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Abstract

This overview aims at providing a foretaste of a few important notions involved the
formulation of the theory of elementary particles and their interactions, intended for
summer student of graduate level. Emphasis will be put on ideas; technical footboards
are sketched along the way whenever helpfull.
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Reading would be made easier if...

you have studied, at least heard about

- Analytic Mechanics: Hamiltonian Mechanics, Lagrangian Mechanics
which assumes some knowledge in functional analysis and variational calculus

- some Classical (i.e. non quantal) Field Theory, perhaps not in general but namely
electro-magnetism (e-m) via Maxwell’s equations; gauge invariance

- basics of Special Relativity: invariance of spacetime intervals, four-vectors, Lorentz
transformations (boosts), relation between energy 3-momentum and mass

- Non Relativistic Quantum Mechanics, in particular

* quantization of angular momentum and relation with transformations under ro-
tations,

* quantum particle (with or w/o spin) in an external e-m field ?

* the quantum harmonic oscilator, and the treatment of a number of problems in
terms of creators and annihilators

* time-dependent perturbation theory, Fermi’s Golden Rule ?

- perhaps an introduction to the quantization of the e-m field ?

- a zoology / panorama of elementary particles and their interactions,
including the concept of Isospin ?

In preparing this lecture I have assumed so in order to anchor its content and presentation
in something hopefully known.
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1 Quantum Field Theory: why? what?

For quantum non relativistic systems, Quantum Mechanics provides a solid first description,
with an interpretation in terms of a probability distribution of presence obeying a continu-
ity equation. This implies ‘particles conserved in times’ regarding both the species and the
number of representatives involved. When a higher precision is required, a refined descrip-
tion accounting for relativistic effects motivates relativistic quantum mechanics (RQM) -
such as the Dirac equation reproducing the fine splitting spectrum of the H atom.

The physics of elementary particles and their interactions is inherently quantal and rela-
tivistic. One may wonder whether RQM, being arguably relativistic and quantal, is not
just what is needed to describe it too.

1.1 Matter. Why not mere Relativistic Quantum Mechnanics?

1. RQM is “bandy-legged” in a number of respects

2. RQM is not suited to high energy physics which involves new genuine quantum rela-
tivistic phenomena

3. RQM does not even provide the last word for observed relativistic effects observed in
low energy phenomena such as atomic spectroscopy.

Issue 1., faced when learning RQM, merely seems theoretical if not academic, yet its puzzles
have to do with the fact that RQM is apparently addressing one-particle problems whereas
relativistic quantum physics is inherently many-body. This is precisely what stresses issue
2. and, albeit indirectly, issue 3.

1.1.1 RQM is “bandy-legged”

RQM suffers from a number of puzzles and paradoxes, let us mention only one, bad enough:

negative energy solutions: the spectrum is not bounded below!
Consider the dispersion relation of plane wave solutions for free particles. The non rela-
tivistic relation E = ~p2/(2m) linear in E implies that E is > 0. On the contrary the non
relativistic dispersion relation E2 = ~p2c2 +m2c4 is quadratic in E and allows two solutions
of opposite signs: E± = ± (~p2c2 + m2c4)1/2: there is an infinite family of relativistic wave
solutions with E− < 0 unbounded below: the hamiltonian has no fundamentral state, a
disaster! As a last resort Dirac proposed to fill this infinite sea of < 0 levels relying on
Pauli’s exclusion principle (single occupancy of fermionic energy levels), interpreting holes
in the sea as anti-particles. He thereby dealt with an infinite number of particles in a setup
minded to describe only one at a time... Worse, the relativistic wave eqn. for spin 0 par-
ticles - the Klein-Gordon eqn. - has the same “trouble”, which in this case however can
not be knocked-up in this ad hoc manner as spin 0 particles are bosons not obeying Pauli’s
principle...

The concept of anti-particle was indeed a successful theoretical prediction of RQM in 1930,
confirmed 2 years later by the discovery of the positron in cosmic ray events, but the
theoretical setup has to be recasted completely.

2



1.1.2 High Energy Physics involves genuine quantum & relativistic phenomena

The relativistic equivalence between energy and mass in the quantum framework implies
processes in which both the arithmetic number of particles and even the nature of the species
involved can change discontinuously:

1. extra particles can be produced in scattering processes, “embodying” part of the
incoming kinetic energy;

2. incoming particles may co-annihilate and turn into other particle species

3. unstable particles decay into products not being their subconstituants.

For example, at the LHC, protons collide at 8 TeV in the c.m.s. frame. One subconstituant
of one proton named gluon carrying a fraction ∼ 10−2 of its four-momentum coannihilates
with a similar one from the other proton, to form a Higgs boson of mass 125 GeV/c2. The
Higgs boson quickly decays into a Z boson and a highly energetic elecron-positron pair.
The ∼ 91 GeV/c2 heavy Z boson in turn quickly decays into a muon-antimuon pair. The
∼ 105 MeV/c2 (anti)muon, unstable yet much lighter than the decaying Z, are produced so
boosted in the lab frame that they will not have time to decay before they are eventually
detected and can be considered stable.

The description of such a process and the calculation of its probability rate calls for a
theoretical setup creating particles here, propagating from here to there and annihilating
there. Collections of creators and annihilators distributed in spacetime: here are quantum
fields!

1.1.3 Some low energy phenomena go beyond RQM

Those phenomena are refered to as “Radiative corrections”. Here is one example - the
archetype which became the cornerstone of the ackowledgement of Quantum Electrodynam-
ics, more generally Quantum Field Theory as the framework to describe particle physics:

Anomalous magnetic dipole moments of leptons: g 6= 2
Landé’s g-factor of elementary fermions such as the electron, or the muon relates their
magnetic dipole moment ~µ and their spin ~S by

~µ = g
e

2m
~S

A shown below, g is predicted to be exactly 2 by Quantum Mechanics (QM), whether
Relativistic (Dirac eqn.) or Non Relativistic (Pauli-Schrödinger eqn., to which the former
reduces at low energy) assuming the so-called “minimal coupling prescription”. In classical
mechanics, this prescription replacing ~p by ~p − e ~A(~x) in the kinetic part of the Hamiltonian
of a free charged particle reproduces the Lorentz force ~F = e~v ∧ ~B caused by the magnetic
field ~B = ~∇∧ ~A. In QM, the corresponding substitution is

h̄

i
~∇ → h̄

i
~∇− e ~A (1.1)
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in the kinetic part of the Hamiltonian. A low energy spin 1/2 particle is described by a
wave function consisting in a column vector with two complex components, named spinor,
on which acts the Pauli Hamiltonian including the so-called “minimal coupling” term:

Hm.c. = − h̄2

2m

(
~σ ·
(
~∇− i e

h̄
~A
))2

(1.2)

involving the Pauli matrices defined by

σ1 =
[

0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
and ~σ · ~P ≡

3∑
j=1

σj Pj

Using the identity fulfilled by Pauli matrices σiσj = δij 1I2 + i εijk σk, Hm.c. involves a term

Hmag = −
( e
m

) ( h̄
2
σk

)
εkij (∇iAj +Ai∇j) (1.3)

where the action of the last factor of eqn. (1.3) on a wave function ψ(x) is equal to the left
multiplication by εkij (∇iAj) = Bk so that Hm.c. reads:

Hm.c. = − h̄2

2m

(
~∇− i e

h̄c
~A
)2

1I2 − 2
e

2m
~S · ~B︸ ︷︷ ︸+ · · · (1.4)

Early experiments in the late 1940’s however measured a small but significant departure
from 2: (g − 2)/2 ' 1.16 10−3. The interaction between charged spinning particles and
fluctuations of the quantum e.m. field amounts to an “extra” magnetic dipole moment
contribution (g − 2)/2 ' α/(2π), first computed by Schwinger in 1948. At a higher level
of experimental precision and corresponding theoretical accuracy <∼10−5 ∼ O((α/π)2), the
sensitivity of g − 2 of the elctron and muon to quantum fluctuations of matter fields make
them depart from each other. The (g− 2)electron has been both measured and computed at
accuracy 10−13, one of the finest tests of QED. The (g − 2)muon has been both measured
and computed at accuracy 10−10. Tensions in the comparison th. vs. exp. at this accuracy
might suggest effects of possible “new physics” not accounted in the calculation.

Particles coupling to vacuum fluctuations of fields induce so-called virtual effects i.e. oc-
curing w/o any actual participation of the particles associated with the fluctuating fields.
These virtual effects are potentially measurable in precision experiments, probing the quan-
tum relativistic world of elementary particles in a way complementary to the so-called
“direct searches” tentatively observing new particles. Beside the (g− 2)muon example, pre-
cision measurements at LEP were interpreted in the Standard Model framework in terms
of radiative corrections sensitive to the top quark mass. The latter was correctly “sensed”
around 170 GeV, before the actual observation of the top at the Fermilab Tevatron, whereas
the LEP operating conditions did not allow to produce top quarks.

1.2 Field Theory: a sketchy introduction

Herebelow is sketched a formal dictionary to leap from Analytic Mechanics to Classical Field
Theory seen as “Analytic Mechanics of infinitely many degrees of freedom”. It’s intended
to help, but if you instead find it fearsome, skip it without damage! The notion of quantum
field is then introduced using the principle of correspondence.
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1.2.1 A Dictionnary for ‘Analytic Mechanics → Classical Field Theory’

The 3-space dependence of the field is singled out from the time dependence and the 3-space
dependence is treated as a continuous index.

finite sums
∑n

j=1 → integral over 3-space
∫
d3x

trajectory qj(t) → field configuration φ(t, ~x)

Lagrangian density: L
(
φ(t, ~x), ∂tφ(t, ~x), ~∇φ(t, ~x)

)
Lagrangian: L ({qi(t), q̇i(t)}) → L =

∫
d3xL

action: S =
∫
dtL ({qi(t), q̇i(t)}) → S =

∫
dL =

∫
d4xL

Euler-Lagrange eqn.: δS
δqj(t)

= 0 → δS
δφ(x) = 0

i.e. i.e.

∂L
∂qj(t)

− d
dt

(
∂L

∂q̇j(t)

)
= 0 → ∂L

∂φ(x) − ∂t
(

∂L
∂(∂tφ(x))

)
−~∇ ·

(
∂L

∂(~∇φ(x))

)
= 0

congugate momentum: pj(t) = δS
δqj(t)

= ∂L
∂qj(t)

→ π(t, ~y) = δS
δ∂tφ(y) = ∂L

∂(∂tφ(y))

Hamiltonian density: H = π(x) (∂tφ(x))− L

Hamiltonian: H =
[∑

j p
j(t) qj(t)

]
− L → H =

∫
d3xH

from partial ∂qi
∂qj

= ∂qi

∂pj = δij → δφ(t,~x)
δφ(t,~y) = δπ(t,~x)

δπ(t,~y) = δ(3)(~x− ~y)
to functional
derivatives: ∂qi

∂pj = 0, ∂pi

∂qj
= 0 → δφ(t,~x)

δπ(t,~y) = 0, δπ(t,~x)
δφ(t,~y) = 0

Poisson Bracket {A,B} :
∑

j

[
∂A
∂qj

∂B
∂pj − ∂A

∂pj
∂B
∂qj

]
→

∫
d3x

[
δA
δφ(x)

δB
δπ(x) −

δA
δπ(x)

δB
δφ(x)

]
canonical conjugation:

{
qj(t), pj(t)

}
= δij → {φ(, ~x), π(, ~y)} = δ(3)(~x− ~y)

Hamilton eqns.: q̇i = − {H, qi(t)} → ∂tφ(y) = − {H,π(y)}

= ∂H
∂pi(t)

= δH
δπ(y) = ∂H

∂π(y)

ṗi = −
{
H, pi(t)

}
→ ∂tπ(y) = − {H,π(y)}

= − ∂H
∂qi(t)

= − δH
δφ(y) = − ∂H

∂φ(y)
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1.2.2 The picture which we have in mind

To keep the picture the simplest possible, we start with free, i.e. non interacting fields: we
have ultimately in mind to couple such fields together according to a perturbative approach
inspired by a collisional picture:

1. incoming particles separately prepared in a remote past, idealy in a monokinetic state
or in wave packets sharpkly peaked in momentum space, freely fly towards each other

2. they interact in a finite region of space during a limited time, hopefully weakly enough
for the interaction to be described by perturbation theory and compute experimentally
measured quantities

3. outgoing particles freely escape away from each other in a remote future when are
eventually detected.

This intuitive approach motivates the formulation of a field-theoretical perturbation theory
(elaborating on the time-dependent perturbation theory which you may have learnt in QM)
named the interaction picture. Perturbation theory means that the calculations of physical
quantities will rely on a Taylor expansion in integer powers of coupling parameters. The
latter shall be hopefully small enough to make the expansion meaningfull and effective
in practice. To be fair, the actual implementation of this programme raises a number of
complications, both conceptual and technical... skipped here.

1.2.3 From classical to quantum fields

Let us start with relativistic, classical i.e. non quantum fields. To peel off all the compli-
cations linked with spin issues, we consider a scalar i.e. spinless field φclas(x). It is a wave
packet solution of the equation of motion (Euler-Lagrange eqn.) derived via a principle of
least action from an action given by a free Lagrangian density. φclas(x) decomposes into its
Fourier modes of positive and negative energies:

φclas(x) =
∑
~p

[
β+(~p) e−ip.x + β−(~p) e+ip.x

]
(1.5)

The numbers β+(~p) and β−(~p) (in general complex) are the amplitude coefficients of the
Fourier modes. The field is supposed complex-valued so as to describe charged particles;
if real we have β−(~p) = β∗+(~p). The Fourier phases e∓i p.x involve the relativsically in-
variant combination p.x ≡ E(p)t − ~p.~x. The shorthand “

∑
~p” stands for an integral over

3-momentum implying E(p) = (p2c2 +m2c4)1/2. Let us open one parenthesis here:

(Parenthesis on High Energy Physics conventions for units & dimensions
In Special Relativity you may be used to note positions with four-vectors (ct, ~x) and four-
momenta (E/c, ~p) for energy-momenta. One customarly introduces x0 = ct and p0 = E/c
so as to treat on equal footing time and length on one hand, energy and momentum on the
other hand. A quick way to handle these relativistic notational practices is to formally “put
c = 1” so that c disappears from all eqns. Thereby, the dimensions of times and lengths
become equal; the three dimensions of masses, energies and momenta become all equal. The
relativistic dispersion relation E2 = p2c2 +m2c4 now reads: E2 = p2 +m2.
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Likewise, in Quantum mechanics, it is convenient to identify wave numbers k and momenta
p = h̄ k, resp. frequencies ω and energies E = h̄ ω, by “putting h̄ = 1”. Action and
angular momentum (having same dimension as h̄) become “pure numbers”, lengths have
same dimension as inverse of momenta, times have same dimension as inverse of energies.
Combining “h̄ = c = 1” amounts to a common dimension of masses, energies & momenta
inverse of the common dimension of times & lengths. Appropriate powers of h̄ and c can
be restored by a careful dimensional analysis - end of parenthesis)

The principle of correspondence Classical Field→ Quantum Field is formally the same as for
Hamiltonian point Mechanics→ Quantum Mechanics in the Heisenberg picture. It imposes
an equal time commutation condition for the quantum fields and conjugate moments. For
bosons we get: [

φ(x0, ~x), π(x0, ~y)
]

= i δ(3)(~x− ~y) (1.6)

with all other equal-time commutators vanishing. The Fourier expansion of the quantum
field φ(x) is obtained by replacing the numbers β±(~p) in eqn. (1.5) by operators. Let us
temporarily note these operators b±(~p) untill they are properly intepreted:

φ(x) =
∑
~p

[
b+(~p) e−ip.x + b−(~p) e+ip.x

]
(1.7)

Condition (1.6) implies the following commutation relations (positive normalization coeffi-
cients irrelevant for the point which we make here are omitted):[

b+(~p), b†+(~p′)
]

=
[
b†−(~p), b−(~p′)

]
= δ(3)(~p− ~p′) (1.8)

all other commutators vanishing (1.9)

Relations (1.8) tell that the b+(~p) and b−(~p) shall be interpreted as annihilators of particles
and creators antiparticles respectively: so let us renote them b+(~p) ≡ b(~p) and b−(~p) ≡ d†(~p),
while the hermician conjugate field φ†(x) is decomposed onto d(~p) and b†(~p) putting the
treatment of particles and antiparticles on an equal footing. The vacuum | 0 〉 is defined
as the unique state ahhihilated by all the b and d, it is the state of lowest energy. The
Fock space is spanned by the states obtained by the iterative action of b† and d† on | 0 〉.
This interpretation of the operators introduced in decomposition (1.7) is the one which
corresponds to a Fock space of states with positive define hermician norm squared i.e. a
Hilbert space, and is such that the Hamiltonian acting on this space is bounded below.

You may have met creators and annihilators in your QM course already: when studying
the quantum harmonic oscillator. Indeed a free field may be seen as an infinite collection
of harmonic oscillators. One can elaborate a little bit on this analogy, as it will give a
persepective usefull in wing 3. Let us consider an harmonic oscilator with “formal unit mass”
and frequency m2 noted in this unusual way on purpose. the Hamitonian and corresponding
Lagrangian of the harmonic oscillator read:

H =
1
2
p2 +

1
2
m2 x2 , L = pẋ−H =

1
2
ẋ2 − 1

2
m2 x2 (1.10)
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Likewise the Lagrangian density of a relativistic free scalar field reads:

L = =
1
2

[
(∂φ)2 −

(
~∇φ
)2
]
− 1

2
m2 φ2 (1.11)

in which the analogy between the kinetic terms on both sides on one hand, as well as between
the quadratic potential term on the oscillator side↔ the mass term on the field theory side
the other hand, is obvious. A set of interacting fields {φj} will formally correspond to
oscilators xj coupled together by adding non anaharmonic terms in the potential V ({xj}).
In this analogy, the mass spectrum of the fields {φj} on the field theory side correspond
to the vibration eigen-modes of small amplitude around the classical equilibrium position
given by the minimum of the potential. These eigen-frequencies are the eigenvalues of the
(matrix of) second derivatives of the potential V ({xi}):

M2
jk =

[
∂2V

∂xj ∂xk

]
V = Vmin

(1.12)

computed at the minimum of the potential V . As currently done for anharmonic terms in
QM, interactions among the fields will be treated perturbatively as sketched in piece 4 and
their effects will be computed as a Taylor expansion in powers of the corresponding coupling
parameters. Last, the minimum may be continuously degenerate, and may correspond to
a non zero value for the mean positions x0 of some of the guys w.r.t. the origin. We will
come back to this possibility, very important on the field theory side, in section 3.

Fermion fields require instead that quantization be imposed by means of equal time anti-
commutors, which in turn lead to the replacement of commutators by anticommutators in
relation (1.8). At variance with Dirac’s picture of the filled infinite negative sea, particles
and antiparticles are now put on equal footing considering the symmetry of roles of φ(x)
and φ†, whether bosons or fermions. For example, (let aside notational details), whereas
the energy of the plane wave solution (1.5) for a spin 1/2 field in RQM is found equal to

E =
∑
~p

E(~p)
[
β∗+(~p)β+(~p) − β−(~p)β∗−(~p)

]
which has indefinite sign, the Hamiltonian of the quantum field theory (QFT) is shown to
take the form

H =
∑
~p

E(~p)
[
b†(~p) b(~p) + d†(~p) d(~p)

]
it is a nonnegative operator. On the contrary, the integral over the positive definite space
density in RQM

N =
∫
d3xψ†(x)ψ(x) =

∑
~p,s

[
β∗+(~p)β+(~p) + β−(~p)β∗−(~p)

]
is replaced in QFT by the counting operator

N =
∑
~p

[
b†(~p) b(~p) − d†(~p) d(~p)

]
(1.13)

N is algebraically counting +1 for each particle and −1 for each anti-particle: this quantum
field theory handles an arbitrary number of particles and antiparticles.
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2 Symmetries, conservation laws and labelling of states

Symmetries play a key role in high energy physics. In brief, a system is said to possess a
symmetry when some transformation of this system lets its equations of motion (e.o.m.)
unchanged. Actually one speaks of a symmetry whether one considers a transformation
which acts on the system itself, or when one considers a transformation of the description
of this system e.g. by changing observers frames. The first case tells about a feature
of the system itself, the second case instead states a principle of relativity of some kind.
This semantic sloppiness is partly due to the fact that the same mathematical notions
are involved in both cases: group transformations. In particular, continuous symmetries
correspond to continuous groups - named Lie groups - such as the rotation group, or so-
called “internal symmetries” as opposed to space- or spacetime transfomations. Typical
examples of “internal symmetries” are phase reparametrizations of complex charged fields,
or Isospin transformations as met in Nuclear and Hadronic physics.

Figure 1: Chambord, illustrating the Castle of Symmetries...

Continuous symmetries, whether of spacetime or “internal”, are of utmost importance as

2.1 Continuous symmetries imply conservation laws!

This very general result holds for relativistic or non relativistic systems, for field theory as
well as point particles - for which you must have learnt several important examples already:

invariace under time translations ⇒ total energy is conserved
invariance under space translations ⇒ total momentum is conserved
invariance under rotations ⇒ total angular momentum is conserved

2.1.1 Field theoretical case: Noether’s theorem

Within the framework of field theory given by a Lagrangian L(φ, ∂µφ) depending only on the
field φ and first derivativews w.r.t. time and space ∂µφ, this property stated by Noether’s
theorem in a local form: to each continuous symmetry corresponds a conservation law in

9



the form of a continuity eqn. for a (or a collection of) spatial density (-ies) and current(s)
- which in the relativiistic case form so-called four-current vectors, of the type

∂ρ

∂t
+∇kjk = 0 i.e ∂µj

µ = 0, jµ = (ρ,~j)

ρ and ~j are expressed in terms of the fields satisfying the e.o.m. and the derivatives of these
fields. By integrating the “spatial “density” ρ over 3-space volume (and assuming that the
fields decrease fast enough as spatial ∞ so that ~j(t, ~x)→ 0 fast enough as spatial ∞ too...)
one defines a time independent i.e. conserved “generalized charge”:

d

dt

∫
d3x ρ(t, ~x) = −

∫
d3x∇.~j(t, ~x) = −

∫
||~x||→∞

d2~σ.~j(t, ~x) = 0 (2.14)

where the last equality uses Green’s formula saying that the div of a vector field in a space
volume is equal to the flux of this vector field accross the surface forming the boundary
of this volume. Noether’s argument does even more: if the continuous transformation
considered is not a symmetry, Noether’s argument allows to construct a density & current
whose obey a continuity eqn. with a non vanishing r.h.s., also provided by the constructive
variational calculus of the argument and which tell what is the obstruction to a symmetry.

A toy model
Let us illustrate these ideas and results on a toy-model quite familiar to you: “non relativistic
wave quantum mechanics” of a point particle, albeit from a novel point of view. Indeed
the quantum wave function obeying the Schrödigner eqn. can be technically seen as a non
relativistic clasical field, and the Schrödinger eqn. can be seen as deriving from a least
action principle from the following Lagrangian density:

S =
∫ tf

ti

dt d3x L(ψ,ψ∗, and their first time- and space- derivatives) (2.15)

L =
i

2

[
ψ∗(t, ~x) (∂tψ(t, ~x)) − (∂tψ∗(t, ~x)) ψ(t, ~x)

]
− 1

2m
~∇ψ∗(t, ~x).~∇ψ(t, ~x) − V (~x))ψ∗(t, ~x)ψ(t, ~x) (2.16)

As a warm-up, let us derive the Euler-Lagrange eqn. for ψ(x) by variational calculus w.r.t
ψ∗(t, ~x) treated as independent field. Following dictionary 1.2.1:

∂L
∂ψ∗(t, ~x)

=
i

2
(∂tψ(t, ~x)) − V (~x))ψ(t, ~x)

∂L
∂(tψ∗(t, ~x))

= − i

2
ψ(t, ~x) ,

∂L
∂(~∇ψ∗(t, ~x))

=
1

2m
~∇ψ(t, ~x)

Hence the E.L. eqn.:

i (∂tψ(t, ~x))− 1
2m

~∇2 ψ(t, ~x) − V (~x))ψ(t, ~x) = 0 (2.17)

which is nothing but the Schrödinger eqn.! The warm-up is usefull to solve the following.
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We can now examine how the system “complex field φ coupled with the exterior poten-
tial V (~x)” transforms under time-translations, space-translations, rotations, global phase
reparametrizations, with a fresh eye of Noether’s argument: get the associated Noether’s
currents and study whether or not they lead to conserved “charges” and why. This is left
as an exercise, which will have you rediscover result from your QM course in a novel way!
As a handle, here are the answers:

• For time translations t→ t+ δt: δt φ = δt ∂tφ. The “charge” is the Hamiltonian, i.e.
total total energy. It is conserved as V is assumed t-independent.

• For space translations ~x→ ~x+ δ~a: δ~a φ = δ~a.~∇φ. Noether’s argument leads to three
currents, the corresponding “charges” are the three components of momentum. A
momentum component along a given direction is conserved i.e. obeys a continuity
equation with vanishing r.h.s. if and only if ~∇V = 0 along this direction. ~∇V (~x) 6= 0
classicaly means that a force derives from the potential, which in the corresponding
classical case implies that the momentum is not conserved,cf. Newton’s 1st Fondamen-
tal Law of Dynamics in classical mechanics: d~p/dt = ~F = −~∇V . Noether’s argument
applied here... Ehrenfest’s theorem! i.e. a quantum counterpart with quantum ob-
servables (operators) averaged over the wave function!

• Likewise for rotations: the “charges” are the components of angular momentum.
In the spinless case considered they are purely orbital (of torque type, induced by
the so-called transport term in the variation of ψ). Would we consider the Pauli-
Schrödinger eqn. e.g. for spin 1/2 instead of the spinless one, we would get spin
contributions in the “angular momentum charges”. Besides, all “angular momentum
currents” are conserved iff V is spherically symmetric i.e. depends only on ||~x||. In case
the potential has only some reduced symmetry (less than spherical, e.g. cyclindric)
only some components of the angular momentum conserved, not all of them (cf.
Newton’s 2nd Fondamental Law of Dynamics in classical mechanics d ~J/dt = ~M).
Noether’s argument provides again Eherenfest theorem for the correspondance with
the Newton’s 2nd Fondamental Law of Dynamics

• The internal symmetry here = global phase shifts of the field ψ(t, ~x): δω ψ(x) = iδω φ.
The continuity eqn. provided by Noether’s argument here is nothing but... The
continuity eqn. for the probability density of presence at position ~x at time t and
coresponding probability current! This can be reinterpreted as a conservation law of
particle species, or of electric charge for this 1-particle case.

Conclusion and lesson: symmetries imply conserved “charges” in a generalized sense. In
the quantum theory, those “generalized charges” are operators: their eigenvalues provide
quantum numbers to label particle states.

2.2 Symmetries and labelling of particles states

You have hopefully met this issue already, in a the context of the quantization of angular
momentum in Quantum Mechanics. The algebra of commutation relations [Ja, Jb] = iεabcJc
obeyed by the components Ja a = 1, 2, 3 of the angular momentum operator, is nothing
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but the so-called Lie algebra of the rotation group in 3-dimensional space, because the
components of the angular momentum operator are the generators of space rotations. The
quantization of angular momentum identifies with the construction and classification of
all the ways rotations can act on spinning quantum systems, which is named the unitary
representations - unitary because the Jc are hermician. The representations are labelled
according to the spin quantum number j related to the eigenvalue j(j+ 1) of the quadratic
combination ~J2 =

∑3
a=1 JaJ

a. The labelling of the states forming an eigenbasis in the
eigenspace of spin j are labelled by one of the Ja, say J3.

The labelling of particle states with relaltivistic quantum numbers consists in a relativis-
tic generalization of the quantization of angular momentum, the rotation group in 3-dim
space being replaced by a larger group named the Poincaré group containing the spacetime
translations, the rotations and the Lorentz boosts. There are two physical sorts:

2.2.1 The Poincaré group and the kinematical quantum numbers of particles

Let aside p = 0, labelling the vacuum, there are two interesting types for physics.

m2 > 0:
corresponds to massive particles. The quantum numbers provide the same kinematic la-
belling here as for a non relativistic spinning system. No surprise: a massive state possesses
a rest frame: once bosted back into its rest frame, a massive particle... rests, non relativistic!

m2 = 0, p 6= 0:
there is no rest frame for p, so this new type has no equivalent in nonrelativistic spinning
systems. The direction of motion gives a priviledged direction, the only information on
spin is the spin projection along the direction of the 3-momentum ~p named helicity. In the
physically relevant cases, the representations are one-dimensional and labelled by helicity
taking one half integer value s, either positive or negative when non zero. When s = 0
there is only one representation, invariant under parity (the transformation which reverses
the orientation of space). When s 6= 0 there are two distinct representations with opposite
helicities (notice that boosts can’t flip the sign of helicity in the massless case) which are
exchanged under parity: two-dimensional representations accounting for parity are thus
made of the direct sum of the two. Massless states are labelled by m = 0, four-momentum
p and helicity s.

NB: m2 < 0 corresponds to the so-called tachyons. Forget about tachyons.

Let us stress in particular the following important difference:

massive spin s = 1 particles like W and Z bosons have 2s+1 = 3 degrees of freedom
i.e. polarization states like a non relativistic spin 1,

massless helicity s ± 1 particles like photons have only 1 + 1 = 2, cf. the circular
left and and right polarizations of light.

⇒ To make a massless vector boson massive requires not only to give it a mass,
but also requires to provide one more polarization state / degree of freedom, which
has to come from somewhere... Keep it in mind about the so-called Higgs mechanism!
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3 Symmetries & interactions

Continous symmetries do not only provide quantum numbers labelling particle states. Local
or “gauge symmetries” provide the modelling of their interactions! The wording “gauge
symmetries” shall be understood as the statement of some kind of “principle of relativy”
named gauge invariance, which may be stated as follows:

At any spacetime point, there does not exist any priviledged origin of phases, nor any
priviledged reference basis in “internal space” to get one’s bearings

3.1 Local symmetry implies interaction!

We frame the argument in non relativistic wave mechanics, familiar to you and good enough
to present the idea. The free Schrödinger eqn. is invariant under global phase reparametriza-
tion ψ(t, ~x) → eiω ψ(t, ~x), ω = cst. Let us undertake to infer a model whose wave eqn. be
invariant now under local i.e. space & time -dependent transormations

ψ(x)→ f(x)ψ(x), f(x) = ei e q ω(x) (3.18)

in accordance with the above principle of “gauge invariance”, and interprete it. In eqn.
(3.18) have been introduced two parameters e and q, to be further interpreted as a coupling
parameter and a charge respectivelly, in a somewhat artifial way at this stage. Actually one
does not wish the field ψ(t, ~x) alone to transform covariantly under (3.18), one shall require
that time and space derivatives of the field do as well. This is obviously not the case for
the usual derivatives ∂tφ(t, ~x), ~∇φ(t, ~x) as

∂tψ → ∂t ( f ψ ) = f (∂tψ) + (i e q (∂t ω))ψ (3.19)
~∇ψ → ~∇ ( f φ ) = f

(
~∇ψ
)

+
(
i e q (~∇ω)

)
ψ (3.20)

Let us think at what we are doing: a derivative consists in comparing the values of the
field at infinitesimaly nearby points. If one still gets something meaningful despite the
arbitrary phase changes here and there, a messenger is required to compensate for the
arbitrary phase change in order to perfom the comparison: the desired theoretical setup
cannot be a free one, we are implicitely requiring the existence of an interaction involving
this messenger! The simplest way to practically proceed is to modify the usual derivative
by adding a multiplicative term involving the new messenger field(s) At(t, ~x), ~A(t, ~x) (have
in mind that in a special relativistic framework the two altogether will become components
of a single four-vector-valued field), and replacing

∂t → Dt ≡ ∂t − i e q At , ~∇ → ~D ≡ ~∇− i e q ~A (3.21)

concomitantly imposing a transformation law on the messenger field(s) which compensates
the extra terms involving the derivatives of the arbitrrary phase shift which appeared in in
eqns. (3.19), (3.20), so that the derivatives of ψ defined by eqn. (3.21) transform covariantly
in the following sense:

Dtψ −→ D′t (f ψ) = f Dtψ(x) (3.22)
~Dψ −→ ~D′ (f ψ) = f ~Dψ(x) (3.23)

13



where we noted D′t = ∂t − i e q A′t, ~D′ = ~∇− i e q ~A′ for the observer ‘prime’. The transfor-
mation law on the messenger field(s) is infered to be:

At −→ A′t = At + ∂tω , ~A −→ ~A′ = ~A+ ~∇ω (3.24)

But wait! this is not new: the modified derivative is namely the minimal coupling pre-
scription in electromagnetism seen in subsubsec. 1.1.3, the messenger field transforming as
a gradient of some arbitrary function corresponds to the electromagnetic vector potential:
we are rediscovering electromagnetism, from a novel point of view! We know that from
At(t, ~x), ~A(t, ~x) derive field strengths ~E and ~B, namely the electric and magnetic fields.
The novel view offers a “geometric way” to construct them, which provides a conveniently
generalizable approach if we aim at applying a similar principle of gauge invariance to a
more complcated internal symmetry e.g. a non commutative (non abelian) symmetry of
Isospin-type. This method consists in noting that covariant derivatives Dt and Dj do not
commute among each other. Their commutators, applied to any field carrying the charge
q, amounts to a multiplication by field strengths

[Dj , Dk]ψ(x) = − i e q [∇jAk(x)−∇kAj(x)]ψ(x) ≡ − i e q εjklBl(x)ψ(x) (3.25)
[Dt, Dk]ψ(x) = − i e q [∂tAk(x) − ∇kAt(x)]ψ(x) ≡ + i e q Ek(x)ψ(x) (3.26)

where we recognize a magnetic field in eqn. (3.25) and an electric field in eqn. (3.26)1,
both invariant under transformations (3.24). In a non abelian framework we will not get
invariant fields but “only” get only “covariant fields in a sense similar to (3.22), (3.23).

Conclusion: gauge invariance + minimal coupling ⇒ interaction,
reproduces electrodynamics!

The generalization to gauge invariance for symmetries of isospin-type has successfully led
to the formulation of the three relevant interactions: electromagnetic, weak, and strong
among known particles at nowadays accessible energies, with a unified conceptual frame-
work: 1) Quantum Chromodynamics as the theory of strong interaction at the quark level
and 2) the Glashow-Weinberg-Salam electroweak theory describing weak and electromag-
netic interactions in a combined way. The latter describes in a unified way phenomena so
widely different at low energy as electromagnetism and β decay. They happen to be very
different because the W (and Z) boson(s) are fairly massive whereas the photon is massless.
What does trigger this diferentiation? How can one remain massless whereas the other(s)
become(s) massive?

In the simplest field theories, the masses can be read on the Lagrangian by focussing on the
quadratic terms in the fields (non-derivative terms). One may think: let us put a stand-
alone mass term “ by hand” in the Lagrangian to massify the bosons of the gauge field(s).
The relativistic invariant combination would read:

Lmass =
1
2
M2

(
A2
t − ~A2

)
(3.27)

Alas! as one immediately sees this is not invariant under gauge transformations (3.24):
gauge invariance seems to prevent vector bosons associated to a gauge field - let’s name

1At shall be identified with minus the usual electromagnetic scalar potential.
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them gauge bosons - from being massive... One has to find a way which respects gauge
invariance. In this persepctive let’s remind also the observation made at the end of section
2. You must feel flawn at this point: you’ve been baffled with symmetries by this talk for
quite a while and it so far lead you on that apparent no-go track... But wait! the visit of
the Castle of Symmetries is not finished yet: there remains perhaps the cutest wing.

4 Spontaneous Symmetry Breaking

One speaks about Spontaneous Symmetry Breaking (SSB) when the equations governing
the dynamics are left invariant under a symmetry but their solutions are not. The renown
theorist Coleman used the better wording of “hidden symmetry”. You may have met SSB
in several occasions already, e.g. in classical mechanics of continuous media, in theory of
elasticity (which is namely a classical field theory after all!). Consider a cylindric metallic
rod modelled by an homogeneous isotropic medium. Apply a longitudinal strain at each
extremity of the rod, along its direction: the problem has cyndric symmetry. Small to
moderate strains probe the so-called linear regime - a perturbative regime: the rod responds
to the strain by reducing its length yet w/o changing its shape, thereby reflecting the
symmetry of the equations. Beyond some critical value hovewer, the rod find it energetically
more favorable to instead buckle. Its shape no longer reflects the symmetry of the problem.
Manifest symmetry is grasped only by considering all the possible orientations of the plane
in which the bucking may occur.

Interestingly, in QM concerned with finitely many degrees of freedom, the phenomenon
does not occur (if the Hamiltonian is left invariant by some symmetry, the fundamental is
non degenerate and symmetric...). However in QFT concerned anew with infinitely many
degrees of freedom, it can happen “again” (NB: another example in condensed matter
physics is spontaneous magnetization below the Curie temperature. More generally, QFT
and the theory of so-called 2nd order phase transitions in condensed matter and statistical
physics is a domain where both disciplines remarkably cross-fertilized). Let us focus on
continuous symmetries. Instead of a quantum discussion that would be too complicated
here, we stick to claasical field theory. That is suggestive enough to describe ideas.

4.1 SSB w/o gauge bosons: the Nambu-Goldstone phenomenon

Let us consider the simplest example of one complex scalar field with the following potential
(of so-called “mexican hat” shape):

V (φ) = λ

(
φ∗φ− 1

2
v2

)2

(4.28)

λ > 0 is a dimensionless coupling parameter, and v > 0 has dimension of a mass. The
origin φ = 0 is a local maximum of V not minimum; the minima of V are degenerate
and correspond to φ∗φ = v2/2 > 0, a circle in the complex {φ} plane: the global phase
reparametrization symmetry of V (φ) is spontaneously broken. Let us choose one of these
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Figure 2: Mexican hat potential. (“U” on the figure corresponds to “V ” in the text!)

minima, say φ0 = v/
√

2, define φ̃ = φ − φ0 = (φ̃1 + iφ̃2)/
√

2 and Taylor expand V (φ) in
powers of φ̃1,2. One gets:

V (φ) = λv2 φ̃2
1 + (no φ̃2

2 term) + · · · (4.29)

where “· · · ” stands for “beyond quadratic” terms in the fields. One reads the mass spectrum
on eqn. (4.29). The field φ̃1 corresponds to a massive spinless boson in the spectrum, with
mass squared m2

1 = 2λv2. The important feature to stress here is the absence of mass
term for φ̃2: the massless boson associated with φ̃2 is named a Nambu-Goldstone (NG)
mode. The existence of a NG boson is the consequence of the spontaneous breaking of the
global phase reparametrization symmetry of V (φ): the potential being symmetric and the
set of minima continuously degenerated, the potential has “a (curvilinear) flat” direction
along the degenerate set of minima to which thus corresponds a “vibration mode with
vanishing mass according to the mechanical analogy formulated at the end of section 1.

This phenomenon is very general in field theory and can be extended to more involved
situations. The global symmetry corresponds a continuous group G, but the constant field
configurations of lowest energy φ0 are not individualy invariant under all transformations
operated by elements of G. For each given φ0, only a subgroup H of G lets it invariant.
Schematically, transformations g of a continuous group can be seen as finite iterations of
infinitesimal transformations, i.e transformations of the form

g = eω ' 1I + ω + · · ·

where ω =
∑

a ωa Ta is a infinitesimal linear combination of a set of matrices Ta named
generators (think of the angular momentum in QM: for the rotation group the generators
identify with the components of the angular momentum operator). Among them let us
call “broken generators” a maximal set of linearly independent generators of the infinites-
imal transformations of G which do not let a given φ0 invariant. The nambu-Goldstone
phenomenon states that to each broken generator there corresponds a massless
spinless Nambu-Goldstone boson, labelled with quantum number(s) associated
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to this broken generator. This labelling tells how the NG modes transform into each
other by the symmetry transformations of the subgroup H of the symmetries of “the vac-
uum”: this sheds light on the way such guys interact with other particles in the spectrum.

For example, in the physcis of the strong interaction there is namely a broken global sym-
metry of this kind named the chiral flavor symmetry. In the approximation considering only
two quarks “flavors” u, d building protons and neutrons and neglecting the mass of these
quarks, the pions are the corresponding Goldstone modes. The pions are not quite massless
because in particular of of the non vanishing u and d quark masses, but these masses are
small enough, in comparison with the typical energy scale characteristic of the binding of
the quarks, to not wreck the picture completely: the latter is only deformed a little bit -
as if the “circle of minima of the potential V was a little tilted away from horizontality”.
Extending the picture by including the s quark extends the symmetry considered and its
spontaneous breaking, leading to the interpretation of the Kaons as Golsdtone modes too.
The mass of the s quark being quite larger than the ones of u and d, the deformation in-
duced by the account of s mass warps the picture somewhat more but the latter remains
roughly OK.

4.2 SSB in presence of gauge bosons: the Higgs mechanism

Actually the NG phenomenon manifests itself in the way described only in absence of gauge
bosons that would carry the quantum numbers of at least some of the broken generators.
In the opposite case, there is a distinctive way out. To have an insight on what happens let
us reconsider the the previous example 4.1 with its complex scalar field and its mexican hat
potential, and couple it minimally to a gauge field (At, ~A) as described in 3.1. We obtained
something gauge invariant under local phase reparametrization, so a fortiori it is symmetric
under global ones. Let us consider the “covariant kinetic” term:

Lkin = (Dtφ)† (Dtφ) −
(
~Dφ
)† (

~Dφ
)

(4.30)

where (
~Dφ
)† (

~Dφ
)

=
∑

j=x,y,z

(Djφ)† (Djφ)

The usual relativistic invariant combination (4.30) treats time and space dependences on
an equal footing. Let us label each of the space and time derivatives by a common label
µ = t, x, y, z. Here the symbol † stand for complex conjugation in the classical field theory
case; we use it to facilitate the leap to the quantum framework as well as to generalizations
to more complcated symmetries. Let us expand the term

(Dµφ)†
(

(∂µ − i e q Aµ)φ
)

= (∂µφ)† (∂µφ) + i e
[
(∂µφ)† q φ − φ† q (∂µφ)

]
Aµ + e2

(
φ† q2 φ

)
(AµAµ) (4.31)

The first term in the r.h.s. reproduces the kinetic terms of a free complex field similar to
the first term of eqn. (1.11) seen at the end of section 1. The 2nd term involves a trilinear
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coupling. The term on which our attention shall focus here is the last term. In it, let us
put φ equal to a constant value φ0 which minimizes the mexican hat potential, thereby
spontaneously breaking the phase reparametrization symmetry. The term obtained reads:

Lm = e2
(
φ†0 q

2 φ0

)
(AµAµ) =

1
2
e2 q2 v2 (AµAµ) (4.32)

which looks the same as (3.27) i.e. the gauge field is given a mass

M = e |q| v

but this time it is done in a gauge invariant way, since this term emerges from the gauge
invariant setup (4.30)!

1. What does make it gauge invariant?
This is namely the accompanying interaction terms between Aµ and φ or, if one
prefers, φ̃ = (φ− φ0) in eqn. (4.31).

2. What about the counting of degees of freedon stressed at the end of 2.2.1 in point 2?
The degree of freedom described by φ̃2 becomes the 3rd polarization state of the vector
field Aµ, whereas the particle spectrum no longer contains the massless spin NG mode:
in a sense the NG mode has been eaten by the Aµ which has become massive and has
acquired a 3rd polarization state!

The above two issues happen to be related to each other. The phenomenon is best captured
if one reparametrizes the scalar field φ in “polar field coordinates” as

φ(t, ~x) =
(
φ0 +

ρ(t, ~x)√
2

)
ei θ(t,~x) (4.33)

One notices that the phase term in eqn. (4.33) looks formally like a gauge transformation
(3.18). Having in mind this mechanical analogy with oscillation modes of small amplitudes
seen in section 1, let us Taylor expand as

φ̃1 = ρ cos θ ∼ ρ+ · · · (4.34)
φ̃2 = (v + ρ) sin θ ∼ v θ + · · · (4.35)

One sees, loosely speaking, that the field φ̃2 which described the NG in the previous case
4.1, formally corresponds to a gauge transformation. Performing the inverse gauge trans-
formation defined by

f(x) = e− i θ(x) = e−i
eφ2(x)/e q v (4.36)

according to eqn. (3.18), the degree of freedom carried by φ̃2 is removed away from the
“sector” of the scalar fields. This transformation moves the degree of freedom carried by
φ̃2 “inside the gauge tranformed field A′” according to eqn.(3.24)

Aµ −→ A′µ = Aµ −
∂µφ̃2

e q v
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Concomitantly the above gauge transformation (3.18),(4.36) removes the extra terms

1
2

(
∂µφ̃2

)(
∂µφ̃2

)
+ e q v (∂µφ̃2)Aµ

from the first and second terms in Lkin away from the scalar kinetic term, and moves
them to combine them with the A mass term (4.32), so as to build the mass term for the
gauge-transformed field A′ which becomes

1
2
e2q2v2AµAµ −→

1
2
e2q2v2

(
Aµ −

∂µφ̃2

e q v

)(
Aµ −

∂µφ̃2

e q v

)
= e2q2v2A′µA

′
µ

i.e. has the same form in both gauges: it is indeed gauge invariant! Last, there is one
massive real scalar field described by ∼ φ̃1 with mass

√
2λ v, coupled to the massive vector

field A′µ, according to the remaining unexplicited terms of eqn. (4.31). Furthermore, the
way the longitudinal polarization state of A′µ couples to the other player in the game keeps
the memory that “it was a NG mode in another life”.

Conclusion: a dynamical rearrangement of degrees of freedom has happened,
whereby two massless helicity 1 degrees of freedom + one massless spinless NG
mode have combined together to build a massive spin 1 boson: this is mechanism
is the Higgs mechanism! - more fairly coined Anderson, Brout-Englert, Higgs, Guralnik-
Kibble-Hagen mechanism. In the simplest version of the mechanism there is (at least) one
accompanying spinless massive boson present in the spectrum, corresponding to φ̃1 in the
above model: the so-called Higgs boson. The 125 GeV resonance found by the Atlas and
CMS experiment a year ago looks very much like such a guy.

Let us stress in addition that:

• the statement does not claim that all gauge bosons shall become massive.
There may be gauge fields carrying the quantum numbers of unbroken generators
(in the terminology of the previous subsection), they are then associated with no
Goldstone modes: those gauge bosons are left massless. This is namely what happens
to the photon field in the Standard Model.

• alternatively the statement does not claim that all Goldstone modes shall be eaten.
If there are many Goldstone bosons and if no gauge boson carries the same quantum
numbers as some of them, these Goldstone modes will remain in the particle spectrum
as spinless bosons. Whether this hypothetical possibility is met in nature is so far an
open question.

4.2.1 What about fermion masses? The fermion mass and mixing puzzle

The electroweak gauge symmetry in the Standard Model happens to forbids fermions as
well to be given a mass term in a naive way by a stand-alone mass term in the Lagrangian:
this has to be provided within a dynamical gauge invariant framework.

The scalar field involved in the above described Higgs et al. mechanism can also play a key
role in the fermion mass and mixing issue, although this concomitant phenomenon shall be
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conceptually disantangled from the Higgs et al. mechanism per se - strickly speaking the
latter minds the sole vector bosons.

As the problem is formulated in the Standard Mdel (SM) and some similar extensions, the
Higgs field actually does the job for fermions “to some extend”. This damper means that
the SM description accomodates the fermion masses and mixings etc. in a way consistent
with electroweak gauge invariance. Mixing refers to the following phenomenon. On one
hand the mass eigenbasis of fermion fields is the basis in which the fermion mass terms in
the Lagrangian look simple (diagonal mass matrices). Yet it is not the basis in which the
minimal coupling to the weak boson W is formulated in simple terms. The two bases are not
aligned onto each other. The mismatch between the two is what is called fermion mixing;
it leads to interesting observable effects, both for quarks and which are presently studied
in LHCb, and for neutrinos for which it leads to the phenomenon of neutrino oscillations.
The massification of fermions together with mixing are parametrized in the SM in a way
consistant with gauge invariance, but there are as many parameters to adjust to experiment
as there are masses and mixing angles. This let theorists unsatisfied. Alternatively there
may be some yet-to-discover piece of dynamics at work, carrying specifically about this
issue and providing a deeper explanation of why things look the way they look. This
might however be hard to probe in a way independent of the study of the fermion mass
and mixing pattern, if distinctive signals of this new dynamics are not expected within a
reachable energy range. All this is another story, one of the hot and challenging puzzles
remaining to be solved. It would be worth a lecture on its own.

For an accessible textbook introducing to gauge theories, SSB, the Higgs et al. mechanism,
and how this fits into the SM, see for example the nice ref. [1].

5 From Lagrangian to observables

Now comes an important question: how does this sophisticated field theoretical picture
make contact with experimental physics?

QFT was elaborated with the concern of providing, not a mere aesthetic abstraction, but a
predicitive setup to effectively - and efficiently! - compute observables that can in parallel be
measured in high energy experiments: in particular transition probability rates for particle
processes. Going from the Lagrangian, which encodes the modelling of the quantum fields
and their interactions, to numerical calculations of transition probability rates is a technicaly
laborious task. A qualitative description to give a foretaste skipping as many technicalities
as possible is challenging, both to tell and to listen to or read... This brief fourth section is
an attempt in this direction. It aims at teasing your curiosity more than really explaining
things, by conjugating fierce handwavings and a few weirdo formulas... If you get lost keep
walking straight the exit is in front of you!

5.1 The interaction picture

In the theory accounting for interactions, the interacting fields φ obey Heisenberg’s equation
i ∂tφ = [H,φ] where H is the complete Hamiltonian. The effects of interactions are encoded
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implicitely in the interacting field φ in an intricate way next-to-unexploitable in practice.
Can one unravel this intricated content explicitely in a way that can be conveniently treated
in perturbation theory around free fields? The free fields are chosen to obey the non
interacting equation i ∂tφf = [H0, φf ] where H0 is the free Hamiltonian so as to describe
free particles such as prepared independently of each other in a remote past and sent toward
each other to undergo a collision. The idea is to build a unitary mapping U between free
fields and interacting field of the form

φ(t, ~x) = U(t)φf (t, ~x)U(t)† (5.37)

One shows that U(t) fulfils an eqn. of the form

i (∂tU(t)) U †(t) = Hint({φf})

where the interaction term Hint = H −H0 is expressed as space integrals of polynomials in
the free fields and their derivatives. Very rouglhy U(t) takes a sort of exponential form

U(t) ∼ exp
{
−i
∫ t

0
dt′Hint({φf})

}
(the correct result happens to be not quite an ordinary exponential, but this is moraly good
enough for our qualitative level of discussion). This is the so-called interaction picture.
Taking remote time limits t ± ∞ allows to relate the interaction fields to “in” free fields
decribing incoming particles in a remote past on one hand, and between the same interaction
fields and “out” free field describing the outgoing particles to be dectected in a remote future
on the other hand. “Remote” here is relative to the time duration during which interation
takes place. One thereby builds a mapping of the basis of incoming states in a process
onto the one of outgoing states from this process, involving a unitary operator named the
S-matrix (S for scattering) matrix “morally given by”

S ∼ exp
{
−i
∫ +∞

−∞
dt′HI({φin})

}
∼ exp

{
−i
∫
d4xLInt({φin})

}
(5.38)

where Lint stands for the interaction terms in the Lagrangian. To the process

particle1(p1) + particle2(p2)→ particle′1(p′1) + · · ·+ antiparticle′n(p′n)

where the pi, p
′
j stand for the four-momenta of the aprticles, corresponds the transition

amplitude

< particle′1(p′1), · · · , antiparticle′n(p′n) out | particle1(p1), particle2(p2) in >

given by the S-matrix element

< particle′1(p′1), · · · , antiparticle′n(p′n), in |S|particle1(p1), particle2(p2), in >
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5.2 From Lagrangian to transition amplitudes

The states |{particle′ j}j=1,·,n}, in > can in turn be expressed in terms of creators acting
on the vacuum:

|particle′1(p′1), · · · , antiparticle′n(p′n) in >= b′ †1 (p′1) · · · d′ †n (p′n)| 0 >

the creators and annihilators can be expressed as inverse Fourier transforms of the free “in
fields” φ and φ† by inverting eqn. (1.7). Everything thus boils down to the evaluation of the
vacuum expection value of the Fourier transform (w.r.t. the four-momenta of the incoming
and outgoing particles) of some multiplicative string of “in” fields as the quantity to be
computed looks like∫

d4x1 d
4x2

n∏
j=1

d4x′j e
− i (p1.x1+p2.x2−

Pn
j=1 p

′
j .x

′
j)

< 0 |φin(x1)φin(x2)φ†in(x′1) · · ·φ†in(x′n)ei
R
Lint({φin})| 0 > (5.39)

The exponential ei
R
Lint({φin)} in expression (5.39) is then Taylor expanded - which is named

perturbative expansion - at the order corresponding to the accuracy aimed for the calcula-
tion. Expression (5.39) is calculated explicitely as a numerical (in general complex) function
of the four-momenta, spins, charges etc. of the particles involved. The transition amplitude
is directly proportional to this quantity in a simple manner.

5.3 From transition amplitudes to cross sections

The transition probability per time unit and space volume unit dwi→f/(dt d3x) is equal to
the modulus squared of the transition amplitude obtained from eqn. (5.39). It has dimension
[Length]−3 [Time]−1. It is a kind of generalization of Fermi Golden’s rule learnt (or to be
soon learnt) in QM class on time-dependent perturbation theory. In order to compare
theoretical calculations and experimental particle physics measurements, it is convenient to
present transition probabilities of collision processes in the form of cross sections. A cross
section is defined as a transition probability per time unit, per target particle and per unit
of incident projectile flux. The projectile flux counts the number of projectiles particles
passing per surface unit and per time unit, it has dimension [Length]−2 [Time]−1. Thus a
cross-section has dimension

[Time]−1

[Length]−2 [Time]−1
= [Length]2

i.e. a surface. Following Berkeley’s Physics Course on QM, an intuitive classical picture of
what a cross section represents could be visualized as follows. Imagine a disk whose area
is equal to this cross section, centered on a target particle, and oriented perpendicular to
the incident direction of projectiles. Imagine a cylinder whose cross section is this disk and
whose axis is the incident direction of projectiles. The target particle will “hit” any projectile
coming accross the target particle within this cylinder. In practice the values of cross
sections in high energy physics are minuscules. The reference unit for cross sections is the
barn, 1 b = 10−28 m2. Actually this order of magnitude is roughly the one suitable in nuclear
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physics. High energy physics now explores a regime where the interesting phenomena are
extremely rare and for which the cross sections are counted in femto-barns or less, where
the prefix femto ≡ 10−15.

The cross section is obtained from the probability rate dwi→f/(dt d3x) by dividing the
latter with a kinematical, relativistic invariant factor involving the four-momenta p1 of
the target and p2 of the projectile, named flux factor, whose relativistic invariant form
[(p1 · p2)2 − m2

1m
2
2]1/2 is best suited when both incomers move towards each other as in

LHC collisions seen in the lab frame, and which reads m1||~p2|| in the rest frame of the
target particle. More precisely one obtains the fully differential cross section w.r.t. all
the kinematical variables of all the final state particles. One integrates over the variables
not measured or projected out to provide all sorts of distributions which can be “directly”
compared with the corresponding histogramming outputs of experimental data. Here is
where theory and experiments meet, at last!

There is nothing more that can be seen without going down into the stables of the castle and
putting one’s feet and hands in the manure, so here ends the visit of the Castle of Particle
Fields and Symmetries. We hope you have enjoyed it. Please don’t forget the guide!

Epilogue, acknowledgements & embryonic bibliography

This lecture aimed at providing a very partial overview of concepts and ideas at work in
theoretical particle physics. It cannot stand in for a serious teaching of the matter in any
respect. May it spark off or feed your wish to learn more about it! I heartily thank my
colleagues and friends F. Thuillier and J.-P. Guillet from LAPTh who helped me select the
material of this lecture and frame it in a format hopefully accessible for L3 and M1 students.

There are of course many valuable textbooks on QFT, likewise on SM building. Only one
reference is quoted herebelow, reader-friendly and accompanied by a sister book of exercises
with solutions, to not overload you wih too many ones!
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