = +1$ N.B.: $\tilde{\lambda} = +1$ in both pp-HX and qg-HX frames!

• polarization is *always fully transverse*...

$$V = \gamma^*$$
, Z , W

Due to helicity conservation at the $q-\bar{q}-V$ $(q-q^*-V)$ vertex, $J_z = \pm 1$ along the $q-\bar{q}$ $(q-q^*)$ scattering direction z

...but with respect to a subprocess-dependent quantization axis

In all these cases the q-q-V lines are in the production plane (planar processes); The CS, GJ, pp-HX and qg-HX axes only differ by a rotation in the production plane

Case 1: dominating q-qbar QCD corrections

Case 1: dominating **q-qbar** QCD corrections

Case 2: dominating q-g QCD corrections

Case 2: dominating **q-g** QCD corrections Case 1: dominating **q-qbar** QCD corrections 0.5 0.5 (indep. of y) 0 0 $M = 80 \text{ GeV}/c^2$ $M = 80 \text{ GeV}/c^2$ mass dependent! -0.5 0.2 0.3 0.4 0.5 0.6 8.0 0.5 0.6 f_{QCD} f_{QCD}

Example: $Z/\gamma^*/W$ polarization (CS frame) as a function of contribution of LO QCD corrections:

"unpolarized"?

No, $\lambda = +1$!

50

 p_T [GeV/c]

0

Example: $Z/\gamma^*/W$ polarization (CS frame) as a function of contribution of LO QCD corrections:

On the other hand, $\tilde{\lambda}$ forgets about the direction of the quantization axis. This information is crucial if we want to **disentangle the** qg **contribution**, the only one resulting in a *rapidity-dependent* λ_{ϑ}

Measuring $\lambda_{\vartheta}(CS)$ as a function of rapidity gives information on the gluon content of the proton

The Lam-Tung relation

A fundamental result of the theory of vector-boson polarizations (Drell-Yan, directly produced Z and W) is that, at leading order in perturbative QCD,

$$\lambda_g + 4\lambda_{\varphi} = 1$$
 independently of the polarization frame

Lam-Tung relation, Pysical Review D 18, 2447 (1978)

This identity was considered as a surprising result of cancellations in the calculations

The Lam-Tung relation

A fundamental result of the theory of vector-boson polarizations (Drell-Yan, directly produced Z and W) is that, at leading order in perturbative QCD,

$$\lambda_g + 4\lambda_{\varphi} = 1$$
 independently of the polarization frame

Lam-Tung relation, Pysical Review D 18, 2447 (1978)

This identity was considered as a surprising result of cancellations in the calculations

Today we know that it is only a *special* case of general frame-independent polarization relations, corresponding to a *transverse* intrinsic polarization:

$$\tilde{\lambda} = \frac{\lambda_g + 3\lambda_{\varphi}}{1 - \lambda_{\varphi}} = +1 \quad \Rightarrow \lambda_g + 4\lambda_{\varphi} = 1$$

It is, therefore, not a "QCD" relation, but a consequence of

- 1) rotational invariance
- 2) properties of the quark-photon/Z/W couplings (helicity conservation)

Even when the Lam-Tung relation is violated,

 $\tilde{\lambda} \,$ can always be defined and is always frame-independent

Even when the Lam-Tung relation is violated, $\tilde{\lambda}$ can always be defined and is always frame-independent

 $\widetilde{\lambda}=+1$ \rightarrow Lam-Tung. New interpretation: only *vector boson – quark – quark* couplings (in planar processes) \rightarrow automatically verified in DY at QED & LO QCD levels and in several higher-order QCD contributions

Even when the Lam-Tung relation is violated,

 $\widetilde{\lambda}$ can always be defined and is always frame-independent

 $\widetilde{\lambda}=+1$ \rightarrow Lam-Tung. New interpretation: only $vector\ boson-quark-quark$ couplings (in planar processes) \rightarrow automatically verified in DY at QED & LO QCD levels and in several higher-order QCD contributions

Even when the Lam-Tung relation is violated, $\tilde{\lambda}$ can always be defined and is always frame-independent

 $\widetilde{\lambda}=+1$ \rightarrow Lam-Tung. New interpretation: only $vector\ boson-quark-quark$ couplings (in planar processes) \rightarrow automatically verified in DY at QED & LO QCD levels and in several higher-order QCD contributions

$$\begin{split} \tilde{\lambda} &= +1 - \mathcal{O}(0.1) \\ &\to +1 \text{ for } p_T \to 0 \end{split} \qquad \begin{array}{l} \to \text{ vector-boson - quark - quark couplings in} \\ & \text{ non-planar processes (higher-order contributions)} \end{split}$$

$$\left. \begin{array}{l} \widetilde{\lambda} \ll +1 \\ \widetilde{\lambda} > +1 \end{array} \right\} \rightarrow \text{contribution of } \textit{different/new couplings or processes} \\ \text{(e.g.: } \textit{Z} \text{ from Higgs, } \textit{W} \text{ from top, triple } \textit{ZZ}\gamma \text{ coupling,} \\ \text{higher-twist effects in DY production, etc...)} \end{array}$$

Polarization can be used to distinguish between different kinds of physics signals, or between "signal" and "background" processes (→improve significance of new-physics searches)

Example: W from top \leftrightarrow W from q-qbar and q-g

Example: W from top \leftrightarrow W from q-qbar and q-g

longitudinally polarized:

$$\lambda_{\mathcal{G}}^{\mathrm{SM}} \cong -0.65$$
 wrt *W* direction in $\lambda_{\varphi}^{\mathrm{SM}} \cong 0$ the top rest frame (top-frame helicity)

independently of top production mechanism

The top quark decays almost always to W+b

→ the longitudinal polarization of the W is a signature of the top

Example: W from top \leftrightarrow W from q-qbar and q-g

longitudinally polarized:

$$\lambda_{\mathcal{G}}^{\mathrm{SM}} \cong -0.65$$
 wrt *W* direction in $\lambda_{\varphi}^{\mathrm{SM}} \cong 0$ the top rest frame (top-frame helicity)

independently of top production mechanism

The top quark decays almost always to W+b

→ the longitudinal polarization of the W is a signature of the top

transversely polarized,

$$\lambda_{g} = +1 \& \lambda_{\varphi} = 0$$
 wrt 3 different axes:

b) Rotation-invariant approach

Example: the q-qbar \rightarrow ZZ continuum background

dominant Standard Model background for new-signal searches in the $ZZ \rightarrow 4\ell$ channel with $m(ZZ) > 200 \text{ GeV}/c^2$

The new Higgs-like resonance was discovered also thanks to these techniques

The distribution of the **5** angles depends on the kinematics $W(\cos \theta, \cos \theta_1, \varphi_1, \cos \theta_2, \varphi_2 \mid M_{77}, \overrightarrow{p}(Z_1), \overrightarrow{p}(Z_2))$

- for helicity conservation each of the two
 Z's is transverse along the direction of one
 or the other incoming quark
- t-channel and u-channel amplitudes are proportional to $\frac{1}{1-\cos\Theta}$ and $\frac{1}{1+\cos\Theta}$ for $M_7/M_{77} \to 0$

Discriminant nº1: **Z** polarization

Discriminant nº1: **Z** polarization

Discriminant nº1: **Z** polarization

Discriminant nº2: **Z emission direction**

Discriminant nº2: **Z emission direction**

Discriminant nº2: **Z emission direction**

Putting everything together

5 angles $(\Theta, \vartheta_1, \varphi_1, \vartheta_2, \varphi_2)$, with distribution depending on

5 kinematic variables (M_{ZZ} , $p_T(Z_1)$, $y(Z_1)$, $p_T(Z_2)$, $y(Z_2)$)

event probabilities, including detector acceptance and efficiency effects

Putting everything together

5 angles ($\boldsymbol{\Theta}$, $\boldsymbol{\vartheta}_1$, $\boldsymbol{\varphi}_1$, $\boldsymbol{\vartheta}_2$, $\boldsymbol{\varphi}_2$), with distribution depending on 5 kinematic variables (M_{ZZ} , $p_T(Z_1)$, $y(Z_1)$, $p_T(Z_2)$, $y(Z_2)$)

1 shape discriminant:

event probabilities, including detector acceptance and efficiency effects

 $\sqrt{s} = 14 \text{ TeV}$ $500 < M_{ZZ} < 900 \text{ GeV}/c^2$ $M_H = 700 \text{ GeV}/c^2$ $|y_{ZZ}| < 2.5$

lepton selection: $p_T > 15 \text{ GeV/}c$ $|\eta| < 2.5$

β = ratio of observed / expected signal events

```
\beta > 0 \rightarrow observation of something new
```

 β < 1 \rightarrow exclusion of expected hypothetical signal

β = ratio of observed / expected signal events

 $\beta > 0 \rightarrow$ observation of something new $\beta < 1 \rightarrow$ exclusion of expected hypothetical signal

"integrated yield" constraint: signal = excess yield wrt expected number of BG events

1)
$$\mathcal{P}_{BGnorm}(\beta) \propto \frac{e^{-(\mu_B + \beta \mu_S)} (\mu_B + \beta \mu_S)^N}{N!}$$

crucially dependent on the expected BG normalization

 μ_B = avg. number of BG events expected for the given luminosity μ_S = avg. number of Higgs events expected for the given luminosity N = total number of events in the sample

β = ratio of observed / expected signal events

 $\beta > 0 \rightarrow$ observation of something new β < 1 \rightarrow exclusion of expected hypothetical signal

"integrated yield" constraint: signal = excess yield wrt expected number of BG events

1)
$$P_{\text{BGnorm}}(\beta) \propto \frac{e^{-(\mu_{\text{B}} + \beta \mu_{\text{S}})} (\mu_{\text{B}} + \beta \mu_{\text{S}})^N}{N!}$$
 crucially dependent on the expected BG normalization

constraint from angular distribution: signal = deviation from the **shape** of the BG angular distribution

2)
$$\mathcal{P}_{\text{angular}}(\beta) \propto \prod_{i=1}^{N} \left(\frac{\mu_{\text{B}}}{\mu_{\text{B}} + \beta \mu_{\text{S}}} w_{\text{B}}(\xi_{i}) + \frac{\beta \mu_{\text{S}}}{\mu_{\text{B}} + \beta \mu_{\text{S}}} w_{\text{S}}(\xi_{i}) \right)$$
 independent of luminosity and cross-section uncertainties!

section uncertainties!

 $\mu_{\rm B}$ = avg. number of BG events expected for the given luminosity μ_s = avg. number of Higgs events expected for the given luminosity N = total number of events in the sample

β = ratio of observed / expected signal events

 $\beta > 0 \rightarrow$ observation of something new β < 1 \rightarrow exclusion of expected hypothetical signal

"integrated yield" constraint: signal = excess yield wrt expected number of BG events

1)
$$P_{\rm BGnorm}(\beta) \propto \frac{e^{-(\mu_{\rm B} + \beta \mu_{\rm S})} (\mu_{\rm B} + \beta \mu_{\rm S})^N}{N!}$$
 crucially dependent on the expected BG normalization

constraint from angular distribution: signal = deviation from the **shape** of the BG angular distribution

2)
$$\mathcal{P}_{\text{angular}}(\beta) \propto \prod_{i=1}^{N} \left(\frac{\mu_{\text{B}}}{\mu_{\text{B}} + \beta \mu_{\text{S}}} w_{\text{B}}(\xi_{i}) + \frac{\beta \mu_{\text{S}}}{\mu_{\text{B}} + \beta \mu_{\text{S}}} w_{\text{S}}(\xi_{i}) \right)$$
 independent of luminosity and cross-section uncertainties!

section uncertainties!

3)
$$\mathcal{P}_{tot}(\beta) = \mathcal{P}_{angular}(\beta) \times \mathcal{P}_{BGnorm}(\beta)$$
 combination of the two methods

 μ_B = avg. number of BG events expected for the given luminosity μ_s = avg. number of Higgs events expected for the given luminosity N = total number of events in the sample

Confidence levels

Limits vs m_H

Variation with mass essentially due to varying BG level: 30% for m_H = 500 GeV/ $c^2 \rightarrow 70\%$ for m_H = 800 GeV/ c^2 Angular method more advantageous with higher BG levels

Further reading

- P. Faccioli, C. Lourenço, J. Seixas, and H.K. Wöhri, *J/psi polarization from fixed-target to collider energies*, Phys. Rev. Lett. 102, 151802 (2009)
- HERA-B Collaboration, Angular distributions of leptons from J/psi's produced in 920-GeV fixed-target proton-nucleus collisions, Eur. Phys. J. C 60, 517 (2009)
- P. Faccioli, C. Lourenço and J. Seixas, *Rotation-invariant relations in vector meson decays into fermion pairs*, Phys. Rev. Lett. 105, 061601 (2010)
- P. Faccioli, C. Lourenço and J. Seixas, *New approach to quarkonium polarization studies*, Phys. Rev. D 81, 111502(R) (2010)
- P. Faccioli, C. Lourenço, J. Seixas and H.K. Wöhri, *Towards the experimental clarification of quarkonium polarization*, Eur. Phys. J. C 69, 657 (2010)
- P. Faccioli, C. Lourenço, J. Seixas and H. K. Wöhri, *Rotation-invariant observables in parity-violating decays of vector particles to fermion pairs*, Phys. Rev. D 82, 096002 (2010)
- P. Faccioli, C. Lourenço, J. Seixas and H. K. Wöhri, *Model-independent constraints on the shape parameters of dilepton angular distributions*, Phys. Rev. D 83, 056008 (2011)
- P. Faccioli, C. Lourenço, J. Seixas and H. K. Wöhri,
 Determination of -chi_c and chi_-b polarizations from dilepton angular distributions in radiative decays,
 Phys. Rev. D 83, 096001 (2011)
- P. Faccioli and J. Seixas, Observation of χ_c and χ_b nuclear suppression via dilepton polarization measurements, Phys. Rev. D 85, 074005 (2012)
- P. Faccioli, Questions and prospects in quarkonium polarization measurements from proton-proton to nucleus-nucleus collisions, invited "brief review", Mod. Phys. Lett. A Vol. 27 N. 23, 1230022 (2012)
- P. Faccioli and J. Seixas, Angular characterization of the $ZZ \rightarrow 4\ell$ background continuum to improve sensitivity of new physics searches, Phys. Lett. B 716, 326 (2012)
- P. Faccioli, C. Lourenço, J. Seixas and H. K. Wöhri, Minimal physical constraints on the angular distributions of two-body boson decays, submitted to Phys. Rev. D