Towards a high-resolution fluorescence telescope

B. Tomé (LIP)

IDPASC School on Digital Counting Photosensors for Extreme Low Light Levels, Lisboa, 16-20 April, 2012

Extensive Air Showers (EAS)

Pierre Auger Observatory

Hybrid Detector 1600 Detectors (Water tanks – Cherenkov) In a 1500m grid Covered area = 3000 km² 27 (24+3) fluorescence telescope

HEAT – High-Elevation Auger Telescopes

- Upgrade of the FD; taking data since 2009
- Extend FoV of one FD eye (Coihueco) from 30^o to 60^o in elevation
- Same optics as other FD telescopes

Shower seen by HEAT and Coihueco

60 elevation [deg] 50 40 30 E = 0.36 + -0.03 EeVχ²/Ndf= 161.7/205 97856 100 80 40 20 60 azimuth [deg] Light profile converted to energy deposited in the atmosphere 700 800 900 1000 1100 1200 500 600

slant depth [g/cm²]

dE/dX [PeV/(g/cm²)]

0.5

0.4

0.3

0.2

0.1

- Shower profile gives information on:
 - energy of primary particle (integral of energy deposition)
 - type of primary particle and properties of high energy interactions in the atmosphere (X_{max}, position of shower maximum)

- Auger collaboration is planning an upgrade of the detectors (FD and SD) to run the observatory beyond 2015
- Main physics goals:
 - Composition vs Hadronic interactions
 - Cross-section measurements

- FD enhancements should be focused on:
 - increase of statistics
 - increase of FOV
 - improvement of shower measurement

Detailed studies of EAS development

- Early part of normalized shower profile sensitive to composition and hadronic interactions
- Experimentaly challenging due to lower light level
- Investigate sensitivity of shower transverse profile to first hadronic interactions

- Detailed studies of the shower profiles could benefit from:
 - Higher light collection efficiency
 - Higher resolution
- In addition a finer pixel would be better adapted to the telescope optics performance

Optical spot smaller than pixel...

Improvements

Credits to P. Assis

Improve efficiency

Increase resolution (Space & Time)

New Sensors: SiPM

... Upgrading the detector

Double the eficiency

Double resolution (1/4 pixel area)

Reduce systematics in light collection

To have a focal surface built with SiPM Use digital photon counting Signals Digitized and time-tagged "as soon as possible". Data forward @ max bandwith using off-the-shelf links and boards.

Detector operated at low temperature

Performance

SiPM Pros:

- Robust
- Fast
- Low operating voltage (30 V 80 V)
- Small (1-10 mm²)
- High PDE (devices with PDE ~ 60%)
- Gain: 10⁵ 10⁶
- Photon counting capability
- Cheap (and expected to get cheaper)

SiPM Cons:

- Dependency with temperature
- Dark current,
- Afterpulse
- crosstalk

Great developments in SiPM. Control Dark current, afterpulse, x-talk Increase efficiency Lower Price

Replacing a FD camera

Pixel FOV	~ 1.5°
Pixel Size	~ 4 cm
N Pixels	440

with SiPM...

Replacing a FD camera

Advantages:

Resolution Light detection efficiency Light detection uniformity across camera surface

First Cameras

First Auger MPPC camera for the Observation of UHECR air Showers (64 pixels)

-40

-20

20

0

40

60

x [mm]

END