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* Particle, interactions, and detectors
 Calorimetry and energy today

 Trackers and momentum
* Trigger and data acquisition
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Particle detection

Particles can be “seen” as
the result of an interaction
with matter (detector)

In the end, everything is
converted to:

« optical pictures

« voltage/current signals

W= I O = W 5
tot ax Jen \dx )iag \dx pair ax photonucl
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Michele Gallinaro - "Particle detection and detectors" - March 20, 2014




What can we detect?

* Directly observable particles must: ELEMENTARY
PARTICT ES
—Undergo strong or EM interactions PARTICLES

ORI G T ",'-?57‘:'.@»‘1..- X

— Be sulfficiently long-lived to pass the detectors

« We can directly observe:
— Electrons, muons, photons
— Neutral or charged hadrons
— Pions, protons, kaons, neutrons,...

—analyses treat jets from quark hadronization
collectively as single objects

— Use displaced secondary vertices to identify jets
originating from b-quarks
* We can indirectly observe long lived weakly
interacting particles (e.g. neutrinos) through
missing transverse energy
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What can we detect? (cont.)

» Short-lived particles decay to long-lived ones

* We can only ‘see’ the end products of the reaction, but
not the reaction itself

* In order to reconstruct the production/decay
mechanism and the properties of the involved
particles, we want the maximum information
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Particle properties

Which properties do we want to measure? ? \ ]

* Energy (calorimeter) _ Py } (EJ
» Momentum (tracking) P=| P p

» Charge (tracking) \Ps ) |

—Direction, bending in magnetic field _J/

F:q-v-B:m-%

P . R\
Life-time (tracking) \ g B Rem-v=|p
* Mass:
. E* - p*c?
E2=m2-c4+p2c2:‘>m=\/ 2P

C
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Passage of particles

« “Onion”-like structure
» Each layer measures E and/or p of particles

« Redundancy of measurements

Tracking Electromagnetic Hadran Muon
_ chamber calarimeter calorimeter detector
neutrinos - EESIITaaaoaaaoaaa O —— -- Missing ET
photons 4 undetected
electron positron - % neutrinos...
muons =+
pions proton . Q

Energy measurement
total absorption of showers

momentum measurement Muon detection
(curvature in magnetic field) measure momentum
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Fixed target vs Collider

Fixed target geometry Collider geometry
“Magnet spectrometer” “4mr multi purpose detector”
interaction  tracking muon filter

LHCb N u\ e
o WA

\
beam magnet calorimeter (bothgeometries) T barrel T
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Detector layers

* Inner tracking
— Measure charged particle (momentum)

* Magnetic field:
— Measure momentum
» Calorimeters
— Measure energy of all particles

 Quter tracking
— Measure muons

Heavy materials
ed. Iron or Copper +
active media

hadrons (h)

tracker

e.m. calo
hadron calo

u detectors

High Z materials
eg. lead tungstate
Lightweight Zone in which only crystals

materials v and p remain

Michele Gallinaro - "Particle detection and detectors" - March 20, 2014 9



Electromagnetic
Calorimeter

Hadran Superconducting
Calonimeter Solenoid

Iron retuen yoke interspersed
with Muon chambers

D Besriny, SRV, Frivmmsy 2008
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CMS experiment

I | | 1
om im m im
Key:
Muon
Electron

Charged Hadron (e.g. Pion)
— — — - Neutral Hadron (e.g. Neutron)
----- Photon

Silicon
Tracker

‘ Electromagnetic
);, " Calorimeter
4

Hadron Superconducting
Calorimeter Solenoid

Iron return yoke interspersed
Transverse slice with Muon chambers
through CMS

D.B8amaey, CERN, Febriwwuy 2004
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CDF experiment

Electromagnetic
calorimeter Solenoidal
(red) magnet coil
Central drift (purple)
chamber a: beampipe
b:vertex tracker

c: central tracker

d: solenoid coil

e: electromagnetic calorimeter

f: hadronic calorimeter/muon filter
g: muon tracking chambers

electron

beampipe

Silicon Inner
. Outer muon
Hadron microvertex muon
. chamber
calorimeter detector chamber (blue)
(dark blue) (yellow)
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Top quarks: example
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Picture to reconstruction
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It gets more complicated

2
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Calorimetry

Measure energy deposited in material by particles which give
rise to electromagnetic or hadronic showers.
Electrons, photons and hadrons (including neutral hadrons)

Big European Bubble Chamber filled with Ne:H, = 70%:30%,
3T Field, L=3.5 m, X;=34 cm, 50 GeV incident electron

pr q

e ) s

— e e - vt ALY
- el ) 3s

50 GeV/c

Depth (m)
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Calorimetry (cont.)

 Calorimeters are used to measure energy of neutral and
charged particles
—neutral particles cannot be momentum analyzed
—electrons can be measured with better precision, and identified with a
calorimeter
* As energy increases:
—momentum measurements are less precise: o/p~p
—energy measurements become more precise: og/E~1~E

* jets are often best measured by total absorption rather than
measurement of individual particles
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Purpose/principle of a calorimeter

 Measurement of energy via total absorption (destructive
measurement)

 Detector response ~E for:
— Charged particles (electrons/positrons and hadrons)
— Neutral particles (neutrons, y)
* Principle of measurement:
— Electromagnetic shower
—Hadronic shower

 Conversion due to ionization or excitation of the detector
material = current, voltage
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EM and hadron calorimeters

 Calorimeters are subdivided into electromagnetic and
hadronic sub-detectors

 Electromagnetic interactions develop over shorter
distances than hadronic interactions

« Fundamental processes of signal generation differ,
calling on different optimization

cascade with EM and NN T oW
hadronic component ~ T
.n TAN
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Calorimeter and shower

Photon-induced shower in a cloud
chamber; the intermediate black
parts are lead blocks; in addition,
there is a magnetic field
perpendicular to the figure plane

How to measure the energy?

el w AN WAEE
L T aay g L
The energy is proportional to A Rk -
light & penetration depth Wy T ol

of the shower

The eye is not able to quantify this; have to measure the amount of light
and penetration path electronically
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Evolution of calorimeters

* Nuclear Physics

—Advances of solid state detector in the '50s push technique of total
absorption and energy measurement of nuclear radiation

» Cosmic Rays (1958)
—construction of first sampling calorimeter

* Particle Physics

—First electromagnetic calorimeters, eventually hadronic calorimeters
become essential components

« Uranium/compensation

—In an effort to advance energy resolution, introduce uranium calorimeters
(~1975) to “compensate” for lost energy in nuclear collisions

* High precision EM calorimetry
—Crystals continued to advance
—Other techniques (liquid Argon, scintillating fibers, etc.)
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Evolution of calorimeters (cont.)

Today, widespread in particle physics
* 4t coverage at colliders

— Energy measurements

— Particle identification

— Triggers

* Neutrinos detectors at accelerators
* Underground detectors
« Space-based detectors (GLAST)
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Discovery of the W

« Calorimeters are important (also for discoveries)

* High transverse energy electron measured, and
recoiling neutrino deduced (to balance the electron)

E,. parallel 1 Gev
to electron UA 1
L3 Events
= L0
- 20
-40 -20 20 L0 GeV
£, . normal
to electron
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Discovery of the Higgs

* di-photon invariant mass

CMS (s=7TeV,L=51fb"'Vs=8TeV,L=5.3fb"
> ._I T I T T T T I T T T -
q) L > T T |
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@ |
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|ldeal calorimeter

 Excellent energy/position resolution

 Stable calibration

« Large dynamic range

* Excellent shower containment with multi-shower separation
« Compact

 Fast (high-rate capability)

« Operating in magnetic field

* Inexpensive

* Robust
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EM and hadronic showers

 Electromagnetic * Hadronic
— Multiplication through pair — Multiplication through
production and multi-particle production
bremsstrahlung In nuclear interactions
— Mean free path — Mean free path ~A
* 9X,/7 fory, (interaction length)
* Xo/In(E/K) for electrons — Nuclear binding energy,
— No invisible energy and neutrinos invisible
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Electromagnetic showers

* In matter high energy electrons and photons interact
primarily through EM interactions with the nucleus
(and at lower energies with the atomic electrons)

* Bremsstrahlung

- Electrons o

—Bremsstrahlung (nuclear)

.

e Compton scattering

* Photons
— Compton scattering (atomic electrons)

e pair production

—Pair production (nuclear) o</

e photoelectric effect

—Photoelectric effect (atomic electrons)

’N\@%

Michele Gallinaro - "Particle detection and detectors" - March 20, 2014
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EM showers: electrons

 Electron energy loss
At high energy, the energy

“",‘I\l llllll | I 1 IIIIII | 1 lllll_
loss of an electron from i b Posrans o4 (z_sp) 20
bremsstrahlung dominates — eictrons | -
ST ) 015~
over ionization loss : \— Bremstrablung %
» At low energy, ionization B 1 g
loss becomes important I ( )i \lonization 1
Moller (e7): "-\ N
 The energy at which & Bhat (eﬂ‘\ ooz
lonization loss equals i )
bremsstrahlung loss, is the [ amihilaton i ;
g 1 10 100 1000
critical energy E. | E (MeV)
—E~~7 MeV for lead ’
C EC
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EM showers: photons
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EM shower: model

« EM shower can be understood
by a simple model

— after one radiation length a
photon produces an e*e pair

—the electron and positron each
emit one bremsstrahlung photon
after another radiation length

* It leads to a cascading number
of particles: N(t)=2t (for t steps)

 each particle has an energy:
E(t)= E,/2!

/)
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Electromagnetic shower: size

 Longitudinal development scales with the radiation length:
X,=180 A/Z? g/cm? (higher Z materials have shorter
radiation lengths)

 Transverse dimension scales with the Moliere radius:
Ry=21 MeV X,/E- where E-=550 MeV/Z
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EM calorimeters: typical scales

Material  Atomic Critical  Radiation Moliere
No. Energy Length(X,)  Radius

E) (Ry)
(Z4) (MeV) (g/em”) (cm)  (cm)

Beryllium 116._ 65.19 35.28 6.4
Carbon 6 84, 4270 18.8_ 4.7
Aluminum 13 43._ 2401 89_ 4.4
Iron 26 22, 1384 176 1.7
Copper 29 20._ 1286 143 1.5
Tungsten 74 81 676 0.35 0.9
Lead 82 73 637 0.56 1.6

Uranium 92 6.5 600 032 1.0
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EM shower: longit. development

 Electrons generate photons
through bremsstrahlung and An example of longitudinal development
photons produce electrons and (30 GeV electron induced shower in iron)

- : : LIS ey T 1

positrons through pair production : 20 GV eloctran ]

. . 0.100 — incident on iron  __ g

 The observed longitudinal ' R |

development depends on the ; 0.075 1 o 60 ;

- . . ~ . nergy

minimum kinetic energy of an < 0.050 | 0 kP

. ° i Photons Y © E

electron or a positron that can be .| eSS %0 2

detected (i.e. cut-off energy) B [

0.000
5 10 15 20

¢ The Shower maXImum OCCUrs t = depth in radiation lengths
when the energy falls to:

cEo=E,/2max =t _~In (E,/ Eg)

max
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Longitudinal profile

Depth (X))
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T | T T T 1
< -, 510X, S— ]
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'z 6 I s . . containment i
O o AR,
o~ ® A a A
(D) o) a L A |
"O Oa ° ry A‘
> 4 r . a ‘o . A “ -
bn | A o A A ]
8 A [ ] A AA
Q A [o) Y s N |
UQJ 2 - @ A A OO ... AAA AAA
— o N ‘A oooo ....AAAA “A“v -
oleelas . . 0 | "°%00c8%mAflasandiis,
0 10 20 30 40 50
Depth (cm)

Michele Gallinaro - "Particle detection and detectors" - March 20, 2014 34



EM calorimeters

« Homogeneous Calorimeter
—shower is "observed" throughout the detector
— Electrons and photons stop in calorimeter
— Scintillation proportional to energy of electron
— Advantage: excellent energy resolution
— Limited spatial resolution

« Sampling Calorimeter

—shower is sampled by an "active" readout medium alternated with
denser radiator material

— One material to induce showering (high Z)
— Another to detect particles (by counting number of charged tracks)
—Many layers sandwiched together

— Advantages: can segmentation gives detailed shower shape
information; good spatial resolution
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EM showers: Fluctuations

* Energy measurement is limited in precision by fluctuations
In the EM shower and in the measurement process

* The shape of an EM shower fluctuates only modestly, and
resolution of an EM calorimeter is usually limited by other
effects (assuming full containment has been achieved)

* Dominant fluctuation in the shower is the depth of the first
pair conversion.
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EM showers: Energy resolution

 Stochastic (or “sampling”) term

— Accounts for statistical fluctuations of the number of primaries
* Noise term:

— Electronic noise, pedestal fluctuations, etc.

— Pileup (other energy entering the measurement region)
« Constant term

—Non-uniformities, calibration uncertainties

— Incomplete shower containment (leakage), other fluctuations
proportional to energy
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EM showers: longit. leakage
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Examples of EM calorimeters

e Nal(TI) 2.7%/E 1/4
e Lead Glass 5%/ E 1/2
e Lead-lig. argon 7.5%/ E 1/2

e Lead-scin. sand. 9%/ E 1/2
e Lead-scin. spaghetti  13%/ E 1/2
e Prop. wire chamber 23%/ E 1/2

* These resolutions must be added in quadrature with
the appropriate constant term (~1%)
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Position and pointing resolution

« Measurement of the impact point of a photon entering an
EM calorimeter is limited by the transverse fluctuations in
the shower, and the measurement errors

— This measurement involves determining the centroid of the
shower as a function of depth in the calorimeter

— Typically, achievable resolution is: few mm / JE

* Measurement of the direction of the incident particle is
more challenging

* Position resolution often reflects on the electron
identification performance
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Crystal calorimeter example

« CMS EM Calorimeter:
— 83,000 crystals (PbWQO,, lead tungstate)
—Very dense, fast, radiation hard

— Scintillation light yield not significantly
damaged by radiation

— 1% resolution at 30 GeV

61200
barrel
crystals

35m

__ endcap

crystals

To Preamplitier

L L L I IR I
CMS ECAL Test Beam |
Resolution in 3x3
— 685 1085 ]
Scintlnating —684 1084
Crystal ~683 1083) |
— 705 1105
704 1104
703 1103
725 1125
724 1124
'xL‘ ) 723 | |-1123]
? g
\":p. . z
t)HIgh energy phaton i S
P 0.2 ~
< 2.8% , 125 _ o i
b QB()J3/6 ol 1. IS RN R
VE(GeV) ~ E(MeV) 0 50 100 150 200 250
E (GeV)
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Energy resolution

Inter-calibration:

» Several steps before, during, after data-taking
—test beam pre-calibration
—monitoring during data-taking
—inter-calibration by physics with specialized data streams

<10° CMS preliminary Data\s =7 TeV

N&’ 0.4; > F [ems
> ECAL Barrel &
® 035! . Ry
@) E 10.0 % L2 - Vs=7TeV,L=511" IS | .
= . = = ! A
9 oa ° 1500 %, \s=8TeV.L=53M
S A S/B,, =0.80 @« N
2 0.2s] S -
0 = r
% 0.2 %1000‘_ N ;
Q o F
2 0.15 £ \
Ry |
. o —e— Data
0.1; = 500'_' S48 Fit I'
: ~ | eeeees Bkg Fit Component e |
0.05% a | E3 =10 |
} (7)) | 20
CA --------------------------- N {’ O Jlgiageiyany l L1 Jiagi gy I - L
0.05 0.1 0.15 0.2 0.25 03 2 110 120 130 140 150
vy invariant mass (GeV/c) m,, (GeV)
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Hadron calorimetry

* Hadron Calorimeters, as EM calorimeters,
measure the energy of the incident particle(s)
by fully absorbing the energy of the particle(s)
and providing a measurement of the
absorbed energy

« Hadronic Showers are more complicated than
EM showers, significantly reducing the
optimal precision
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Had and EM showers

* Had shower: the longitudinal development is
characterized by the nuclear interaction length

1cm 2cm 20cm 40 cm
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Hadronic showers

* The impinging particles strongly interact (inelastically) with a
nucleus according to the nuclear cross section

* Nuclear interaction length: mean free path before interaction
Ai = 35 A1/3'g .cm-2

* Nuclear interaction length is longer than radiation length

Material ~ Atomic  Radiation Interaction X/ A
No. Length (X,) [Jenzgth (M)
(Z) (gem’) (cm) (g/em’) (cm)

Beryllium 4 65.19 35.28 75.2  40.7 1.2 hlgher Z materials

Carbon 6 42.70 18.8_ 86.3 38.1 2.0 _
Aluminum 13 24.01 89 1064 394 4.4 se pa rate had ron IC/ EM
Iron 26 13.84 1.76 1319 16.8 9.5 , _

Copper 29 1286 143 1349 151 151 interactions better
Tungsten 74 6.76 0.35 185._ 9.6 274

Lead 82 637 056 194._ 17.1 305

Uranium 92 6.00 032 199._ 105 33.2
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Hadronic showers

« Hadronic cascades develop analogously to EM showers
— Strong interaction controls overall development

 As a strongly interacting particle (hadron) passes through matter,
it initiates a nuclear interaction, and starts a nuclear shower

* Energy deposited by:
— Electromagnetic component (i.e. as for EM showers)
— Charged pions or protons
—Low energy neutrons
— Energy lost in breaking nuclei (nuclear binding energy ~8 MeV/nucleon)
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Hadronic showers

» Hadronic showers are:
— broader and more penetrating
—subject to larger fluctuations

ABSORBER = | Em Electrons, photons
[ component 10 — 2y
.................... "Iy Non-em Charged hadrons (20%)
i 2 = D ] COMPONEN; Nuclear fragments , p (25%)
- ! Neutrons, soft y's (15%)
Breakup of nuclei (40%)
eh - 18

s |
Either not detected y \

or often to slow to be
within detector time
window

= Invisible energy
e/h > 1

=
——

Number of counts (arb, units)

S

-~
S

L 1 y !
0.2 04 0.6 0.8 1.0
Signal / GeV (arb. units)
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Hadronic showers: energy fractions

The EM energy fraction of the shower increases with energy
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Longitudinal development

* Fit parametrization by Bock et al. NIM 186 (1981) 533
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As with EM showers: depth to contain
a shower increases with log(E)
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Had shower profile and containment

* 300 GeV " in U

— —
o (&)
I . {

Number of nuclei (arbitrary units)
18}
I

99M0

RS Measured from 10" «’s

! I ! ] I

Michele Gallinaro - "

3 4 5 6 7
Depth in stack (Aint)

Particle detection and detectors" - March 20, 2014

10 A
containment

50



EM shower component

 Calibrate energy using muons

* Interaction of low energy vys differs for different materials

 An EM cascade does not deposit its energy in the same proportion
between the high-Z radiator material and the low-Z material of the

sensitive layers
photon absorption
» Typical examples: _ | T
L - highZ
— Fe or Cu radiator: e/u ~ 0.9-1.0

— Pb radiator: e/u ~ 0.7-0.8

— U radiator: e/u ~ 0.6-0.7

different behavior ~
below 1 MeV :

: 1
\_ 1
N 1

w/p (m?/kg-m)

« EM sampling inefficiency results
from the rise in low energy photon
absorption in high Z materials 5
below 1 MeV 10—::0-_2 il e =

E, (MeV)
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Hadronic showers: fluctuations

Sources of fluctuations:

« EM vs. non-EM components

* nuclear binding energy losses

« sampling

* leakage of ionizing particles

 leakage of non-ionizing particles
 detector response: saturation or non-linear
* noise

» non-uniformities of the detector

 time dependence of various components
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Hadronic showers

* Individual hadronic showers are quite dissimilar

red — EM component
blue — charged hadrons
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Two scales of shower development
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Hadronic vs. EM response

* Not all hadronic energy is “visible”
—Lost nuclear binding energy
—Neutrino energy
— Slow neutrons, ...

For instance in lead (PDb):

* Nuclear break-up (invisible) energy: 42%
* lonization energy: 43%

» Slow neutrons (E~ 1 MeV): 12%

* Low energy g’ s (E,~ 1 MeV): 3%
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Hadronic shower:

* fluctuations of en.
measurement

—the most important
fluctuation: binding
energy (BE) losses

—correlated with EM -
EXTREME EVENT:
shower energy “snll” BE toss

. mostly EM energy
fraction ’

RANDOM EVENT

 optimal resolution:
need to equallze EXTREME EVENT:
response of type A ez /-
vs. type B |

resolution

e / h > 1

ALL EVENTS

'm\l YVJKAJ/

CALORIMETER SIGNAL

TYPE A EVENTS
P

R

CALORIMETER SIGNAL

TYPE B EVENTS
e~

A

CALORIMETER SIGNAL
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Hadronic shower: resolution

compensation:
* fluctuations of en. e/h~1
measurement RANDOM EVENT /b > /b~
—the most important esvETE rrcs s e
fluctuation: binding \Q - j‘l ""%
energy (BE) losses
—Correlated Wlth EM CALORIMETER SIGNAL CALORIMETER SIGNAL
EXTREME EVENT:-
shower energy “snll” BE toss
. mostly EM energy - TYPE A EVENTS TYPE A EVENTS
fraction e e |
 optimal resolution: ‘ /\l )JK
need to equalize _ . . .
response of type Az /. |
VS t e B TYPE B EVENTS | TYPE B EVENTS
. yp - \<_4 l } l'
\\§ AN L /47\_
CALDRIMETER SIGNAL CALORIMETER SIGNAL
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Hadronic showers: compensation

« A dominant factor in the resolution of a hadron calorimeter
Is the unequal response to EM energy deposition and
hadronic energy deposition

» Recover part of the “invisible energy”

 one can reduce this fluctuation by equalizing the EM and
hadronic response: e/h=1

— Amplify the nuclear signal (amplify the nuclear energy itself or favor
the nuclear signal in sampling)

— Attenuate the EM signal
—Measure the hadronic/EM ratio in each event and correct
 Offline compensation:

—Weighting methods
—Multiple shower measurements (2+ active media, select EM, etc.)
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EM calorimeters: summary

 EM showers are very well understood theoretically
» Electromagnetic calorimeters are continuing to advance

» Optimization is always a trade-off between competing
constraints

* EM calorimeters have good energy resolution (typically
2-10%/E"?)

* EM showers develop through brems and pair production
» Characteristic length is radiation length X,
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Hadronic shower: summary

* Hadronic showers are more complex than EM showers

* Hadronic calorimeters have worse energy resolution than
EM cal. (typically 40%/E"2to 100%/E"?)

* Hadrons also loose energy through a showering process

 However, instead of brems, the fundamental process is
nuclear interaction

« Characteristic length is called the hadronic interaction
length A (A= 35 gm/cm? A"73)
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Calorimeters

CMS EM hom. calorimeter

Jrv ---

\’\optioal fiber

scintillato




Inorganic scintillating crystals

e AR <R 1.5 X, Samples:

~= e : ‘ 1
; ! f :
,' | | F}' :
! § t 1
e Vs 'm

el Nater) Hygroscopic Halides

__-I:l

| Non-hygroscopic

PWO LSO LYSO BGO  CeF,

BaBar Csi(Tl) . =8 Full Size Crystals:

BaBar Csl(TI): 16 X,
LSIBGO: 220X,
CMS PWO(Y): 26 X,
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Decay time constant for crystals

Recorded with Agilent 6052A digital scope

Fast Scintillators Slow Scintillators

0 0
i r T =30/6 ns Csl i t=1250ns CslI(TI)
AL A
~—~ 0 0
>
S| t=35ns | t=630ns  Csl(Na)
£ i ‘ '
S 0 L
G) et
L = 30/10 ns 5 t=230ns  Nal(Tl)
© 4L 2 L
12) | %} ) ‘
> 0 0
o [0)
t=40ns % 7=300ns BGO
10 | o ¢ . ‘
0 0oF——
\/rt a0ns  LYSO [/,/’7630/0 9ns BaF,
AL A
-200 200 200 0 2000 4000
Time (ns) Time (ns)
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The CDF Calorimeters

All scintillator-based sampling calorimeters

[_Wall Hadj;_-:__\
rCentral EMJ
n Range A¢g | An
- 1.1 (1.2 h) 15° ~ (.1
1.1(1.2h)- 1.8 | 7.5° ~ 0.1
1.8 - 2.1 7.5° | ~0.16
2.1- 3.64 15° 1 0.2- 0.6

New Silicon
Tracker

Table 1.2: CDF II Calorimeter Segmentation

n=1.0
N 543210
~ |8
9 IWHA CHA
10|
12
=20 13 EM
\‘~\‘\15 “‘M——"Cﬂll
as 17 = ——trackin stem
N=3.0 12 EPHABIPEN E——
o _2‘1— LT i - ﬁ__Vértex detEClor
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CDF calorimeters at the Tevatron

« EM calorimeter in front; Hadron in the back
* | ead for EM: steel for hadron in sandwich
» Scintillator to detector shower

Hadron calorimeter

EM calorimeter
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Central Electromagnetic Calorimeter (CEM)

CDF EM Calorimeter Added

vi Timing

Info in
Run II
Thickness 18X,, 11
Abs. (pb) 1/8” (4.2 mm,0.6 X,) o LT
layer ’
Scint. layer S mm , polystyrene (SCSN-38)
w.ls. 3mm Y7 acrylic sheet == .
PMT Ham. R580 (1.5%) -
light yield >100 p.e./GeV/pmt
’ :::jln LATOR
resolution 135 / \/ ET frmmm s
'S‘m::m R ~ ?? /
/5.9§ 7
\Gw STRIPS
erox— k . ‘... Shower Max Detector (Gas Strip Chamber)
s at EM Shower Max
\u_wmw
iem
Fig. 3. Prototype strip chamber cross section.
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ECAL: ATLAS sampling calorimeter
ATLAS Pb/LAr EM BT

* Length: at least 22 X, (47 cm)

« 3 longitudinal layers (+presampler)
« 4 X, rejection of «i° in two photons
+ 16 X, for shower core

« 2 X, evaluation of late showers

4.69 .
0031 Strip towers in Sampling 1

/ Z
/ 7/
7 /
, 2x4 Back Laye
/ T ‘] T B
|4 s
I ‘ A
» 4 ¢ -7 32x1 Strip Layer
7
~ ) — .~ 4x1 Presampler
INFN
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ECAL: ATLAS sampling calorimeter

« ATLAS EM Calorimeter: accordion design,
lead plates to initiate showering

* lonization occurs in liquid Argon: drifts to
sensors (electrodes on Cu/kapton sheets)

* Fine segmentation transversely; 3 depths
 Resolution: ~10%/E"?

o/E (%)

6

n=0.28
1

0=(9.99+0.29)%
b=(282.2+£16.9) MeV
c=(0.35+0.04)%
n=0.9
0=(10.42%+0.33)%
b=(386.6+15.6) MeV
c=(0.27+£0.08)%
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HCAL: ATLAS Tile calorimeter

Double| ™
readout |

Scintillating _o
[~ tiles
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o f ® [ ow  f e D

At a2 fas e fas Fas far a8t as tato |<7A

Fe/Scint with WLS
fiber Readout via PMT

Figure 5-15 Cell geometry of half of a barrel mod-
ule. The fibres of each cell are routed to ocne PMT.
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Figure 5-16

Proposed cell geomstry for the
extended barrel modules (version “a la barrel”).
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HCAL: CMS sampling calorimeter
CMS HCAL barrel

2593 towers
An x A¢p =0.017 x 0.017

pixel HybridPhotoDiode

xxxxx
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HCAL: ATLAS vs CMS

ATLAS CMS
Technology
Barrel / Ext. Barrel ( 14 mm iron / 3 mm scint. ) ( 50 mm brass / 4 mm scint. )
End-caps i R 8-.5 S ERNDERES m brass /' 4 num.
Forward Copper (iront) ~ JTungen (heck) 4.4 mm steel /0.6 mm gquartz

0.25 - 0.50 mm LAr

#F Channeils

Barrel / Ext. Barrel 9852 2592
End-caps 5632 2592
Forward 3524 1728

Granularity (An X Ad)

Barrel / Ext. Barrel 0.1 x01 to 0.2 x 0.1 0.087 x 0.087
End-caps 0.1 x 01 to 0.2 x 0.2 0.087 x 0.087 to 0.35 x 0.028
Forward 0.2 x 0.2 0175 x 0.175

# Longitudinal Samplings

Barrel / Ext. Barrel Three One
End-caps Four Two
Forward Three Two

Absorption lengths

P — —
> 58 - 10.3
Barrel / Ext. Barrel Q’ - 19 Q_ 14 (with Coil / HO; ;

End-caps 9.7 - 12.5 9.0 - 10.0
Forward 9.5 - 10.5 9.8
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CMS calorimeters

Ring 0 Ring 1 Ring 2
777, . —— HCAL-HO ——
Ifon
MAGNET CRYOSTAT and COIL
3_
5.8\
HCAL-HB /—\_
2..
11X  ECAL-EB | " " HCAL
| HE
T ECAL
TRACKER EE
4T BN
0 | | | | |
0 1 2 3 4 5

Distance [m]
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Magnetic coll

CEA - Saclay 12/98
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Lowering: Endcap disks

Pl Bny
LTTNY

30.11.2006 12.12.2006 9.1.2007
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ATLAS vs CMS ECAL

3% 1.4/ | Resolution in 3x3 crystals - 0.05
L central e beam incidence E - g Sar'npl. Const. Term g
ﬁ 1.2 Crystal Mam:ces around 704 bu.o' 045 E_c [% / \ |(Ge V)] [% ] —é
‘6’ A P —— Crystal Matrices around 1104 0.04 E_ 10.71+0.1 0.17+0.04 —E
2004 TB 0.035;c  + Data E
0.8 ~\* ° Data noise subtracted -
0-03¢ = Noise -
0.025(= ~
0.6 0.5% : E
2 0.02F 1TB2002 =
0.4 0.015F =
0.2 0.01t =
CMS ECAL 3 —a
oo o 1y b L 1 1] 0.005 = =
0 50 100 150 200 250 0‘ =

E (GeV)
E,... [GeV]
2.8% 125

g
g _ 0.3
E ~ /E(GeV) Y EMev) © %
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