Course on Physics at the LHC

LIP Lisbon, March - June 2014

he lectures will take place on Mondays, between 17:00 and 18:30 at LIP, Ay. Elias Garcia, 14 r/c, 1000 Lisbon Portugal

Course coordinator: Prof. João Varela (LIP, IST) Dr. Michele Gallinaro (LIP)

Specialized course on the Physics at the Large Hadron Collider organized by LIP in the framework of IDPASC.

The objective of the Course is to introduce the physics, analysis methods and results on the physics of the LHC experiments.

Emphasis is placed on the search for new physics, in particular phenomena at the basis of the electroweak symmetry breaking.

Benchmark channels in proton-proton collisions will be discussed in detail:

- identification of the objects involved
- signal and background properties
- background estimation and S/B discriminants
- estimation of systematical errors
- extraction and interpretation of the final results

The standard model of particle physics	Prof. João Varela (LIP, IST)	10, 13 March
Detector physics and experimental methods	Dr. Michele Gallinaro (LIP), Pedro Silva (LIP/CERN)	20, 24 March
Top quark and heavy flavor physics	Dr. Michele Gallinaro (LIP), Prof. António Onofre (LIP, UM)	31 March, 7, 14 April
Statistical methods in data analysis	Dr. Pedrame Bargassa (LIP)	28 April
Standard model Higgs and beyond	Dr. Pedro Silva (LIP/CERN), Dr. André David (CERN), Dr. Patricia Muino (LIP), Dr. Ricardo Gonçalo (LIP)	5, 12, 19, 26 May
Supersymmetry	Dr. Pedrame Bargassa (LIP)	2, 9 June
B physics and rare decays	Dr. Nuno Leonardo (LIP/CERN)	16 June
Matter at high density and temperature	Prof. João Seixas (LIP, IST), Dr. Pietro Faccioli (LIP)	23, 30 June

Required background

The course is intended for under-graduate or graduate students having basic training in Particle Physics:

Basic concepts

Elementary constituents of matter and interactions. Quantum numbers and conservation rules. Spin and symmetry groups. Relativistic kinematics. Cross-section. Natural units. Mass and lifetime. Resonances.

Structure of matter

Elastic scattering and form factors. Inelastic scattering experiments. Nucleon structure functions. Scale invariance. Quark model. Parton distribution functions. Introduction to QCD.

Fundamental interactions

Introduction to QED. Fermi interaction. Parity violation. Currents V-A and weak doblets. W and Z bosons. Cabibbo angle. Neutral currents. Electroweak interaction. Gauge symmetries. The Higgs mechanism. Weinberg-Salam model. CP violation.

F. Halzen and A.D.Martin, 'Quarks and Leptons', John Wiley and Sons (1984)

D. Griffiths, 'Introduction to Elementary Particles ', John Wiley and Sons (1987)

B.R.Martin, G. Shaw, 'Particle Physics ', John Wiley and Sons (1999)

1. The LHC physics case

1. The LHC experimental program

The LHC physics case

Particle physics is a modern name for the centuries old effort to understand the basics laws of physics.

Edward Witten

Aims to answer the two following questions:

What are the elementary constituents of matter ?

What are the forces that determine their behavior?

Experimentally

Get particles to interact and study what happens

Constituents of matter along History

Couse on LHC Physics 2014

The Standard Model

Over the last ~100 years: The combination of Quantum Field Theory and discovery of many particles has led to

- The Standard Model of Particle Physics
 - With a new "Periodic Table" of fundamental elements

One of the greatest achievements of 20th **Century Science**

Couse on LHC Physics 2014

The interaction of gauge bosons with fermions is described by the Standard Model

Quantum field theory

A particle-antiparticle pair can pop out of empty space ("the vacuum") and then vanish back into it

These are *Virtual* particles.

Other examples of Virtual particles:

Z⁰

Vacuum Fluctuation Involving top quarks

This has far-reaching consequences

The structure of the universe depends on particles that *don't exist in the usual sense*

We do not see these particles in everyday life We must recreate the state of the early hot universe to make them

Ш Ш 1.27 GeV/c² 171.2 GeV/c² 2.4 MeV/c² 0 mass ^{2/3} ^{1/2} **C** ²/3 1/2 ²/₃ t charge \rightarrow 0 1⁄2 U spin → up charm top photon name 4.8 MeV/c² 104 MeV/c² 4.2 GeV/c² 0 1-1/3h -¹/₃ ^{-1/3} ^{1/2}**S** 0 Q Quarks 1/2 down strange bottom gluon <2.2 eV/c² <0.17 MeV/c <15.5 MeV/c² 91.2 GeV/c² $^{0}_{\frac{1}{2}}$ V 0 0 e 1/2 μ ¹∕₂ electron muon tau Z boson neutrino neutrino neutrino **Gauge bosons** 0.511 MeV/c² 105.7 MeV/c² 1.777 GeV/c² 80.4 GeV/c² Leptons $\frac{1}{1/2}\mu$ -1 ½ -1 e τ 1/2 W boson electron muon tau

SM confirmed by data

STANDARD MODEL OF ELEMENTARY PARTICLES

	Measurement	Fit	IO ^{mea}	^s –O ^{fit} l	/o ^{meas}
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02758 ± 0.00035	0.02768			
m _z [GeV]	91.1875 ± 0.0021	91.1874			
Γ _z [GeV]	2.4952 ± 0.0023	2.4959			
σ ⁰ had [nb]	41.540 ± 0.037	41.479			
R	20.767 ± 0.025	20.742			
A ^{0,I}	0.01714 ± 0.00095	0.01645			
A _l (P _t)	0.1465 ± 0.0032	0.1481			
R _b	0.21629 ± 0.00066	0.21579			
R _c	0.1721 ± 0.0030	0.1723			
A ^{0,b}	0.0992 ± 0.0016	0.1038			
A ^{0,c}	0.0707 ± 0.0035	0.0742			
A _b	0.923 ± 0.020	0.935			
A _c	0.670 ± 0.027	0.668			
A _l (SLD)	0.1513 ± 0.0021	0.1481			
$\sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314			
m _w [GeV]	80.399 ± 0.023	80.379			
Г _W [GeV]	2.085 ± 0.042	2.092			
m _t [GeV]	173.3 ± 1.1	173.4	•		
July 2010			0	1 2	2 3

Confirmed at sub 1% level!

A "funny" thing happened on the way to the modern theory of quarks, leptons, force fields, and their quanta:

The equations only made sense if all the bosons, and all the quarks and leptons, had no mass and moved at the speed of light!

The Higgs

In the simplest model the interactions are symmetrical and particles do not have mass

The symmetry between the electromagnetic and the week interactions is broken:

- Photon do not have mass
- W, Z do have a mass ~ 80-90 GeV

Higgs mechanism:

mass of W and Z results from the interactions with the Higgs field

Non-zero average value of the Higgs field can also give masses to the quarks, electrons and muons – to all point-like particles.

Old theoretical problem affecting the quantum theory of the weak force :

the probability of two W's interacting becomes larger than 1 at high energies (> 1 TeV).

This is solved by the Higgs field!

Beyond the standard model

The Standard Model answers many of the questions about the structure of matter. But the Standard Model is not complete; there are still many unanswered questions.

Why do we observe matter and almost no antimatter if we believe there is a symmetry between the two in the universe?

What is this "dark matter" that we can't see that has visible gravitational effects in the cosmos?

Are quarks and leptons actually fundamental, or made up of even more fundamental particles?

Why are there exactly three generations of quarks and leptons? What is the explanation for the observed pattern for particle masses?

How does gravity fit into all of this?

Long standing problem:

We know that ordinary matter is only ~4% of the matterenergy in the Universe.

What is the remaining 96%?

The LHC may help to solve this problem, discovering dark matter

Higgs and hierarchy problem

In the SM the Higgs mass is a huge problem:

- Virtual particles in quantum loops contribute to the Higgs mass
- Contributions grow with A (upper scale of validity of the SM)
- Λ could be huge e.g. the Plank scale (10¹⁹ GeV)
- Miraculous cancelations are needed to keep the Higgs mass < 1 TeV

This is known as the hierarchy problem

There are a large number of models which predict new physics at the TeV scale accessible at the LHC:

- Supersymmetry (SUSY)
- Extra dimensions
- Extended Higgs Sector e.g. in SUSY Models
- Grand Unified Theories (SU(5), O(10), E6, ...)
- Leptoquarks
- New Heavy Gauge Bosons
- Technicolour
- Compositeness

Any of this could still be found at the LHC

Supersymmetry

Some physicists attempting to unify gravity with the other fundamental forces have proposed a new fundamental symmetry:

- Every fermion should have a massive "shadow" boson
- and boson should have a massive "shadow" fermion.

This relationship between fermions and bosons is called supersymmetry (SUSY)

No supersymmetric particle has yet been found, but experiments are underway at CERN to detect supersymmetric partner particles.

Supersymmetry

Double the whole table with a new type of matter?

Heavy versions of every quark and lepton Supersymmetry is broken

For every "normal" force quanta (boson), there are supersymmetric partners:

photon W, Z bosons gluon Higgs boson

photino Wino, Zino gluino higgsino

These "...inos" are prime suspects to be the galactic dark matter!

Relics from the Big Bang!

The temptation unification

Extra dimensions

Space-time could have more than three space dimensions. The extra dimensions could be very small and undetected until now.

How can there be extra, smaller dimensions?

The acrobat can move forward and backward along the rope: **one dimension**

The flea can move forward and backward as well as side to side: **two dimensions**

But one of these dimensions is a small closed loop.

Naturalness

Couse on LHC Physics 2014

Timeline of the Universe

13.7 billion years

LHC recreates the conditions one billionth of a second after Big Bang

Couse on LHC Physics 2014

Big Bang

Understanding the Universe

Cosmological inflation

In the very early universe, the physical vacuum undergoes a transition from a high energy state to a low energy state.

The resulting energy shift drives a dramatic exponential expansion.

Explains why the Universe has a uniform Temperature (3 K)

Higgs like field and inflation

Before the inflation (10⁻³⁴ s), the Higgs-like field is trapped is a state of false vacuum.

The Universe undergoes a super-cooling transition:

the temperature decreases below the phase transition point but the Higgs field stays in the false vacuum state.

While the energy density of the Higgs field is positive, the Universe expands at accelerated rate (inflation) and the energy stored in the Higgs field increases.

Inflation stops when the Higgs field decays to the real vacuum.

The energy released by the Higgs field is converted into matter particles.

The Universe expansion is accelerating

In 1998, two groups used distant Supernovae to measure the expansion rate of the universe: Perlmutter et al. (Supernova Cosmology Project), and Schmidt et al. (High-z Supernova Team)

They got the same result: **The Universe expansion is accelerating**

Some form of energy (dark energy) fills space

Dark energy responsible for acceleration of expansion is very small

From particle physics we know that Vacuum has energy:

- potential energy of scalar fields
- energy of quantum fluctuations as predicted by quantum mechanics

This vacuum energy is 100 orders of magnitude larger than dark energy!

This huge discrepancy is known as the vacuum catastrophe.

The Standard Model would fail at high energy without the Higgs particle or other 'new physics'

Based on the available data and on quite general theoretical insights it was expected that the **'new physics'** would manifest at an energy around

1 Tera-electronVolt = 10¹² electronVolt

accessible at the LHC for the first time

The LHC proton collider

Accelerator and Experiments

Accelerator and experiments layout

Relative to Tevatron (Fermilab, USA)Energy (14 TeV)x 7Luminosity (1034 cm-2 s-1)x 30

- Superconducting dipoles 8.3 Tesla
- Operating temperature 1.9K (-271 C)
- Stored energy per beam 350 M Joule
 energy of a train of 400 tons at 150 Km/h
- More than 2000 dipoles
- 100 ton liquid helium
- LHC power consumption 120 MW

Superconducting magnetic dipole

In the tunnel

Beam delivery towards interaction point

In the tunnel

400 MHz RF system cryo-modules each with four cavities in the LHC straight section IP4

ouse on LHC Physics

In the tunnel

Jumper connecting cryogenic distribution line and magnets once every ~100 m (early photo)

It's empty!

Air pressure inside the two 27Km-long vacuum pipes (10⁻¹³ atm) is lower than on the moon.

It's cold!

27 Km of magnets are kept at 1.9 °K, colder than outer space, using over 100 tons of liquid helium.

It's Hot!

In a *tiny* volume, temperatures one billion times hotter than the center of the sun.

The Experiments

ALICE & LHCb

It's huge!

Largest, most complex detectors ever built

Study tiniest particles with incredible precision

15% of the CMS people

General purpose LHC experiments

Advanced detectors comprising many layers, each designed to perform a specific task.

Together these layers allow to identify and precisely measure the energies of all stable particles produced in collisions.

Photons, Electrons, Muons, Quarks (as jets of particles) **Neutrinos** (as missing energy)

Design guided by physics

Search and measure the Higgs boson

Search and measure Supersymmetry

Search for any other new physics at high p_T

Two concepts

Couse on LHC Physics 2014

μ

 \otimes

 \otimes

 \otimes

 \otimes

 \otimes

 \otimes

 \otimes

 \otimes

Hight: 15 m Length: 22 m Weight: 12500 t

Couse on LHC Physics 2014

ATLAS detectors

Detection of hadrons, e^{\pm} , γ and μ^{\pm}

1993-2008: detector R&D and construction

Al stabilized NbTi conductor. Mechanically reinforced conductor to contain magnetic forces.

Superconductor solenoid at 3.8 Tesla

ATLAS Toroidal System

Silicon Tracker

214m² silicon sensors11.4 million silicon strips65.9 million silicon pixels

Silicon Tracker

200 square meter of silicon wafers: from cartoon to reality

Silicon Tracker

Si sensors and electronics chain

ECAL Electromagnetic Calorimeter

Electron and photon detection PbWO₄ scintillating crystals & avalanche photodiodes

Design Goal: Measure the energies of photons from a decay of the Higgs boson **to precision of ≤ 0.5%**

Parameter	Barrel	Endcaps
# of crystals	61200	14648
Volume	8.14m ³	2.7m ³
Xtal mass (t)	67.4	22.0

Couse on LHC Physics 2014

Assembling the Calorimeter

Assembly of front-end electronics

Insertion in the detector

The Calorimeter installed in the Experiment

ECAL trigger and readout electronics

18	Crates
216	Electronic boards
3000	0.8 Gb/s optical links
2500	1.2 Gb/s electrical links

UXC55

Electronics systems

Electronics systems in the Service Cavern. About 150 racks occupy two floors. Most electronics was designed and built specifically for the experiment

HCAL Hadronic Calorimeter

Detection of hadrons:

- protons, neutrons, peons, etc.
- CMS HCAL has three components:
 - Barrel HCAL (HB)
 - Endcap HCAL (HE)
 - Forward HCAL (HF)
- Plastic scintillator and brass
- Quartz fibers and steel

Muon detectors

Drift Tubes (DT) Cathode Strip Chambers (CSC) Resistive Plate Chambers (RPC)

Surface Site in 2000

2002: CMS iron yoke assembly in surface hall

2005: Superconducting solenoid installed

Surface Hall in Feb 2006

Couse on LHC Physics 2014

HCAL barrel test assembly

Surface Hall: Endcaps

2004: CMS detector cavern

2007: Lowering one of six huge disks

2007-08: Installation in the cavern

Cables, Pipes and Optical Fibers

Insertion of the Tracker

2008: CMS closing up...

CMS closed: August 08

Sep 2008: CMS detector ready for beams

How did we prepare for discoveries?

Simulation of proton-proton collision making two dark matter particles

Experimental challenges

Couse on LHC Physics 2014

High collision rate

Couse on LHC Physics 2014

- LHC has 3564 bunches (2835 filled with protons)
- Crossing rate is 40 MHz
- Distance between bunches: 27km / 3600 = 7.5m
- Distance between bunches in time: 7.5m / c = 25ns
- Proton-proton collision per bunch crossing: ~ 25

- Proton bunches have a cigar shape, about 5 cm long and 20 microns diameter
- Each bunch has 1.5 10¹¹ protons
- At each crossing of bunches, about 25 collision occur
- The particles produced (30x25 = 750 charged particles) are "seen" by the detector as a single image (event)

CMS Experiment at LHC, CERN Data recorded. Mon May 28-01:16:20-2012 CE9T Run/Event: 195099-(35438125 Lumi section: 65 Orbit/Crossing: 16992111 (2295

Raw $\Sigma E_T \sim 2$ TeV 14 jets with $E_T > 40$ GeV Estimated PU~50

High radiation levels

Couse on LHC Physics 2014

Acquiring and recording data of interest

Analogy with a 100 M pixel 3-D digital camera:

40 Million photos/sec

Each photo (~ MB)

- taken in ~ 500 different parts

 put together using a telecommunications 'switch'

analysed in a CPU
(in a farm of ~ 50000 cores)

Only a few hundred photos/sec stored on disk.

~ 15 PB/year

– σ inelastic

bb

jets

barn

mb

μb

nb

pb

fb

Event Rate

GHz

kHz

Hz

ng=mq́/2 F=mg=mq ZARE→2ℓ mHz

μHz

10⁻⁹

ON-lin

LV1

HLT

Event rate

Level-1 input

Level-2 input

SUSY qq+qg+gg

 $\tan\beta = 2, \mu = m_{\tilde{a}} = m_{\tilde{a}}/2$

 $\tan\beta=2, \mu=m_{\tilde{a}}=m_{\tilde{a}}$

scalar LQ Z,→2

1000 2000

Level-3

Selected events

z→to archive

h > yy

⊓_{SM}-

jet E_T or particle mass (GeV)

500

 $gg \rightarrow H_{SM}$

qā→qāH

s_M→γγ

Z_{SM}→3γ

200

Two-level trigger

Trigger system decide if the event is interesting to be recorded

Two-step process: - Level 1: dedicated hardware processors

- High level: computer farm

Trigger computer farm

- Select processes that produce particles with high transverse energy
- Examples at 5.x10³³ cm⁻²s⁻¹
 - Single lepton and photon triggers ($P_T \sim 30 \text{ GeV}$)
 - Multiple lepton and photon triggers ($P_T \sim 15 \text{ GeV}$)
 - Missing transverse energy ($P_T \sim 50-100 \text{ GeV}$)
 - Multiple jet triggers ($P_T \sim 50-100 \text{ GeV}$)
- About 100 trigger conditions in L1 trigger table
- About 400 trigger conditions in HLT trigger table

The LHC Computing Grid

The Grid unites computing resources of particle physics institutions around the world

The **World Wide Web** (invented at CERN) provides seamless access to information that is stored in many millions of different geographical locations

The **Grid** is an infrastructure that provides seamless access to computing power and data storage capacity distributed over the globe

Detector commissioning

2009: First p-p collisions at LHC

November 23, 2009 First collisions at 900 GeV December 14, 2009 First collisions at 2.36 TeV March 30, 2010 First collisions at 7 TeV

Jet event in CMS

LHC Page 1: stable beams

March 30, 2010: CMS Page 1

Experiment control rooms

Cessy: Master Control Room

Fermilab: Remote Operations Center

Meyrin: CMS Data Quality Monitoring Center

Any Internet access

CMS Experiment

...unforgettable moments

Tracking performance

Tracking: secondary vertices

Basic variables relevant for B-tagging are well described by the simulation

Secondary vertices compatible with heavy flavor production

Photons and electrons

Jets and missing energy

ATLAS

CMS

W and Z bosons

$W \rightarrow \mu \nu$

Run 133875, Event 1228182 Lumi section: 16 Sat Apr 24 2010, 09:08:46 CEST

Muon $p_T = 38.7 \text{ GeV/c}$ $ME_T = 37.9 \text{ GeV}$ $M_T = 75.3 \text{ GeV/c}^2$

W→ev

CMS Experiment at LHC, CERN Run 133877, Event 28405693 Lumi section: 387 Sat Apr 24 2010, 14:00:54 CEST

Electrons $p_T = 34.0, 31.9 \text{ GeV/c}$ Inv. mass = 91.2 GeV/c²

Mass= 91.2 GeV/c2

Rediscovery of the Standard Model at LHC

Standard Model at 7 TeV (2010-2011)

...and many more physics results

p_T (e⁺, e⁻, μ⁻, μ⁺)= 41.5, 26.5, 24.7, 18.3 GeV m (e⁺e⁻)= 76.8 GeV, m(μ⁺μ⁻) = 45.7 GeV

Both LHC experiments have observed a new boson with a mass near 125 GeV at significance above 5 σ !

A new boson was discovered

JULY THE-13TH 2012

In praise of charter schools Britain's banking scandal spreads Volkswagen overtakes the rest A power struggle at the Vatican When Lonesome George met Nora

A giant leap for science

Economist.com

Finding the Higgs boson

A major discovery in physics

The **new boson** is either the SM Higgs or a Higgs-like particle

Electroweak symmetry breaking is very likely due to some kind of Higgs field

The hypothesis that the **space is filled with a Higgs field** since the origin of the Universe is a plausible assumption.

A new framework to understand the Universe. Cosmological models become more plausible:

- The Universe inflation after the big-bang
- Energy of a Higgs-like field as the source of all matter in the Universe

LHC projections

J. Varela, Para além do

End of Lecture 1