
J. Varela, LIP/IST

March 15, 2013

Couse on LHC Physics 2014 1



Specialized course on the Physics at the Large Hadron Collider organized 

by LIP in the framework of IDPASC.

The objective of the Course is to introduce the physics, analysis methods 

and results on the physics of the LHC experiments.

Emphasis is placed on the search for new physics, in particular phenomena 

at the basis of the electroweak symmetry breaking. 

Benchmark channels in proton-proton collisions will be discussed in detail:

▪ identification of the objects involved

▪ signal and background properties

▪ background estimation and S/B discriminants 

▪ estimation of systematical errors 

▪ extraction and interpretation of the final results 

Introduction
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Program
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The course is intended for under-graduate or graduate students having basic 

training in Particle Physics:

Basic concepts

Elementary constituents of matter and interactions. Quantum numbers and 

conservation rules.  Spin and symmetry groups. Relativistic kinematics. Cross-

section. Natural units. Mass and lifetime. Resonances.

Structure of matter

Elastic scattering and form factors. Inelastic scattering experiments. Nucleon 

structure functions. Scale invariance. Quark model. Parton distribution 

functions. Introduction to QCD.

Fundamental interactions

Introduction to QED. Fermi interaction. Parity violation. Currents V-A and weak 

doblets. W and Z bosons. Cabibbo angle. Neutral currents. Electroweak 

interaction. Gauge symmetries. The Higgs mechanism. Weinberg-Salam 

model. CP violation. 

Required background
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F. Halzen and A.D.Martin, ' Quarks and Leptons ', John Wiley and Sons (1984)

D. Griffiths, ' Introduction to Elementary Particles ', John Wiley and Sons (1987)

B.R.Martin, G. Shaw, ' Particle Physics ', John Wiley and Sons (1999)

Background bibliography

Couse on LHC Physics 2014 5



1. The LHC physics case

1. The LHC experimental program

The standard model of particle physics
Lecture1
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The LHC physics case 
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Particle Physics

Particle physics is a modern name for the centuries old 

effort to understand the basics laws of physics.

Edward Witten

Aims to answer the two following questions:

What are the elementary constituents of matter ?

What are the forces that determine their behavior?

Experimentally

Get particles to interact and study what happens
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Constituents of matter along History

Quarks and

Leptons
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The Standard Model

Over the last ~100 years: The combination of  Quantum Field 

Theory and discovery of many particles has led to 

• The Standard Model of Particle Physics

– With a new “Periodic Table” of fundamental elements
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The interaction of gauge bosons with fermions is 

described by the  Standard Model

Standard model interactions

Photon

massless
Gluons

massless

W+, W-

very massive

Z0

very massive
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Quantum field theory

A particle-antiparticle pair can pop out of empty space (“the 

vacuum”) and then vanish back into it

These are Virtual particles. 

t

t

Vacuum Fluctuation

Involving top quarks
. .

This has far-reaching consequences
The structure of the universe depends on particles that 

don’t exist in the usual sense 

We do not see these particles in everyday life 

We must recreate the state of the early hot universe to 

make them

Other examples of Virtual particles:
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SM confirmed by data

STANDARD MODEL

OF ELEMENTARY PARTICLES
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What’s missing?

A “funny” thing happened on the way to the 

modern theory of quarks, leptons, force fields, and 

their quanta:

The equations only made sense if all the 

bosons, and all the quarks and leptons, had no 

mass and moved at the speed of light!
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The Higgs

In the simplest model the interactions are 

symmetrical and particles do not have mass

The symmetry between the electromagnetic and 

the week interactions is broken:

- Photon do not have mass

- W, Z do have a mass ~ 80-90 GeV

Higgs mechanism:

mass of W and Z results from the interactions 

with the Higgs field

Couse on LHC Physics 2014 15



Added bonus

Non-zero average value of the Higgs field can also give 

masses to the quarks, electrons and muons – to all 

point-like particles.

Old theoretical problem affecting the quantum theory of 

the weak force : 

the probability of two W’s interacting becomes 

larger than 1 at high energies (> 1 TeV).

+

This is solved by the Higgs field! 
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The Standard Model answers many of the questions about the structure 

of matter. But the Standard Model is not complete; there are still many 

unanswered questions.

Beyond the standard model

How does gravity fit into all of this? 

Why are there exactly three generations of quarks and leptons? What 

is the explanation for the observed pattern for particle masses?

Are quarks and leptons actually fundamental, or made up of even 

more fundamental particles?

What is this "dark matter" that we can't see that has visible gravitational 

effects in the cosmos?

Why do we observe matter and almost no antimatter if we believe 

there is a symmetry between the two in the universe?
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Forces and expansion of the Universe

LHC

E=k. T k=8.62 10-5 eV K-1
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Long standing problem:
We know that ordinary matter is only ~4% of the matter-

energy in the Universe.

What is the remaining 96%?

The dark side of the Universe

The LHC may help to 

solve this problem, 

discovering dark matter
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In the SM the Higgs mass is a huge problem:
▪ Virtual particles in quantum loops contribute to the Higgs mass

▪ Contributions grow with Λ (upper scale of validity of the SM)

▪ Λ could be huge – e.g. the Plank scale (1019 GeV)

▪ Miraculous cancelations are needed to keep the Higgs mass < 1 TeV

Higgs and hierarchy problem

This is known as the hierarchy problem 
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Excluded to avoid fine-tuning

New physics at a few TeV?

Naturalness implies 

Supersymmetry or 

another ‘New Physics’ 

below ~ 2 TeV

125 GeV

2 TeV

L  Scale of New Physics
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There are a large number of models which predict new 

physics at the TeV scale accessible at the LHC:

▪ Supersymmetry (SUSY)

▪ Extra dimensions

▪ Extended Higgs Sector e.g. in SUSY Models

▪ Grand Unified Theories (SU(5), O(10), E6, …) 

▪ Leptoquarks

▪ New Heavy Gauge Bosons

▪ Technicolour

▪ Compositeness

Any of this could still be found at the LHC

Many possible theories
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Some physicists attempting to unify gravity with the other fundamental 

forces have proposed a new fundamental symmetry: 

• Every fermion should have a massive "shadow" boson

• and boson should have a massive "shadow" fermion. 

This relationship between fermions and bosons is called 

supersymmetry (SUSY) 

Supersymmetry

No supersymmetric particle has yet 

been found, but experiments are 

underway at CERN to detect 

supersymmetric partner particles. 
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Double the whole table with a new type of matter? 

Heavy versions of every quark and lepton

Supersymmetry is broken

Supersymmetry
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photon photino

W, Z bosons Wino, Zino

gluon gluino

Higgs boson higgsino

These “…inos” are prime suspects to be the galactic 

dark matter!  

Relics from the Big Bang!

For every “normal” force quanta (boson), there are 

supersymmetric partners:

Could DM be SUSY particles?
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The  temptation  unification
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SUSY and the Higgs mass

Higgs mass:                               

• correction has quadratic divergence!

– L a cut-off scale – e.g. Planck scale

Superpartners fix this:

• Need superpartners at mass ~1-2 TeV

– Otherwise the logarithmic term becomes too large, which would 

require more fine-tuning.

Cancellation
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Space-time could have more than three space dimensions. The 

extra dimensions could be very small and undetected until now.

How can there be extra, smaller dimensions?

Extra dimensions

The acrobat can move forward and backward along the rope: one 

dimension

The flea can move forward and backward as well as side to side: two 

dimensions

But one of these dimensions is a small closed loop.
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Naturalness

At a Crossroad
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Timeline of the Universe

Big Bang
Today

LHC recreates the conditions one 

billionth of a second after Big Bang

13.7 billion years
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Understanding the Universe

Telescopes
Accelerators

LHC – Energy Frontier
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Cosmological inflation

In the very early universe, the physical vacuum transitions from a high 

state to a low (ground?) state.

The resulting energy shift drives a dramatic exponential expansion.

It is the cosmological constant writ large!

The inflation theory was developed

independently in the late 1970’s by 

Alan

Guth, Alexey Starobinsky, and others

Inflationary period

Radius of observable Universe

Time (second)    

Time (year)
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In the very early universe, the physical vacuum undergoes a transition 

from a high energy state to a low energy state.

The resulting energy shift drives a dramatic exponential expansion.

Explains why the Universe has a uniform Temperature (3 K)

The inflation theory 

was developed

independently in the 

late 1970’s by Alan

Guth, Alexey 

Starobinsky, and 

others
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Higgs like field and inflation

Higgs field 2

False vacuum Energy barrier    

Energy

density

Real 

vacuum

Before the inflation (10-34 s), 

the Higgs-like field is trapped 

is a state of false vacuum.

The Universe undergoes a 

super-cooling transition: 

the temperature decreases 

below the phase transition 

point but the Higgs field stays 

in the false vacuum state. 

While the energy density of the Higgs field is positive, the Universe 

expands at accelerated rate (inflation) and the energy stored in the Higgs 

field increases. 

Inflation stops when the Higgs field decays to the real vacuum. 

The energy released by the Higgs field is converted into matter particles. 
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The Universe expansion is accelerating

In 1998, two groups used distant Supernovae to measure the expansion 

rate of the universe: Perlmutter et al. (Supernova Cosmology Project), 

and Schmidt et al. (High-z Supernova Team)

They got the same 

result:

The Universe 

expansion is 

accelerating

Some form of energy 

(dark energy) fills 

space
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Vacuum energy density

Dark energy responsible for acceleration of expansion is very 

small

From particle physics we know that Vacuum has energy: 

• potential energy of scalar fields

• energy of quantum fluctuations as predicted by quantum 

mechanics

This vacuum energy is 100 orders of magnitude larger than 

dark energy!

This huge discrepancy is known as the vacuum catastrophe.
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The Standard Model would fail at high energy 

without the Higgs particle or other ‘new physics’

Based on the available data and on quite general 

theoretical insights it was expected that the ‘new 

physics’ would manifest at an energy around

1 Tera-electronVolt = 1012 electronVolt

accessible at the LHC for the first time

The Terascale
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The LHC proton collider
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Accelerator and Experiments

LHC

CERN Site (Meyrin)

SPS~10 Km

Underground circular  tunnel

27 km circumference; 

100 m  underground

4 caverns for experiments 
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Accelerator and experiments layout

Tiny bunches of counter-circulating protons.

Colliding head-on 40 million times each second.
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1

Collisions at LHC
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▪ Superconducting dipoles 8.3 Tesla 

▪ Operating temperature 1.9K (-271 C)

▪ Stored energy per beam 350 M Joule

o energy of a train of 400 tons at 150 Km/h

Accelerator challenges

▪ More than 2000 dipoles

▪ 100 ton liquid helium

▪ LHC power consumption 120 MW

Relative to Tevatron (Fermilab, USA)

Energy (14 TeV) x 7 

Luminosity (1034cm-2s-1) x 30
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Superconducting magnetic dipole
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Beam delivery

towards

interaction

point

In the tunnel
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400 MHz RF system

cryo-modules each with 

four cavities in the LHC 

straight section IP4

In the tunnel
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Jumper connecting

cryogenic distribution

line and magnets

once every ~100 m

(early photo)

In the tunnel
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Air pressure inside the two 27Km-long vacuum 

pipes (10-13 atm) is lower than on the moon.

It’s empty!
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27 Km of magnets are kept at 1.9 oK, colder than outer 

space, using over 100 tons of liquid helium.

It’s cold!
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In a tiny volume, temperatures one billion times 

hotter than the center of the sun.

It’s Hot!
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The Experiments
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ALICE & LHCb
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Largest, most complex 

detectors ever built

Study tiniest particles 

with incredible precision 

(people)

It’s huge!
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World-wide collaborations

CMS:

38 Nations

~3500 physicists 

~800 PhD students

Couse on LHC Physics 2014 53



Motivated people

15% of the 

CMS people

Couse on LHC Physics 2014 54



General purpose LHC experiments

Advanced detectors comprising many layers, each designed 

to perform a specific task.

Together these layers allow to identify and precisely measure 

the energies of all stable particles produced in collisions.

Photons,

Electrons,

Muons,

Quarks 

(as jets of particles)

Neutrinos 

(as missing energy)
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Detector design

Design guided by physics

Search and measure the Higgs boson

Search and measure Supersymmetry

Search for any other new physics at high pT
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Two concepts
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Exploded view of the CMS detectors
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SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000A

PRESHOWER
Silicon strips ~16m2 ~137,000 channels

SILICON T CKERS
Pixel (100x150 μm) ~16m2 ~66M channels

Microstrips (80x180 μm) ~200m2 ~9.6M channels

MUON CHAMBERS
Barrel: 250 Dri  Tube, 480 Resistive Plate Chambers

Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

FORWARD CALORIMETER
Steel + Quartz bres ~2,000 Channels

STEEL RETURN YOKE
12,500 tonnes

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels

CRYSTAL 

ELECTROMAGNETIC

CALORIMETER (ECAL)
~76,000 scintillating PbWO4 crystals

Total weight

Overall diameter

Overall length

Magnetic eld

: 14,000 tonnes

: 15.0 m

: 28.7 m

: 3.8 T

CMS DETECTOR
CMS Detector
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CMS
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ATLAS detectors

24 m

7000 Tons
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ATLAS
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Detection of hadrons, e±,  and µ±

Couse on LHC Physics 2014 63



1993-2008: detector R&D and construction

15 years !
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Superconducting cable

Al stabilized NbTi conductor.

Mechanically reinforced conductor to contain 
magnetic forces.

Insert Pure Al

EB welds

Sc cable
AL alloy AL alloy
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Superconductor solenoid at 3.8 Tesla 
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ATLAS Toroidal System
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Silicon Tracker

214m2 silicon sensors

11.4 million silicon strips

65.9 million silicon pixels

Used to reconstruct the trajectories of 

thousands of charge particles produced in the 

collisions
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Silicon Tracker

TIB TEC

200 square meter of silicon wafers: from 

cartoon to reality
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Silicon Tracker
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Si sensors and electronics chain

Si Sensors

75k chips using 

0.25m technology

Ride on 

technology wave
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ECAL Electromagnetic Calorimeter

Parameter Barrel Endcaps

# of crystals 61200 14648

Volume 8.14m3 2.7m3

Xtal mass (t) 67.4 22.0

Preshower

based on Si sensors

ECAL Barrel

17 xtal shapes

ECAL Endcap

1 crystal shape

Preshower

based on Si sensors

ECAL Barrel

17 xtal shapes

ECAL Endcap

1 crystal shape

PbWO4 scintillating crystals

& avalanche photodiodes

Electron and photon detection

Design Goal: Measure the energies of 

photons from a decay of the Higgs boson 

to precision of ≤ 0.5%
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Assembling the Calorimeter

Submodule 

2x5 crystals

Supermodule
1700 crytsals

Total 36 Supermodules 

Module

400 crystals
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Assembly of front-end electronics 
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Insertion in the detector
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The Calorimeter installed in the Experiment

Jul 2007
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18 Crates

216 Electronic boards

3000 0.8 Gb/s optical links

2500 1.2 Gb/s electrical links

ECAL trigger and readout electronics
Underground caverns

DetectorElectronics
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Electronics systems

TTC Racks

PC-VME

controllers

FMM crates

Global Trigger CrateElectronics systems in the Service Cavern.

About 150 racks occupy two floors.

Most electronics was designed and built 

specifically for the experiment
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HCAL Hadronic Calorimeter

▪ CMS HCAL has three components:

• Barrel HCAL (HB)

• Endcap HCAL (HE)

• Forward HCAL (HF)

▪ Plastic scintillator and brass

▪ Quartz fibers and steel

Detection of hadrons:  

- protons, neutrons, peons, etc.
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Muon detectors

f superlayer of 4 

DT layers

f superlayer 

of 4 DT layers

h superlayer of 

4 DT layers

195000 canais DT 

210816 canais CSC 

162282 canais RPC

Drift Tubes (DT)

Cathode Strip Chambers (CSC)

Resistive Plate Chambers (RPC)
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Surface Site in 2000

Oct ‘00
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2002: CMS iron yoke assembly in surface hall
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2005: Superconducting solenoid installed
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Surface Hall in Feb 2006

COIL

Couse on LHC Physics 2014 84



HCAL barrel test assembly
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Surface Hall: Endcaps
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2004: CMS detector cavern
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2007: Lowering one of six huge disks
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Feb 2007:lowering central “wheel” 

Started the travel at 6 am….
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2007-08: Installation in the cavern
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Cables, Pipes and Optical Fibers 

Nov 2007
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Insertion of the Tracker

Tracking System

200 m2 of Silicon 

strip detectors
Dec 2007
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2008: CMS closing up…

CMS closed: August 08
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Sep 2008: CMS detector ready for beams
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Simulation of proton-proton collision 

making two dark matter particles

How did we prepare for discoveries? 
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Experimental challenges
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High collision rate
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Bunch crossing frequency

▪ LHC has 3564 bunches (2835 filled with protons)

▪ Crossing rate is 40 MHz

▪ Distance between bunches: 27km / 3600 = 7.5m

▪ Distance between bunches in time: 7.5m / c = 25ns

▪ Proton-proton collision per bunch crossing: ~ 25

Tevatron pp Crossing rate 2.5 MHz

SPS pp Crossing rate 280 kHz
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Event pileup

▪ Proton bunches have a cigar shape, about 5 cm long and 20 microns diameter

▪ Each bunch has 1.5 1011 protons

▪ At each crossing of bunches, about 25 collision occur

▪ The particles produced ( 30x25 = 750 charged particles) are “seen” by the detector 

as a single image (event) 

21 pileup events
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Raw SET~2 TeV

14 jets with ET>40 GeV

Estimated  PU~50
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High radiation levels
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Acquiring and recording data of interest

Analogy with a 100 M pixel 3-D 

digital camera:

40 Million photos/sec

Each photo (~ MB) 

- taken in ~ 500 different parts

- put together using a 

telecommunications ‘switch’

- analysed in a CPU

(in a farm of ~ 50000 cores)

Only a few hundred photos/sec stored 

on disk.

~ 15 PB/year 
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Two-level trigger

Event rate

Selected events

to archive

Level-2 input

Level-3 ….

Level-1 input

O
N

-lin
e

O
F

F
-lin

e

Trigger system decide if 

the event is interesting 

to be recorded

Two-step process:

- Level 1: dedicated 

hardware processors

- High level: computer 

farm 
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Trigger computer farm

Online selection of 

collisions to store on disk 

( 500 per second )
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Triggers and event selection

▪ Select processes that produce particles with high 

transverse energy

▪ Examples at 5.x1033 cm-2s-1 

• Single lepton and photon triggers (PT ~ 30 GeV)

• Multiple lepton and photon triggers (PT ~ 15 GeV)

• Missing transverse energy (PT ~ 50-100 GeV)

• Multiple jet triggers (PT ~ 50-100 GeV)

▪ About 100 trigger conditions in L1 trigger table

▪ About 400 trigger conditions in HLT trigger table
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The LHC Computing Grid

The World Wide Web (invented 

at CERN) provides seamless 

access to information that is 

stored in many millions of 

different geographical locations

The Grid is an infrastructure that 

provides seamless access to 

computing power and data 

storage capacity distributed over 

the globe

The Grid unites computing resources of 

particle physics institutions around the world
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Detector commissioning
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November 23, 2009 December 14, 2009 March 30, 2010

First collisions at 900 GeV First collisions at 2.36 TeV First collisions at  7 TeV

First collision at 7 TeV in CMS

2009: First p-p collisions at LHC
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Multi Jet Event at 7 TeV 

Jet event in CMS
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LHC Page 1: stable beams 
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March 30, 2010: CMS Page 1 
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Cessy: Master Control Room Fermilab: Remote Operations Center

Meyrin: CMS Data Quality Monitoring Center Any Internet access

CMS Experiment

Experiment control rooms
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...unforgettable moments
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Pixel cluster charge de/dx in the strips  

CMS

ATLAS

Tracking performance
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Tracking: secondary vertices

Basic variables relevant for B-tagging are well described by the simulation

Impact parameter

Secondary vertices compatible 

with heavy flavor production

CMS

CMS
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EM cluster energy

25.5k η→ pairs

CMS

ATLAS

Photons and electrons
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Di-jet mass

Jet PT distribution

Missing Transverse Energy

Calorimeter

CMS

ATLAS

Particle Flow

Jets and missing energy
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Rediscovery of resonances

π0

η

Φ

L

Ks
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J/’s decaying into muons

CMS ATLAS
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W and Z bosons

W→μν
W→eν

Z→ee: 

Mass= 91.2 GeV/c2
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Rediscovery of the Standard Model at LHC

Rediscovery

at LHC
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▪ Fabulous agreement

▪ Lots of data

… on to the Higgs…) (pb)t(ts
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TOP-11-007 (L=1.09/fb)  lum)± syst. ± stat. ±(val 
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16
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+jets+btagmCMS e/   7±  
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Standard Model at 7 TeV (2010-2011)
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…and many more physics results
vector bosons

top cross section

Zbb

Jets

U suppression ridge

pPb

top mass

New particle : Xb*

U More than 

500 papers 

from LHC
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Both LHC experiments have 

observed a new boson with a 

mass near 125 GeV

at significance above 5 s !
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A new boson was discovered 
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A major discovery in physics

The new boson is either the SM Higgs or a Higgs-like particle

Electroweak symmetry breaking is very likely due to some 

kind of Higgs field

The hypothesis that the space is filled with a Higgs field 

since the origin of the Universe is a plausible assumption.

A new framework to understand the 

Universe. Cosmological models 

become more plausible:

• The Universe inflation after the big-bang

• Energy of a Higgs-like field as the source 

of all matter in the Universe
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LHC projections

HL-LHC

3000 fb-1

Phase 1 Upgrade
Phase 2 Upgrade

300 fb-130 fb-1

50 ns 25 ns25 ns

Luminosity-

leveled at

5x1034 Hz/cm2  

CMS Detector Upgrades:

8 TeV 14 TeV 14 TeV
14 TeV

2010 2015 20232021

J. Varela, Para além do 

bosão de Higgs, 2014
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End of Lecture 1
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