

Simplified overview of the LHC detectors concept

Inner tracking

- minimal interference with the event
- identify and measure charged particles

Calorimetry

- absorb electromagnetic and hadronic E
- avoid leakages → hermetic

Outer tracking

Weakly interacting charged particles: muons

Magnetic field

- Field integral: B.r
- Crucial for particle separation and p measurement

Particles and their decays

Particles and their decays

Tracking: why? Identify the hard interaction vertex Reconstruct secondary vertices from long lived particles Measure particle trajectories Momentum (p) Energy loss (dE/dx) Link to calorimeters (identify electrons, conversions) Link to muon chambers: inner leg for muon reconstruction

Tracking: why?

- Identify the hard interaction vertex
- Reconstruct secondary vertices from long lived particles
- Measure particle trajectories
 - Momentum (p)
 - Energy loss (dE/dx)
 - Link to calorimeters (identify electrons, conversions)
 - Link to muon chambers : inner leg for muon reconstruction

Usage of Si-based trackers for HEP

Kemmer, 1979 transferred Si-technology for electrons to detector - NIM 169(1980)499

- NAII/32 spectrometer at CERN ►
 - → 6 planes Si-Strip, <2k channels</p>
 - → Fesolution ~4.5µm
- ALEPH detector at LEP >
 - Enable precise measurements for B-physics (lifetime, b-tagging)

10 cm

Experiment	Detectors	Channels (10 ³)	Si area [m²]
Aleph (LEP)	144	95	0.49
CDF II (TEV)	720	405	1.9
D0 II (TEV)	768	793	4.7
AMS IÌ	2300	196	6.5
ATLAS (LHC)	4088	6300	61
CMS (LHC)	15148	10000	200

Inner tracking at the LHC - I

- Resolve 25 ns bunch crossings, keep low occupancy in high pileup regime
- Radiation hard, low material budget in front of calorimeters

Good momentum resolution, and high efficiency

Inner tracking at the LHC - II

Tracking: what?

- While transversing a medium a charged particle leaves an ionization trace
 - create a depletion zone in between electrodes: gaseous, liquid or solid-state (semi-conductor)
 - ionization charges drift towards electrodes
 - amplify electric charge signal and deduce position from signals collected in individual strips

Tracking: how?

Solid state detectors

- Ge, Si, Diamond,...
- Pixels for vertexing, strips for tracking

Gaseous detectors

- drift tubes, resistive plate chambers, gas electron multipliers, ...
- usually for outer tracking

Gaseous versus solid state

	Gas		Solid state	
Density (g/cm³)	Low	C₂H₂F₄	High	Si
Atomic number (Z)	Low	(~95% for CMS RPC)	Moderate	
Ionization energy $(\varepsilon_{ })$	Moderate	30eV	Low	3.6eV
Signal speed	Moderate	10ns-10µs	Fast	<20ns

- In solid state detectors ionization energy converts in e-h pairs
 - → 10 times smaller with respect to gaseous-based ionization
 - Charge is increased → improved E resolution

$$n = \frac{E_{\mathrm{loss}}}{E_{\mathrm{eh}}} \to \frac{\sigma_{\mathrm{E}}}{\mathrm{E}} \propto \frac{1}{\sqrt{n}} \propto \sqrt{E_{\mathrm{eh}}}$$

- Higher density materials used in solid state detectors
 - Charge collected is proportional to the thickness
 - Most probable value:

$$\frac{\Delta_p}{x}$$
 $\sim 0.74 \cdot 3.876 \mathrm{MeV} / \mathrm{cm} \rightarrow N_{eh} \sim \frac{23 \cdot 10^3}{300 \mu m}$

Excellent spatial resolution: short range for secondary electrons

Si properties

Excellent material for HEP detectors

Low ionization energy

- Band gap is 1.12 eV
- Takes 3.6 eV to ionize atom → remaining yields phonon excitations
- Long free mean path → good charge collection efficiency
- → High mobility → fast charge collection
- Low Z → reduced multiple scattering

Good electrical properties (SiO₂)

Good mechanical properties

- Easily patterned to small dimensions
- Can be operated at room temperature
- → Crystalline → resilient against radiation

Widely used in industry

Bond model of semi-conductors

Covalent bonds formed after sharing electrons in the outermost shell

- Thermal vibrations
 - break bonds and yield electron conduction (free e⁻)
 - ightharpoonup remaining open bonds attract free e- ightharpoonup hole conduction

· · · Valence electron

· · · Conduction electron

Energy bands

In solids, the quantized energy levels merge

- Metals: conduction and valence band overlap
- Insulators and semi-conductors: conduction and valence band separated by energy (band) gap

Intrinsic carrier concentration

• The probability that an energy state is occupied by an e⁻ is given by Fermi statistics ▼

At room temperature

- excited electrons occupy conduction band
- electrons tend to recombine with holes

Excitation and recombination in thermal equilibrium

Intrinsic carrier concentration given by

$$n_{
m e}\!=\!n_{
m h}\!=\!n_{
m i}\!=\!A\!\cdot\!T^{3/2}\!\cdot\!e^{-Eg/k_{
m B}T}$$

with A=3.1 \times 10¹⁶ K^{-3/2}cm⁻³ and E_g/2k_B=7 \times 10³K

 \rightarrow n_i~1.45×10¹⁰ cm⁻³ \rightarrow 1/10¹² Si atoms is ionized

Conclusion: S/N in semi-conductors is compromised by the band gap

- → Keep low ionization energy → small band gap
- Keep low intrinsic charge carriers → large band gap
- → Optimal $E_g \sim 6 \text{ eV} \rightarrow \text{diamond!}$

S/R in intrinsic Si detector

- E.g. consider a Si detector with thickness d=300µm

Minimum ionizing particle (MIP) creates:
$$\frac{1}{E_{\rm eh}} \frac{dE}{dx} \cdot d = \frac{3.87 \cdot 10^6 {\rm eV/cm}}{3.63 {\rm eV}} \cdot 0.03 {\rm cm} = 3.2 \cdot 10^4 {\rm eh \ pairs}$$

Intrinsic charge carriers (per cm²):

$$n_i \cdot d = 1.45 \cdot 10^{10} cm^{-3} \cdot 0.03 cm = 4.35 \cdot 10^8 eh pairs$$

- Number of thermally-created e-h pairs exceeds mip signal by factor 10!
 - Depletion of free charge carriers needed!

Si doping: n-dope bond model

- Doping with a group 5 atom (e.g. P,As, Sb)
 - Doping atom is an electron donor/donator
 - Weakly bound 5th valence electron
 - Positive ion is left after conduction electron is released

Si doping: n-dope bond model II

- Energy level of donor is below edge of conduction band
 - Most electrons enter conduction band at room temperature
 - Fermi level moves up with respect to pure Si

Si doping: p-dope bond model

- Doping with a group 3 atom (e.g. B, Al, Ga, In)
 - Doping atom is an electron acceptor
 - Open bond attracts electrons from neighboring atoms
 - Acceptor atom in the lattice becomes negatively charged

Si doping: p-dope bond model - II

- Energy level of acceptor is above edge of conduction band
 - Most levels are occupied by electrons → holes in the valence band
 - Fermi level moves down with respect to pure Si

p-n junctions

- Difference in Fermi levels at the interface of n-type or p-type
 - diffusion of excess of charge carriers until thermal equilibrium (or equal Fermi level)
 - remaining ions create a **depletion zone**: electric field prevents further the diffusion

p-n junctions

pn junction scheme

acceptor and donator concentration

space charge density

... acceptor

+ ... empty hole

... donator

- ... conduction electron

concentration of free charge carriers

electric field

electric potential

Biasing p-n junctions

p-n junction with forward bias

Forward-biased junction

- Anode to p, cathode to n
- Depletion zone becomes narrower
- Smaller potential barrier facilitates diffusion
- Current across the junction tends to increase

p-n junction with reverse bias

- Reverse-biased junction
- Anode to n, cathode to p
- e,h pulled out of the depletion zone
- Potential barrier is suppressed
- Only leakage current across junction

Depletion zone width and capacitance

Characterize depletion zone from Poisson equation with charge conservation:

$$\nabla^2 \phi = -rac{
ho_f}{arepsilon}$$

- Typically: $N_3 = 10^{15} \text{ cm}^{-3} \text{ (p+ region)} >> N_4 = 10^{12} \text{cm}^{-3} \text{ (n bulk)}$
- Width of depletion zone (n bulk): $W \approx \sqrt{\frac{2\varepsilon V_{\text{bias}}}{q} \cdot \frac{1}{N_d}}$

$$W pprox \sqrt{rac{2arepsilon V_{ ext{bias}}}{q} \cdot rac{1}{N_d}}$$

Reverse bias voltage (V)	W _p (μm)	W _n (µm)
0	0.02	23
100	0.4	363

$$C = \frac{q}{V} = \frac{\varepsilon A}{d} = A \sqrt{\frac{\varepsilon q N_d}{2V_{\text{bias}}}}$$

- Depletion voltage saturates the capacitance
- Typical curve obtained for CMS strip detector

depleted region

Leakage current

- Thermal excitation generates eh pairs
- Reverse bias applied separates pairs
- eh pairs do not recombine and drift
 - → leads to leakage current

Leakage current at room temperature for the CMS strip detector ▼

- Depends on purity and defects in material
- Depends on the temperature:

$$j_{
m gen}\!\propto\!T^{3/2}e^{rac{1}{\kappa_{
m B}T}}$$

- prefer low, stable temperatures
- CMS tracker operated at <-10°C

Charge collection

- eh pairs move under the E field
- Collection time: time required for a carrier transverse sensitive volume ►
- Can be reduced over-biasing the sensor
- Simulation of E-field from charge collection after passage of ionizing particle at 45° ▼

Charge Collection Time

→ 400 V bias, at 20°C, all charge collected after 10ns

Position resolution (DC coupled)

- Segmentation of the implants
 - reconstruct position of the particle
- Standard configuration uses
 - p implants in strips
 - n-doped substract ~300 μ m (2-10k Ω cm)
 - depletion voltage <200 V</p>
 - Backside P implant establishes ohmic contact and prevents early breakdown
 - Al metallization
- Field closest to the collecting electrodes where most of the signal is induced

Position resolution (AC coupled)

- Amplifier generates leakage current
 - Blocked with AC coupling
- Deposit SiO₂ between p⁺ and Al strip
 - Capacitance ~32 pF/cm
 - Shorts through pinholes may be reduced with a second layer of Si₃N₄
- Use large poly silicon resistor ($R>IM\Omega$) connecting the bias voltages to the strips

CMS module

Pixel sensors

- High track density better resolved with 2D position information
 - back-to-back strips for 2D position information → yields "ghost" hits
- Hybrid pixel detectors with sensors and readout chips bump-bonded together in model
 - e.g. one sensor, 16 front-end chips and 1 master controller chip

Hybrid Pixel Module for CMS

Sensor:

- Pixel Size: 150mm x 100mm
 - Resolution $\sigma_{r-\omega} \sim 15 \mu m$
 - Resolution σ₇ ~ 20μm
- n+-pixel on n-silicon design
 - Moderated p-spray → HV robustness

Readout Chip:

- Thinned to 175µm
- 250nm CMOS IBM Process
- 8" Wafer

Performance: S/N

Signal depends on the thickness of the depletion zone and on dE/dx of the particle

Noise suffers contributions from:

Optimizing S/N

- → N_{ADC}>thr, given high granularity most channels are empty
- decrease noise terms (see above)
- → minimize diffusion of charge cloud after thermal motion ►

 (typically ~8µm for 300µm drift)
- radiation damage severely affects S/N (next slide)

CMS strips

Influence of radiation

- In operation at the LHC Si performance is affected by radiation e.g. from CMS
 - depletion voltage increases with fluence, kept within 500 V design limit
 - mild S/N degradation
 - expected hit finding efficiency after 10 years of LHC operation: 95%

Position resolution

- Affected by different factors
 - transverse drift of electrons to track
 - strip pitch to diffusion width relationship
 - statistical fluctuations on energy deposition

$$\sigma_{ extsf{x}}\!\propto\!rac{\Delta p}{S/N}$$

Single strip resolution tends to dominate

A. Peisert, Silicon Microstrip Detectors, DELPHI 92-143 MVX 2, CERN, 1992

Coordinates for tracking

- The LHC experiments use a uniform B field along the beam line (z-axis)
 - Trajectory of charged particles is an helix radius R
 - Use transverse (xy) and longitudinal (rz) projections
 - Pseudo-rapidity: $\eta = -\ln \tan \frac{\theta}{2}$ Transverse momentum: $p_T = p \sin \theta = p/\cosh \eta$
- Impact parameter is defined from dca to origin or PV:

Resolution for the impact parameter

- Depends on radii+space point precisions
- For two layers we expect

$$\sigma_{d0}^2 = \frac{r_2^2 \sigma_1^2 + r_1^2 \sigma_2^2}{(r_2 - r_1)^2}$$

- Improve with small r₁, large r₂
- Improves with better σ_i

$$\theta_0 = \frac{13.6 \text{MeV}}{\beta cp} z \sqrt{x/X_0} [1 + 0.038 \ln(x/X_0)]$$

extra degradation term for d₀

$$\sigma_{d_0} \sim \theta_0$$

Resolution for the impact parameter

- For a track with $\theta \neq 90^{\circ}$ we can write $r \rightarrow r/\sin\theta$ and $x \rightarrow x/\sin\theta$
- By substitution in the formulas of the previous slide we have:

- Resolution estimated with early pp data
 - Observed

100 μm @ I GeV

20 μm @ 20 GeV

Excellent agreement with simulation

Examples from data: jets

- Number of tracks reconstructed in jets
 - two samples compared: multijets and top-pairs
 - track multiplicity is not well described by standard PYTHIA generator
 - t → Wb naturally enriches the top-pair sample in b-jets
 - ightharpoonup B-hadrons are long-lived, b-jets often contain tracks with high d₀

Examples from data: IP of tracks in jets

- Overall better agreement for b-jets: real displaced tracks
- Uncertainty on IP (resolution on IP) depends on the number of hits in pixels
 - jets from top pairs are more central with respect to a multijets sample

Examples from data: b-tagging from IP

- Distribution of the **third track with highest d**₀/ σ _{d0}
 - Simple b-tagging algorithm, with high purity track counting high purity (TCHP)
 - Good description of the b-jets
 - \rightarrow Light jets hard to model in simulation: multiple scattering, fake hits, missing hits, conversions, V_0 decays

How can we profit from precision in do?

- …it's not only the b-tagging performance that benefits
- Can use measurement of the displaced vertices to measure fundamental properties

Boost of B-hadrons: proportional to the mass of a top quark when t→ Wb

$$au$$
 $L_{\mathrm{xy}} = \gamma_B \beta_B \tau_B \approx 0.4 \frac{m_t}{m_B} \beta_B \tau_B$

- Average shift of 30µm per I GeV
- Use observed media to measure m_.

$$m_t = 173.5 \pm 1.5_{\rm stat} \pm 1.3_{\rm syst} \pm 2.6_{\rm pr(top)} \text{GeV}$$

Simple, robust observables can measure fundamental properties

CMS Simulation, √s=8 TeV

Momentum measurement

Circular motion under uniform B-field

$$R[m] = 0.3 rac{B[T]}{p_{_{
m T}}[GeV]}$$

- Measure sagitta, s, from track ark
 - yields R estimate:

$$R = \frac{L^2}{2s} + \frac{s}{2} \approx \frac{L^2}{2s}$$

→ relate to B and estimate p_T

Uncertainty improves with B, number of hits, longer path L

$$\frac{\sigma_{p_{\mathrm{T}}}}{p_{\mathrm{T}}} = \frac{8p_{\mathrm{T}}}{0.3BL^2}\sigma_{s}$$

Again, spoiled with multiple scattering:

$$rac{\sigma_{p_{\mathrm{T}}}}{p_{\mathrm{T}}}\!\sim\!a\,p_{\mathrm{T}}\!\oplus\!rac{b}{\sin^{1/2}\! heta}$$

Momentum resolution

Performance: ATLAS vs CMS

	ATLAS	CMS
Reconstruction efficiency for muons with $p_T = 1 \text{ GeV}$	96.8%	97.0%
Reconstruction efficiency for pions with $p_T = 1 \text{ GeV}$	84.0%	80.0%
Reconstruction efficiency for electrons with $p_T = 5 \text{ GeV}$	90.0%	85.0%
Momentum resolution at $p_T = 1 \text{ GeV}$ and $\eta \approx 0$	1.3%	0.7%
Momentum resolution at $p_T = 1 \text{ GeV}$ and $\eta \approx 2.5$	2.0%	2.0%
Momentum resolution at $p_T = 100 \text{ GeV}$ and $\eta \approx 0$	3.8%	1.5%
Momentum resolution at $p_T = 100 \text{ GeV}$ and $\eta \approx 2.5$	11%	7%
Transverse i.p. resolution at $p_T = 1 \text{ GeV}$ and $\eta \approx 0 \text{ (}\mu\text{m)}$	75	90
Transverse i.p. resolution at $p_T = 1 \text{ GeV}$ and $\eta \approx 2.5 (\mu\text{m})$	200	220
Transverse i.p. resolution at $p_T = 1000 \text{ GeV}$ and $\eta \approx 0 (\mu\text{m})$	11	9
Transverse i.p. resolution at $p_T = 1000$ GeV and $\eta \approx 2.5$ (µm)	11	11
Longitudinal i.p. resolution at $p_T = 1$ GeV and $\eta \approx 0$ (μ m)	150	125
Longitudinal i.p. resolution at $p_T = 1$ GeV and $\eta \approx 2.5$ (μ m)	900	1060

- CMS tracker outperforms ATLAS: better momentum resolution, similar vertexing
- However it comes with a cost (next slide)

CMS tracker

- Pixel detector: ~I m² area
 - I.4k modules
 - → 66M pixels
- Strips: ~200m² area
 - → 24k single sensors, 15k modules
 - → 9.6M strips = electronics channels
 - 75k readout chips

CMS tracker budget

- In some regions can attain $1.8X_0 \rightarrow$ photons convert, electrons radiate often
- Use for alignment and material budget estimation
 - \rightarrow Simulation crucial for H → γγ, H → ZZ → 2e2µ, 4e

X-ray of the CMS tracker

- Conversions: γ → e⁺e⁻
 - two op. Charged tracks consistent from the same point
 - consistent with fit to a common vertex with M=0 GeV
 - Note: 54% of the H → γγ events have are expected to have at least one conversion

Alignment check

Use reconstructed long-lived neutral hadrons to compare simulation, PDG and data

	Mass (MeV/c ²)					
V^0	Data	PDG	Simulation	Generated		
K_{S}^{0}	497.68 ± 0.06	497.61 ± 0.02	498.11 ± 0.01	497.670		
\mathbf{V}_{0}	1115.97 ± 0.06	1115.683 ± 0.006	1115.93 ± 0.02	1115.680		

Parameter	K _S Data	K _S Simulation	Λ^0 Data	Λ^0 Simulation
$\sigma_1(\text{MeV}/c^2)$	4.53 ± 0.12	4.47 ± 0.04	1.00 ± 0.26	1.71 ± 0.05
$\sigma_2(\text{MeV}/c^2)$	11.09 ± 0.41	10.49 ± 0.11	3.25 ± 0.14	3.71 ± 0.09
σ_1 fraction	0.58 ± 0.03	0.58 ± 0.01	0.15 ± 0.05	0.44 ± 0.03
$\overline{\sigma}(\text{MeV}/c^2)$	7.99 ± 0.14	7.63 ± 0.03	3.01 ± 0.08	2.99 ± 0.03

$$au_{
m K_S^0} \, = \, 90.0 \pm 2.1 \,
m ps$$

 $au_{\Lambda^0} = 271 \pm 20 \, \mathrm{ps}$, both consistent with world average

Outer tracking

Find muons with the tracking system

- Standard-approach: outside-in
 - Standalone muon
 - Combine with tracker track
 - Fit a Global Muon track
- Complementary approach: inside-out
 - Extrapolate every track outward
 - Find compatible deposits in calorimeters
 - Define muon compatibility
- Recovers inefficiencies
 - Boundaries of muon chambers, low p_T

Performance: ATLAS vs CMS II

ATLAS

- → B=0.7 T (toroidal)
- → L~5m
- N=3 stations x 8 points

- s=750 µm for I TeV track
- 10% → σ=75 μm

CMS

- → B~2T (in return yoke)
- → L~3.5m
- → N=4 stations x 8 points in rφ

- s=900 µm for I TeV track
- 10% → s=90µm

Spoiled by multiple scattering in Fe

Combined muon performance in CMS

CMS dimuon performance

Summary

Tracking system is crucial for reconstruction

- Detector design must be physics-driven: optimal reconstruction+performance
- Combine powerful tracker with field integral: base for particle-flow

Bibliography

- Particle data group, "2013 Review of Particle Physics", PRD 86 010001 (2012)
- CMS Collaboration, "The CMS experiment at the CERN LHC", JINST 3 (2008) S08004
- D. Bortoletto, "Detectors for particle physics semiconductors", Purdue
- A. David, "Tracking and trigger", LIP
- M. Kranmer, "Silicon detectors", HEPHY