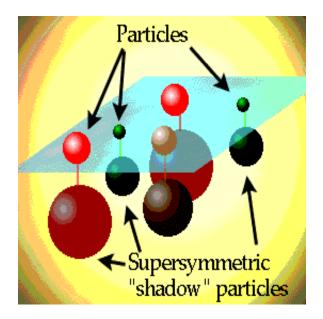

Physics at LHC: SUperSYmmetry

Pedrame Bargassa

LIP 09/06/2014


Outline

- Reminders of last time: Different physical SUSY sectors
- Deeper look in Higgs sector
- Getting into experimental feedback
- Exercises

Advised readings:

- "SUSY & Such" S. Dawson, arxiv:hep-ph/9612229v2
- "A supersymmetry primer" S. P. Martin, arxiv:hep-ph/9709356

Quick reminders of last time

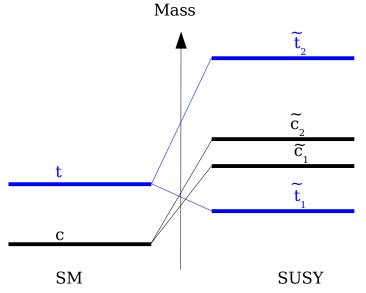
MSSM: Effective Lagrangian

- We don't know <u>how</u> SUSY is broken, but can write the most general broken effective Lagrangian
- Maximal dimension of soft operators: $\leq 3 \rightarrow$ Mass terms, Bilinear & Trilinear terms

$$\begin{split} -\mathcal{L}_{soft} &= m_{1}^{2} \mid H_{1} \mid^{2} + m_{2}^{2} \mid H_{2} \mid^{2} - B\mu\epsilon_{ij}(H_{1}^{i}H_{2}^{j} + \text{h.c.}) + \tilde{M}_{Q}^{2}(\tilde{u}_{L}^{*}\tilde{u}_{L} + \tilde{d}_{L}^{*}\tilde{d}_{L}) \\ &+ \tilde{M}_{u}^{2}\tilde{u}_{R}^{*}\tilde{u}_{R} + \tilde{M}_{d}^{2}\tilde{d}_{R}^{*}\tilde{d}_{R} + \tilde{M}_{L}^{2}(\tilde{e}_{L}^{*}\tilde{e}_{L} + \tilde{\nu}_{L}^{*}\tilde{\nu}_{L}) + \tilde{M}_{e}^{2}\tilde{e}_{R}^{*}\tilde{e}_{R} \\ &+ \frac{1}{2} \Big[M_{3}\overline{\tilde{g}}\overline{g} + M_{2}\overline{\tilde{\omega}_{i}}\tilde{\omega}_{i} + M_{1}\overline{\tilde{b}}\overline{\tilde{b}} \Big] + \frac{g}{\sqrt{2}M_{W}}\epsilon_{ij} \Big[\frac{M_{d}}{\cos\beta}A_{d}H_{1}^{i}\tilde{Q}^{j}\tilde{d}_{R}^{*} \\ &+ \frac{M_{u}}{\sin\beta}A_{u}H_{2}^{j}\tilde{Q}^{i}\tilde{u}_{R}^{*} + \frac{M_{e}}{\cos\beta}A_{e}H_{1}^{i}\tilde{L}^{j}\tilde{e}_{R}^{*} + \text{h.c.} \Big] \quad . \end{split}$$

Specificity of SUSY: Writing the most general Lagrangian, generalizing the spins of fields, SUCH that quadratic divergences are always shut down

MSSM: Squark & Slepton sector


Physical states are 2 scalar mass-eigenstates: Mixtures of left- & -right chiral superpartners (scalars) of SM quark and leptons

Let's pick-up example of the top sector: If $[f_L - f_R]$ chiral basis:

$$M_{\tilde{t}}^{2} = \begin{pmatrix} \tilde{M}_{Q}^{2} + M_{T}^{2} + M_{Z}^{2}(\frac{1}{2} - \frac{2}{3}\sin^{2}\theta_{W})\cos 2\beta & M_{T}(A_{T} + \mu\cot\beta) \\ M_{T}(A_{T} + \mu\cot\beta) & \tilde{M}_{U}^{2} + M_{T}^{2} + \frac{2}{3}M_{Z}^{2}\sin^{2}\theta_{W}\cos 2\beta \end{pmatrix}$$

- \succ \widetilde{M}_{Q} : Left squark mass
- \succ $\widetilde{\mathrm{M}}_{_{\mathrm{U}}}$: Right squark mass
- A_T: Trilinear coupling specific to the top sector
- $M_Q = M_T$: Mass of the SM particle
- µ: Higgs (bilinear) mixing parameter
- β: Higgs vev-specific parameter (see in a couple of slides): Plays a role in the mixing

MSSM: Chargino sector

Physical states are 2 fermionic mass-eigenstates: Mixtures of charged winos and charged higgsinos, which are SUSY eigenstates

In the charged [wino – higgsino] basis:

$$M_{\tilde{\chi}^{\pm}} = \begin{pmatrix} M_2 & \sqrt{2}M_W \sin\beta \\ \sqrt{2}M_W \cos\beta & -\mu \end{pmatrix}$$

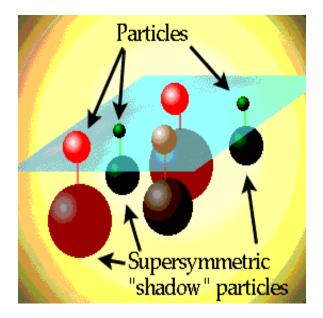
- \sim M₂: Mass of the wino
- μ: Higgs (bilinear) mixing parameter
 - > The more $M_2 \gg 1$: The more the charginos are wino-like

Comments:

- > The more μ > 1: The more the charginos are higgsino-like
- β: Not playing a role in mixing

MSSM: Neutralino sector

Physical states are 4 fermionic mass-eigenstates: Mixtures of neutral winos w^0 , bino b, and 2 neutral higgsinos, which are SUSY eigenstates

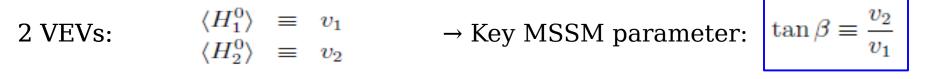

In the charged $[b - w^0 - h^0_1 - h^0_2]$ basis:

$$M_{\tilde{\chi}_{i}^{0}} = \begin{pmatrix} M_{1} & 0 & -M_{Z}\cos\beta\sin\theta_{W} & M_{Z}\sin\beta\sin\theta_{W} \\ 0 & M_{2} & M_{Z}\cos\beta\cos\theta_{W} & -M_{Z}\sin\beta\cos\theta_{W} \\ -M_{Z}\cos\beta\sin\theta_{W} & M_{Z}\cos\beta\sin\theta_{W} & 0 & \mu \\ M_{Z}\sin\beta\sin\theta_{W} & -M_{Z}\sin\beta\cos\theta_{W} & \mu & 0 \end{pmatrix}$$

- \succ M₁: Mass of the bino
- M₂: Mass of the wino
- μ: Higgs (bilinear) mixing parameter

<u>Exercise</u>: Qualitatively gauge the influence of each parameters in the mass-matrix above on the "type" of neutralinos

Higgs sector: "Richer" than others...



MSSM: Higgs sector

<u>2</u> Higgs complex doublets:

$$V_{H} = \left(|\mu|^{2} + m_{1}^{2} \right) |H_{1}|^{2} + \left(|\mu|^{2} + m_{2}^{2} \right) |H_{2}|^{2} - \mu B \epsilon_{ij} \left(H_{1}^{i} H_{2}^{j} + \text{h.c.} \right) \\ + \frac{g^{2} + g^{\prime 2}}{8} \left(|H_{1}|^{2} - |H_{2}|^{2} \right)^{2} + \frac{1}{2} g^{2} |H_{1}^{*} H_{2}|^{2}$$

8 degrees of freedom – 3 (massive gauge bosons) = 5 physical Higgs fields: **h / H / H[±] / A** (CP-odd)

$$\tan 2\alpha = \frac{(M_A^2 + M_Z^2)\sin 2\beta}{(M_A^2 - M_Z^2)\cos 2\beta + \epsilon_h/\sin^2\beta}$$

3 parameters to describe the M<u>SSM Higgs sector:</u>

Once $v_{1,2}$ are fixed such that:

$$M_W^2 = \frac{g^2}{2}(v_1^2 + v_2^2)$$

This whole sector is described by (only) 2 other parameters: $\rightarrow \tan\beta$ $\rightarrow M_A$: $M_A^2 = \frac{2 \mid \mu B \mid}{\sin 2\beta}$

MSSM: Higgs mass & squarks / Limit

Equation governing lightest Higgs mass:

 $\tan \beta = 1.5$

400.0

M₄ (GeV)

M_h (GeV)

100.0

80.0

60.0 <u>-</u> 0.0

200.0

$$M_{h,H}^{2} = \frac{1}{2} \left\{ M_{A}^{2} + M_{Z}^{2} + \frac{\epsilon_{h}}{\sin^{2}\beta} \pm \left[\left(M_{A}^{2} - M_{Z}^{2} \right) \cos 2\beta + \frac{\epsilon_{h}}{\sin^{2}\beta} \right)^{2} + \left(M_{A}^{2} + M_{Z}^{2} \right)^{2} \sin^{2} 2\beta \right]^{1/2} \right\}$$

with: $\epsilon_{h} \equiv \frac{3G_{F}}{\sqrt{2}\pi^{2}} M_{T}^{4} \log \left(\frac{\tilde{m}^{2}}{M_{T}^{2}} \right)$ Contribution of 1-loop correction only !
Squark masses: Higgs mass
particularly sensitive to $\sim t_{1,2}$ system
Upper bound: $M_{h}^{2} < M_{Z}^{2} \cos^{2} 2\beta + \epsilon_{h}$

$$M_{h}^{10.0} = \frac{M_{h}^{2} = 1 \text{ TeV } A = \mu = 0}{M_{h}^{140.0} = 1 \text{ TeV } A = \mu = 0}$$
Here: No mixing.
M(h) can go higher is stop-sector mixing larger

800.0

600.0

 \rightarrow The "well-known" $\rm M_{_h} < 135~GeV/c^2$ limit for any-SUSY lightest Higgs

 \rightarrow ...is dependent on

 \rightarrow 2-loop calculations

 \rightarrow Renormalization calculations which can evolve...

MSSM: Higgs mass & squarks / Limit

Equation governing lightest Higgs mass:

$$\begin{split} M_{h,H}^2 &= \frac{1}{2} \bigg\{ M_A^2 + M_Z^2 + \frac{\epsilon_h}{\sin^2 \beta} \pm \bigg[\bigg(M_A^2 - M_Z^2 \big) \cos 2\beta + \frac{\epsilon_h}{\sin^2 \beta} \bigg)^2 + \bigg(M_A^2 + M_Z^2 \bigg)^2 \sin^2 2\beta \bigg]^{1/2} \bigg\} \\ \text{with:} \ \epsilon_h &\equiv \frac{3G_F}{\sqrt{2}\pi^2} M_T^4 \log \bigg(\frac{\tilde{m}^2}{M_T^2} \bigg) - \underbrace{\begin{array}{c} \text{Contribution of 1-loop correction only !} \\ \text{Squark masses: Higgs mass} \\ \text{particularly sensitive to } \sim t_{1,2} \end{array}$$

Upper bound: When
$$M_A \rightarrow \infty$$

 $M_h^2 = M_A^2 - f(M_A^4)$
 $M_H^2 = M_A^2 + f(M_A^4)$

<u>Just to know</u>:

 \rightarrow With richer Higgs structure: Can also have $M_{h}^{max} > 130 \text{ GeV/c}^2$

 $\rightarrow \mu B$ perturbative up to Planck-scale:

For any SUSY: $M_h^{max} \sim 150 \text{ GeV/c}^2$

MSSM: Higgs couplings to bosons

Let's look at couplings:

 $Z^{\mu}Z^{\nu}h: \qquad \frac{i}{c}$ $Z^{\mu}Z^{\nu}H: \qquad \frac{i}{c}$ $W^{\mu}W^{\nu}h: \qquad id$

$$\frac{igM_Z}{\cos \theta_W} \sin(\beta - \alpha)g^{\mu\nu}$$
$$\frac{igM_Z}{\cos \theta_W} \cos(\beta - \alpha)g^{\mu\nu}$$
$$\frac{igM_W}{igM_W} \sin(\beta - \alpha)g^{\mu\nu}$$
SM couplings

 $\sin(eta - lpha) \longrightarrow 1 \text{ for } M_A \to \infty$ $\cos(eta - lpha) \longrightarrow 0$.

Similar for coupling to γ & fermions

Exercise: Demonstrate the 2 relations above

It is possible that:

1/ Light h "SM like":

- \rightarrow Mass: Rather low
- \rightarrow Br(h -> $\gamma\gamma$) ~ Like in SM

2/ {H, H^{\pm} , <u>A</u>} much heavier & degenerate

- \rightarrow Couplings of lightest Higgs to fermions/ $\gamma/W/Z$ \sim Like in SM
- \rightarrow Couplings of "additional" Higgs to fermions/ $\gamma/W/Z \sim 0$

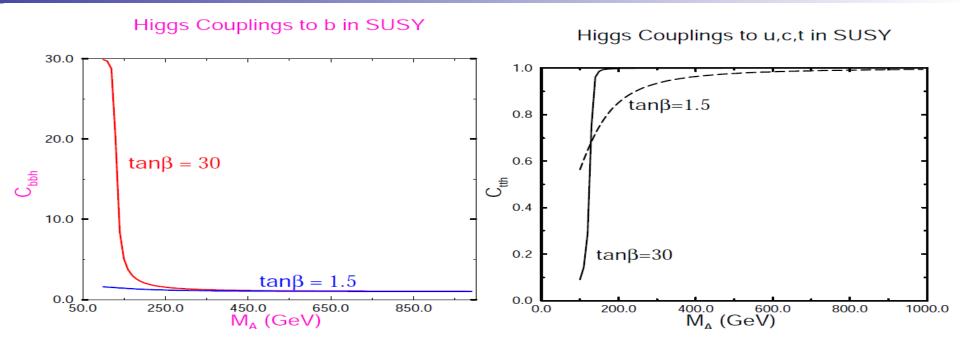
This is called the **decoupled regime**:

1/ The lightest Higgs field is a) rather light b) behaves *a la* SM 2/ The "new" physical Higgs fields are (much ?) higher in mass

MSSM: Higgs couplings to fermions

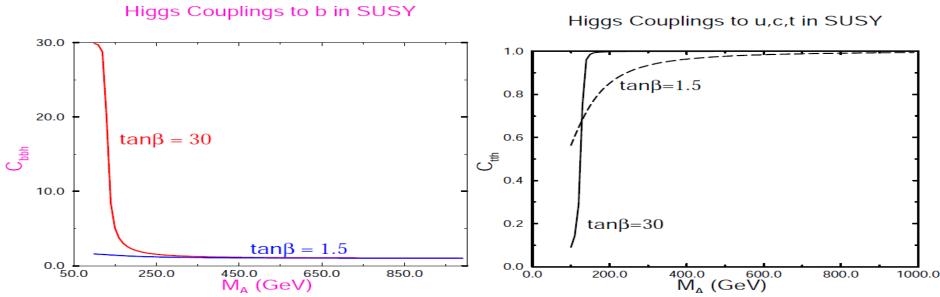
Let's plug in L_{yukawa} the full MSSM Higgs fields & the SM fermions: $L_{yukawa} = -G_d(\bar{u},\bar{d})_L(\phi^+,\phi^{10}) d_R - G_u(\bar{u},\bar{d})_L(\phi^{20},\phi^-) u_R + hc$ Then break EW with $\phi = (1/\sqrt{2})(0,v_{1,2}^+ + Higgs) \leftarrow$ "Rapid" notation Then re-rewrite things in

terms of coupling:


$$\mathcal{L} = -\frac{gm_i}{2M_W} \left[C_{ffh} \overline{f}_i f_i h + C_{ffH} \overline{f}_i f_i H + C_{ffA} \overline{f}_i \gamma_5 f_i A \right]$$

- Coupling to same fermions: "Opposite" behaviors of 2 lightest neutral higgs h and H
- Coupling to the same Higgs:
 "Opposite" behaviors of u/d quarks
- Let's see what the 2nd case graphically means...

f	C_{ffh}	C_{ffH}	C_{ffA}
u	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	\coteta
d	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\cos \beta}$	aneta


$$\tan 2\alpha = \frac{(M_A^2 + M_Z^2)\sin 2\beta}{(M_A^2 - M_Z^2)\cos 2\beta + \epsilon_h/\sin^2\beta}$$

MSSM: Higgs couplings to fermions

Let's find the different effects

MSSM: Higgs couplings to fermions

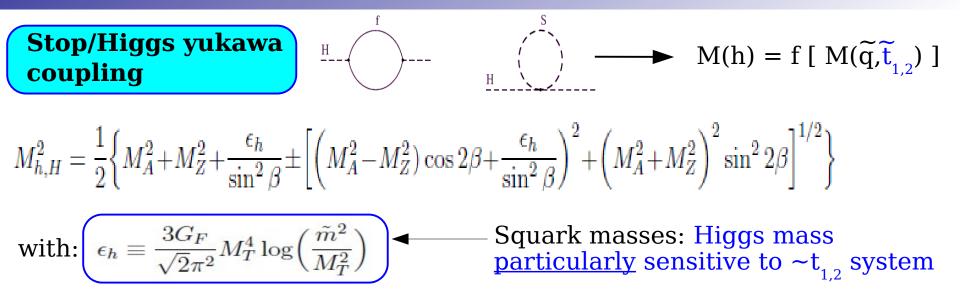
> Opposite behaviours versus M_A : See couplings: $C_{ddh} \alpha 1/\cos\beta \alpha \tan\beta$

- Different behaviours versus tanβ: See couplings
- Down/Up quark couplings: Always bigger/smaller than 1
 - $\, \times \,$ MSSM Higgs hunters are interested in final states with b, τ !
 - $\,\,$ > Only interesting @ high tanß AND low $M_{_{A}}$
- → High M_A : All h-fermion coupling → 1 !
 - In decoupled regime: No enhancement effect for down quarks. Things are pretty "democratic" across quark generations

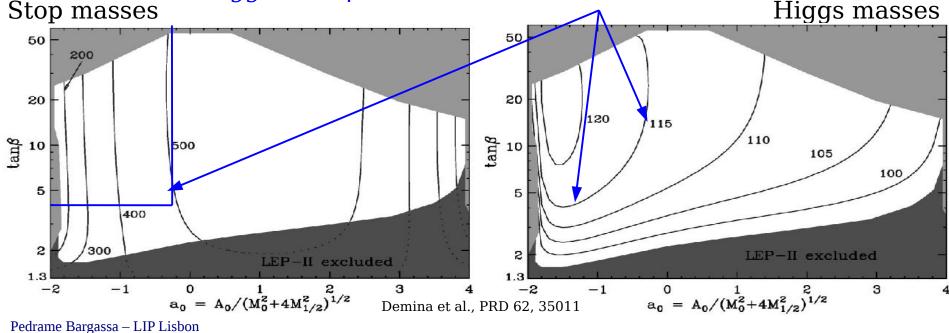
> Guess what's the present experimental picture... Pedrame Bargassa – LIP Lisbon

Do present Higgs search limits "exclude MSSM" ?

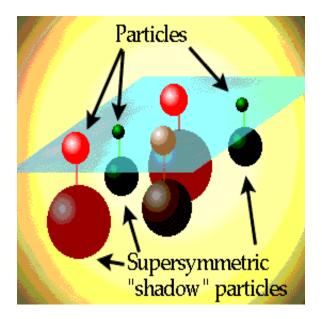
Not really:


- M_A has no (dynamic) reason to be < 500, 700 GeV/ c^2
 - High M_A region still quite open
- Be careful: Do not interpret this plot as a "probability density plot for something to exist": IF SUSY exists, it will be in 1 given spot
 - Could be here
- Now one thing is sure: IF SUSY exists, M_A pretty high: Decoupled regime seems preferred

60 50 40 tanß 30 95% CL excluded regions CMS observed ----- $\pm 1\sigma$ theory CMS expected D0 7.3 fb⁻¹ LEP MSSM m_h^{max} scenario, M_{SUSY} = 1 TeV 150 200 250 300 350 400 450 500 100 m₄ [GeV]


The 1st M in MSSM means Minimal: We are dealing with 124 parameters here... "Not constrained at all" framework

CMS Preliminary 2011 1.6 fb⁻¹


Motivation for the \tilde{t}_1 : Special relations with the Higgs

LHC: Higgs & stop searches can <u>constraint</u> each oth<u>er</u>

Experimental feedbacks, Hints (?)...

Looking for SUSY in EW data

Why did-we not get any hint of SUSY in EW Data ?

 \rightarrow When looking at sector other than Higgs: Such SUSY contributions are suppressed $\alpha \; [M_{_W}/M_{_{SUSY}}]^2$ where $M_{_{SUSY}}$ is the scale SUSY particles

What about performing a global fit to the EW data and try to fix SUSY spectrum ?

 \rightarrow No stringent limit on physical masses

 \rightarrow Not really astonishing: Try to fit with 124 degrees of freedom...

 \rightarrow There "seems" to be information about tan β : Two "preferred" values:

 $\rightarrow tan\beta \sim 2$: Well, this is more & more suppressed by Higgs searches

 $\rightarrow tan\beta \sim 30: \dots$

 \rightarrow What to think about this ? Probably better to look more directly for SUSY particles

Looking "a bit more" directly: Br(b -> s X)

Famous "on the edge of SM" measurement:

$$BR(B \to X_s \gamma) = (2.32 \pm .67) \times 10^{-4}$$

Out of SM...?

- \rightarrow Either statistical fluctuation
- \rightarrow Or new physics around corner

Let's plug-in SUSY: Let's draw a SUSY diagram allowing such a process

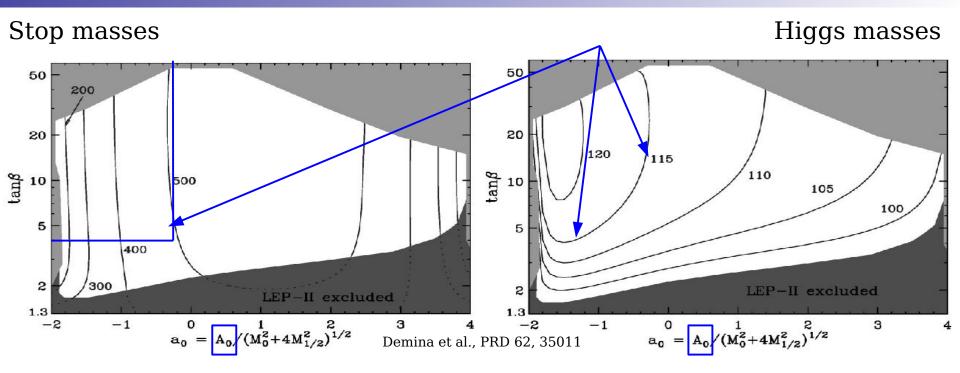
Looking "a bit more" directly: Br(b -> s X)

Famous "on the edge of SM" measurement:

$$BR(B \to X_s \gamma) = (2.32 \pm .67) \times 10^{-4}$$

Out of SM...?

- \rightarrow Either statistical fluctuation
- \rightarrow Or new physics around corner

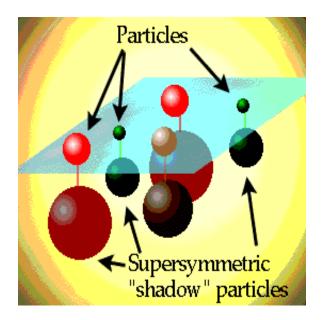

Let's plug-in SUSY: $b \rightarrow \text{Loop } \{\chi_1, t_1\} \rightarrow s$

$$\frac{BR(b \to s\gamma)}{BR(b \to ce\overline{\nu})} \sim \frac{\|V_{ts}V_{tb}\|^2}{\|V_{cb}\|^2} \frac{6\alpha}{\pi} \left\{ C + \frac{M_T^2 A_T \mu}{\tilde{m}_T^4} \tan\beta \right\}^2$$

<u>SM prediction</u>: Slightly above measurement \rightarrow Indication of $A_{_T}\mu < 0$

Depending on tan β : This probes t₁ masses in [100,300] GeV/c² region Let's look at the of $A_{\tau}\mu < 0$ issue...

Looking "a bit more" directly: Indications ?



 $A_{T}\mu < 0$: Compatible with:

 $1/M(h) > 115, 120 \text{ GeV/c}^2$ 2/ M(t₁) < 500 GeV/c²

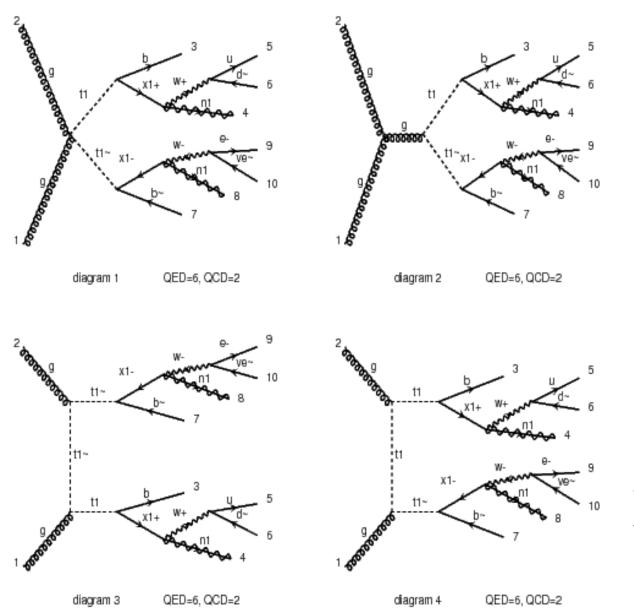
Other thoughts ?

Exercises

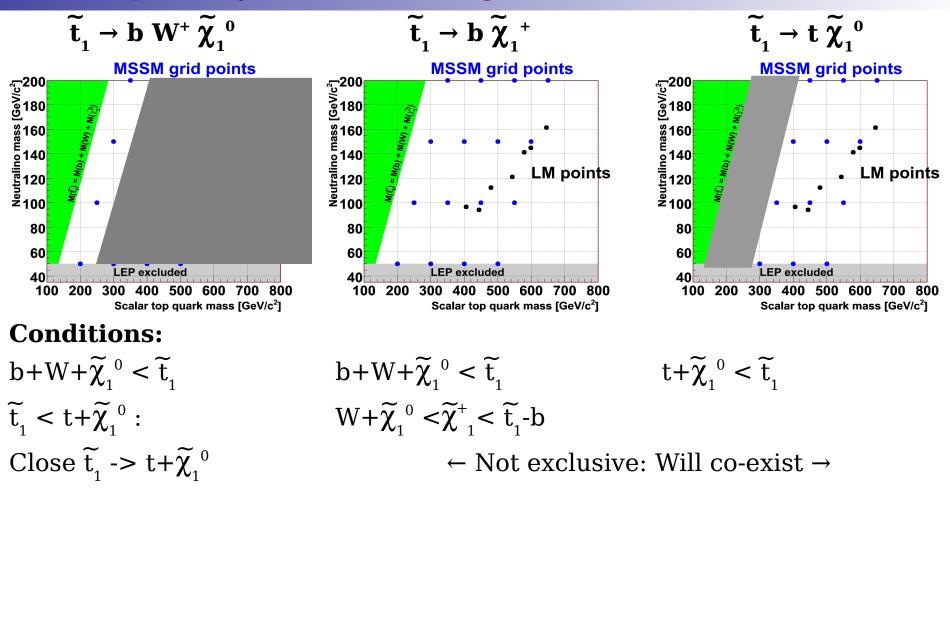
Let's start from the bottom of the SUSY scale...

$$\begin{array}{l} \chi^{0}_{2} \rightarrow l \, l \, \chi^{0}_{1} \\ \chi^{\pm}_{1} \rightarrow l^{\pm} \nu \, \chi^{0}_{1} \\ @LHC: \mbox{ Give a production process for lightest chargino production } \\ Then give the full diagram \end{array}$$

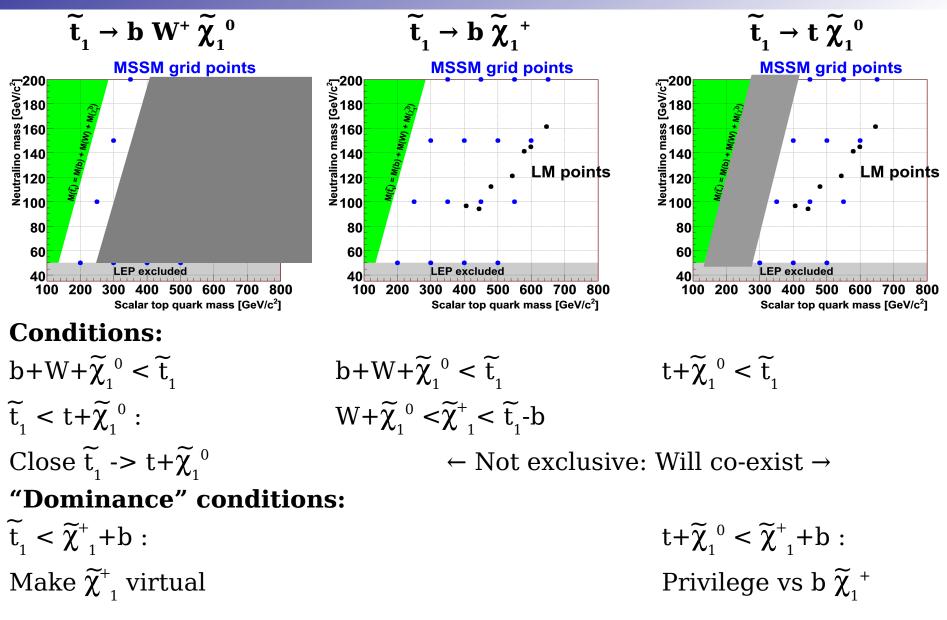
$$\begin{split} t_1 &\to b \ \chi^{\pm}_{1} \\ t_1 &\to t \ \chi^{0}_{1} \\ t_1 &\to c \ \chi^{0}_{1} \end{split}$$


Let's start from the bottom of the SUSY scale...

 $\begin{array}{l} \chi^{0}_{2} \rightarrow l \, l \, \chi^{0}_{1} \\ \chi^{\pm}_{1} \rightarrow l^{\pm} \nu \, \chi^{0}_{1} \\ @LHC: \mbox{ Give a production process for lightest chargino production } \\ & Then give the full diagram \end{array}$

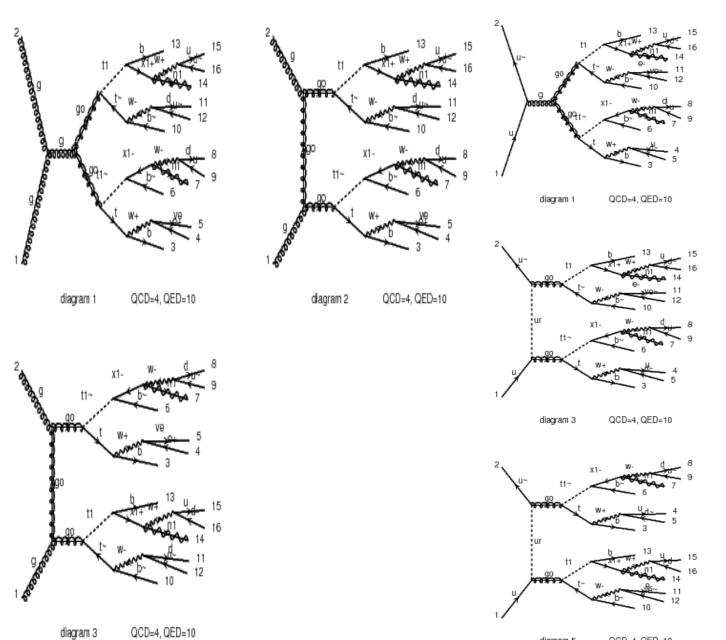

@LHC: Give an example of simplest production mode for t_1

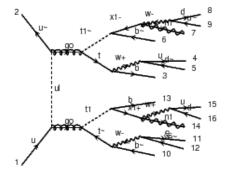
Now push it to the semi-leptonic final state via b χ^{\pm}_{1} scenario



Welcome to exercise & verify with MadGraph

Stop decays: Different diagrams for different domains


Stop decays: Different diagrams for different domains


@LHC: Give an example of simplest production mode for:

- \rightarrow squarks
- \rightarrow gluino
- \rightarrow squark+gluino production

Simplest diagram for t_1 production via gluino pair-production

QCD=4, QED=10 diagram 5

шi

t1-

diagram 2

diagram 4

QCD=4, QED=10

QCD=4, QED=10

15

t₁ production via – give each time the mass condition(s):

- \rightarrow Simplest squark production
- \rightarrow Simplest sbottom production
- \rightarrow Squark production with intermediate slepton
- \rightarrow t₂ production