

SiPM characterization, concept and measurements

SiPM workshop LIP, April 18, 2012

Thomas Schweizer

Principle of SiPM and some basic properties

Thomas Schweizer, LIP, July 2011

Concept of SiPM

Mode

Summing many cells

Problem: Optical crosstalk Light produced in avalanche process

When an avalanche is triggered in one SPAD we have:

- Secondary photons emission due to the avalanche current
- Photons propagation throughout the chip
- Secondary photon detection by a nearby detector

Thomas Schweizer, SiPM workshop LIP, April 18, 2012 Wednesday, April 18, 2012

SiPM Spectrum with afterpulses

- Deviation from Poisson statistics
- Measurement of optical crosstalk probability:
 - Count Pedestal and 1. & 2. Photoelectron peak
 - Calculate deviation of 2. peak from Poisson
- → Long tail in SiPM pulse hight distribution vs threshold

Thomas Schweizer, SiPM workshop LIP, April 18, 2012

Measurement of photons from avalanche process (Max Knötig)

- Illuminate one SiPM cell with small laser spot
- Observe emission of photons from avalanche process (microscope)

laser spot FWHM 2μm

Thomas Schweizer, SiPM workshop LIP, April 18, 2012 Wednesday, April 18, 2012 Light emission from neighbouring cells

0

Alternative measurement of optical crosstalk (Max Knötig)

- Measure light in neighbouring cells with Microscope
- Good agreement with conventional method !

Wednesday, April 18, 2012

'Delayed' optical crosstalk in SiPM

- Photons are generated during avalanche process
- They create photoelectrons in bulk material
- Electrons drift back into the avalanche region and trigger cell
- Time characteristic: 1ns-20ns

Thomas Schweizer, SiPM workshop LIP, April 18, 2012

Afterpulses in Silicon

- Impurities and defects in the silicon lattice may have irregular behaviour
- Carriers during an avalanche discharge are trapped and released later in time
- Time characteristics: up to 100ns

Thomas Schweizer, SiPM workshop LIP, April 18, 2012 Wednesday, April 18, 2012

Suppressing afterpulses

- Afterpulse-excitations have a lifetime of up to 100ns.
- By using quenching resistors of 1MOhm the recovery time of one cell that has fired increases to about 1usec (recharging time of capacitance)

- Afterpulses do not get a chance to trigger the same cell twice.
- Hamamatsu uses 100kOhm quenching resistor. The recharging time is faster and afterpulses appear.

Thomas Schweizer, SiPM workshop LIP, April 18, 2012

Counting crosstalk in QE measurement: Measured and real PDE: Hamamatsu MPPC

Wednesday, April 18, 2012

Solutions to reduce optical crosstalk: Introduce trenches

- Introduce
 optical barrier
 between cells
- block the instantanous photon crosstalk

Solutions to reduce 'delayed' optical crosstalk: Block drifting electrons

- Introduce
 second p-n
 junction
- Potential barrier
 will block drifting
 electrons

Thomas Schweizer, SiPM workshop LIP, April 18, 2012

Arrival time of 'instantaneous' and 'delayed' optical cross-talk

Interesting experiment: Mirror in front of Dolgoshein-SiPM

Thomas Schweizer, SiPM workshop LIP, April 18, 2012

MEPhI - MPI for Physics R&D collaboration and cooperation with PerkinElmer Industries (now EXCELITAS)

Developing UV sensitive SiPMs with extremely high PDE,

Extremely low crosstalk and low dark rate

Pioneer and great Leader: Prof., member of Russian Academy of Sciences Boris Dolgoshein 1930-2010 SiPM Sizes 1x1 and 3x3 mm² µ-cell pitch 50 and 100 µm Geom. Eff. 40-80%

16-17 February 2011

B. Dolgoshein, R. Mirzoyan, E. Popova, P. Buzhan, PEI, et al.,

General specifications of SiPM

Thomas Schweizer, SiPM workshop LIP, April 18, 2012

Recovery time of fired cell (--> suppression of afterpulses)

Recovery time of SINGLE pixel: C(pix)xR(pix)-->20ns.....a few mks

B.Dolgoshein,LIGHT06

Jelena Ninkovic Wednesday, April 18, 2012

Gain and PDE as function of overvoltage (Perkin-Ellmer-SiPM as example)

A PDE and gain of a 1x1 mm² SiPM produced by PEI measured at +20°C

Overvoltage = operational voltage - breakdown voltage

Thomas Schweizer, SiPM workshop LIP, April 18, 2012

Temperature dependence of dark rate

Cross talk comparison of different SiPM

Thomas Schweizer, Sipivi workshop Lip, April 18, 2012

Signal timing for $3x3mm^2$ SiPM sample 40ps FWHM laser pulses, λ =405nm, single photon mode T = -40° C

Samples for evaluation may become available very soon

16-17 February 2011

B. Dolgoshein, R. Mirzoyan, E. Popova, P. Buzhan, PEI, et al.,

General properties of SiPM

Wednesday, April 18, 2012

Tł

Measurement methods for characterization

Thomas Schweizer, SiPM workshop LIP, April 18, 2012

Measurements of Hamamatsu SiPM: Pulse shape (HPD and SiPM)

Thomas Schweizer, LIP, July 2011

Passive shaping (simple capacitive coupling into 50 Ohms) reduces the fall time (needed for reduction of pile-up)

Measurement of QE

Monitor the photon detection efficiency:

 Compare SiPM PDE with calibrated reference detector such as HPD

Thomas Schweizer, LIP, July 2011

Measurements using pulses and FADC

- Illumination of SiPM and reference detector with same pulsed light flux
- Measurement of counts in pedestal and 1. PhE peak
- Calculation of Poisson mean
- Measurement of crosstalk of SiPM by 2. Peak
- Correction of mean counts of both detectors due to (detector dependent) losses
- Calculation of SiPM PDE by comparison of QE and mean counts

Thomas Schweizer, LIP, July 2011

Voltage scan Hamamatsu

Voltage scan Dolgoshein W5N42 3x3mm

Measurements with discriminator

Illuminate SiPM with continuous light flux

Need a calibrated reference detector --> PIN diode

Thomas Schweizer, LIP, July 2011

Measurements with Hamamatsu SiPM: Counting mode with signal shaping

 SiPM signal (with shaping) and discriminator (25ns pulse width)

Pile-up and dead time at high rate: --> cross talk correction

Measurement of gain and crosstalk by threshold scan

Cameras with SiPM

Thomas Schweizer, LIP, July 2011

FACT camera with 1440 SiPM (First G-APD camera telescope)

Thomas Schweizer, SiPM workshop LIP, April 18, 2012 Wednesday, April 18, 2012

Testcamera with cooling plate for possible future AUGER fluorescence detector

Thomas Schweizer, LIP, July 2011

Thermal simulations: Condensation

Thomas Schweizer, LIP, July 2011

Temperature distribution at window --> will get condensation

-> gravity !!-> double glas window

Wednesday, April 18, 2012

Reduce reflectivity of entrance window

 Antireflective coatings with amorphous flouropolymer resin (Teflon) (companies: Cytop, DuPont)

Thomas Schweizer, LIP, July 2011

Significant reduction of reflection by moth eye structure

Sketch of readout and slow control for SiPM camera

Development of a lowcost-lowpower readout with 64 programmable discriminators

- Front-end ASIC: MAROC III
- Programmable shaping time
- Programmable threshold
- Charge sensitive inputs, sensitivity 15 fC
- PWR TestPulse Bias VthMON ChargeOut ASICCON TEMP JTAG **Bias Control ADC** TEMP PRO USB switch SERDES SFP 64 ch MPPC ASIC 64 MAPD3N FPG/ SFP SERDES SYNC CLK **Bias Control DAC** Cold Plate TEMP CLKEXT Humidity SUM8 **RS232**

- On-Board FPGA
- optical link transmission
- USB2 output

Online calibration (and adjustment) of both: Gain and PDE:

Monitor gain and (relative) PDE with discriminator only

 In case of rate increase the point of 50% remains at the same threshold (--> gain or amplitude of pulses)

Thomas Schweizer, LIP, July 2011

Optimize light collection on SiPM

- Perfect' Winston cone
- Si has refractive index 3.6-3.8
 --> strong reflection
- Covered by SiO2
- Additional protection layer with a resin
- Need an additional antireflective treatment
- PMMA layer with motheye plasma etching

SiPM light guides for test camera

Reflectivity of coated 3M-Vikuity-foil

Thomas Schweizer, SiPM workshop LIP, April 18, 2012

Thanks

Quantum efficiency of different SiPM

Wednesday, April 18, 2012