D -EXP'ERIMENTA'L: ERROR

Aim of experlmentS' : :
1) to measure the numerical value of some physxcal quantity, e.g. ¢, o
o "parameter determmatlon : o N
2) to test a particular theory is con51stent w1th data '
\ ““hypothesis testing"

reality is mixed, of course
a measurement of ¢; parameter measurement
and

test of ¢ being constant with time

Why errors? .
currently known value of ¢ = 2.99792458)(10’_3 m
a new experiment gives ¢ =2.9900 £ o
1)  ifo=001x10°m
new result is consistent with the previous results
2)  ifo=0001x10°m -
new result is inconsistent with the previous results;
-new discovery (c changes with time)
-either the new value or error is wrong
3)  ifo=1:0x10°m
new result is irrelevant
So, depending on the expcrimental error, our reaction could be,
“the conventional theory is in good shape” or
"we have made a great discovery" or "we should find a better way to do an experiment".

Random and systematic errors .
- Random error: . inability of any measuring device to give mﬁmtely accurate answer
Systematic error: ~  in the nature of mistake . 4
. Example: determination of the decay constant A of a radioactive source
- counting number of decays within a given time it1terval — —dn/dt

‘weighting the sample — number of nuclei present

dn
dt
n

A=—

C



i

random errors are due to

-systematic errors are due to

counting of decays (random process)
timing of the interval -
weight measurement -
the counter used is not fully efficient -
and/or not surroundihg the sample
completely — lower counting than the
true value
existence of other radioactive source,
e.g. cosmic ray
- higher couhting than the
true value
radioactive source is not pure
— number of nuclel is less
than the true number

random error can be estimated by repeating the measurement several times and

comparing the results
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- 2) DISTRIBUTION AND PROBABILITY

Distributions n(x): describing how often a value of the variable x occurs in a definite sample

range

0to7

1to e

| —~13.6to OV

range

0 to 24 hours

Qto oo

statistics understood statistics after x
hours
Distributions are characterised by /
. - XA
1) the mean or expectation value = E(x) = / ., ;A2 o ;
2) the mean of the square deviation from the mean or variance = Gxi/ iy oty
3) the median =xg 5 - b

Discrete Distribution
x variable n(x)
number of days number of sunny days in a
week
integer x number of working

programme you produced

after x compilations

energy of ground and number of atoms with
excited states of hydrogen  electrons in state of energy x

atom in atomic hydrogen at 10°K

Continuous Distribution

X variable n{x)

hours of sleep each night number of person sleeping

for time x

hours to understand number of person who

the value where the population for above that value and the population
for below that value are identical ' '

Xo5 Xmax ;
' o5 Frnax

ie. = - dxfx)= dx

ie XEmm,f(x) %E's,ﬂx oer ,j@ Jes 1)

" 4) the mode = X

" the value which happens the most

A

o

L

o

L :w/;.f f

/




symmetric distribution . . " asymmetric distribution -
50771 7T T T T ] 50 R B N B B ML N B

f(x)
f(x)

symmetric distribution: E(x) = X0.5 = Xm

Probabilities P(x):  with a sample of N measurements, the value x is obtained n, times. Then the

probability is defined to be
n

Pl = Jim. N~

This is equivalent to the normalised distribution, i.e.

py=— L
Y foor | dxfe)

Note: 1=p(x)=0

Expectation value and variance and can be written as

X,

Ex)= 2 Xx p(x)or J‘xm dx xpx)
Xom Xnin

and
5 Xmax _ N2 Koo 2
o*0)= 3 (x— E) " pyor [ ™ dx(x— )" p0
Xeni Xin

~B({ x- B9)) )= Ex) + E%) - 2 E (x E(Y)
=E(x2)+E{x)-2 EXx)
=E(x 2)—E2(x)




and variance ?

Estimation of expectatlon value'

Note; since the expectation value of £ is E(x), £ defined as above is unb

1 "N
R _N_le

i=1

jased..-e, Hx {»(’nh""

Jalue  fotg'nt dgf(wf‘ o féf a!

N \
E®) =7 . Bx)=Ex) Wittt ©

i=

How good is this estimate? —  the variance of £

2

F0)={s-BwY) = | - |- z(x,-—z«:(x

1
2

BN P SR )

i=1 Lj=11i#j

- if all x; are independent (uncorrelated) - - -

[ — By £00)] =0 forisg

and we obtain

.02(f)=—];}7 ;{xi—E(X)}z =—]71— ;E({f,-—E(x)}z)éT{,— o (x)

ie.

o %)= oz(x)

— the accuracy of the estimated mean value increases with increasing N

Estlmatlon of variance:

One may think a reasonable ch01ce could be

However 0'

N
~'2 2
O'x —N—z{{x x)

\
2is blased ThlS can be seen by evaluatmg the expectann value'




Ko 83, - x)) 2( E(x)]+[E(x) x]>)
=#s(f [x;— EG)P + Z[E(x x]2+22‘[x )| [B) — x)_'
| =%E(§: - P + N [ - £ ~2N[E(x)_.x]z)_

=7%,—{E(i[ E(x)) N E([E(x) - x])}=—1{7[N0(x) Nﬁ(x)j
==L o |

ie.

E((S"x)= N—-1 0(X)2

the estimation value depends on the number of events N.— biased!
The unbiased estimation for the variance must be defined as

~2 1 a2
Oy = N-1 £ (xi_x)

X




-4) IMPORTANT DISTRIBUTIONS

i) Binomial distribution

example: Tossing 4 coins. Probabilities for having’ o
0 head 1 head 2 heads 3 heads 4 heads
0.54 4x0.54 6x0.54 4x054 . 054

Note the sum = 16x0.5¢ =1
generalisation:
p= probability for success ,
g= probability for failure pg=1
n= number of trial
probability to have m successes
pr(m)=nCom p™ g™ "

. !
where the combination ,Cp, = — 22—
m!i(n—m)!

Expectation value and variance:

n

Em)= Y, mP(m)= 2 —mnl _mgn-m

=0 =1 m'(n m)!

2 n—l! n—'l ’ ’
=npY, ( I ) )!p'" Tgn- '"—anO m,,( ) )p”‘q""’"“

—-m—l!

n
— _____ﬂl__ m n'—m'= ,
_np z m/!(n,__m,)!P q nme()Pn(m)
=np

n

E(m2)= i m2P(m)= Z..__’n_2£_p gn—m

2 (- m)

& me=D m—l)(n—l .
=”"m2=1(m-1()!(n—)m)!”‘ ””2(( 3)' e

=np Z__ Tg)—q;—,l_)_—nn—;,—!—pmq" ”’—np[mz m P, (m)+ 2 P (m)}—np(n p+1)
=npnp+q)

expectation value: E(m)=np
variance: oXm) = E({m—E(m)}2) = Em®)~EXm)=np q

a) for p fixed, various n b) n fixed, Variousp c) pﬁ fixed, various n
a) transition to the Gauss distribution
¢) transition to the Poisson distribution




ii) Poisson distribution _
'The transition from the binomial to the Poisson distribution is done by

n—oo, p—0 keeping 7 p = pi(constant), i.e. the distribution for events
' _with small probability.
. 1\
I R A (1-%)
B(m)=—" L
) m!(n—m)'p 7 m!(n—-m)!\n) ( _E)m

by taking the limit n—yeo
tim (1-4)" =e=# and Jlim 10-30-3) (1 -5 =1
nee n n —oo

thus, the Poisson distribution is defined as
m

. -
| nl_lf)noo Pn(m)= ml € #:fu(m)
Note that f,(m) is properly normalised, 1.c.

S N S M- LM _
2 ulm)=e7H B S =e ”(1+Tr+—z?+"')=e Het

Expectation value and variance:

oo oo m o m—1 oo
= o= B e R ¢ R

= m= m=0
=4
and
) m, « [(m’+1)um!
E(m2)=’;_(;mf£—l)_!e—”=ﬂmz=‘oi( m')!. et

<l 5 )+ Bl e )

Thus,

expectation value: E(m)=p
variance: o%(m) = E({m-E(m) }2) = E(mz)—Ez(m) "
Examples of the Poisson distribution: . v
. -Consider the very large number of radioactive atomic nuclei n. The probability
that one of the nuclei decays w1thm the t1me interval A, P(At) fo]lows the
P01sson dlstnbutlon if At<<;t : -




-Number of interactions in a given time interval At produced by a high intensity
beam colliding on a thin target follows the Poisson distribution.
If the rate of the basic process changes during the measurement or events are
correlated, the Poisson distribution cannot be applied.
-Number of interactions produced by a low intensity beam colliding on a thick
target. The rate of the basic process decreases since the initial number of particles

is limited.

-Number of particles detected in one second by a detector which has a dead time of
Imsec and with a particle flux of more than 103/sec. In this case, no particle can be

detected for 1msec once a particle is detected by the detector. If the flux is high, the

detection of a particle is correlated to the previously detected particle.

Interesting example.
N particles are detected and n, of them are positive and r_ of them are negative, i.e.
n+n_=N. The probability to obtain such an event is the product of the probability
to observe N events (Pdisson distribution) and the probability that n, in N events
are positive (binomial distribution) '

Y

N- +
N N -n,)! p(L=p) "

where p is the expectation value for the total number of events and p, is the
probability to obtain a positive particle. The above expression can be rewritten as

e Ful N! n Nen,_ € FuN
a7 Ut M o B A
e HPe(up)™ e HP-(up)™ |
= 7,1 X nl
+ —

where p_=1-p,. The last expression can beAinterpreted as the product of two
independént Poisson distributions. The two Poisson distributions describe the
probabilities for positive and negative particles respectively.

iii) Gauss distribution
Transition from the binomial to Gauss distributions can be obtained by taking the limit
n—soo for a finite p so that np—ec.-In this case, n, m and (n—m) are all considered to be large,

ie. _the Stirling's approximation can be used for their factorials:




11

=V27n ()" (1+ 121n 1 +‘.\..)

288 n?
= V2 ()" (1+ P * g )
(n—m)!=~/27z:(n—m)(n—em)"[1+ 12(n1—m) + 288(nl—m)2 +]

-then,

4n! — n n -m _ —-n+m
m!(n—m)!~\/27tmn m) ntm =" (n—m)
s mi TR SRS
1

1 (“7%)"("’*5) (_%)—(n—m.;_%)

2nn.

The binomial distributidn is now approximated as :
P, (m)= ./_2%1—(.,1"1_) [ 3) (zmy-frmmeg) pm g
=4/ > 7rn exp[ m+ ln—-———(n m+ é)ln

By introducing m=np+§ where I&]<<|npl, we obtain

I

In 52 =ln( *é)~1“q“i’“;—(q§n)2

qn

—n +m1np+(ﬁ—m)lnq]

Keeping the dominant term in &, Pp(m) becomes

, : 2
m)z\/_z-—n}_%ex‘){_ 2n§pq]= e exg{_ 2562 ]

where o?=npq. In general, one formulates

which is often called a Gauss distribution. (As seen from the formula, x can bea

continuous variable.
Note: By increasing /1, the Poisson distribution approaches to the Gauss distribution.

1) Some integrals...

T + 00
1 =f exp (—x2 dx=__‘/_7_£_,1 =J.' xexp{—x? dx::——l- o —x° +oo_ 1
0=], exwpbxVdr="3, 1= xexp(-x7 Le-+37=

then




2) Expectation value

»E(x)=£+:xG(x) J_ J' xexp —()fz:o—fz)—z—)dx

+ oo ,2 .
____l__ ) X s
=g J_w (x +a)exp(— 20‘2)dx =a

3) Variance

+ oo + oo ’2
E(x2)=f_°° x2G(x)dx= —_—711?0'] (x’+a)zexp(—— zxo_z)dx'

< s, )qﬁ+62

€X

4 o0
1
I S dx 2
iﬂa(ﬁwx ex -2 )ax v

then '
Variance(o) = E(x2) — E {(x) = 2

expectation value: a

variance: o2

4) The Gauss distribution has the following properties
a+o . a+20 a+3
f ” G(x) dx = 0.682, f G(x) dx = 0.954, % G(x) dx=0.998
a-o a—-20 30

a—
i.e. if 1000 trials are made, 998 of the x values should in average be

between a—30 and a+30.

In a real experiment, neither the expectation value nor the variance are known.

— estimation of E(x), and o(x) are required!!

Example
m counts of radioactive decays were observed in a time interval of Az

1) estimation of the expectation value by the measured count

E(m)=m
2) decay of radioactive nuclei — the P01sson distribution
02=E(m)=m " o '

3) if m is "sufficiently” (see Ubungen 1I 3) large, Poisson—>Gaussian

4) experimental value is given by

12




. m+\/ m :
*0.682 (0.954, 0.998) probability that the true expcctaﬂon value E(m) is
- - between m+\fm, (m_2\/m m+3‘/m)
Note: Experimental errors have always a tail — the probablhty to be (for example)
>30'is larger than 0.002.

13
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R
4) MULTI-VARIABLES DISTRIBUTION
Let us consider a case one measurement x coﬁsists of n variables, x=(x1, xp, -* , Xp,):

Probability distribution for x: P(x)=P(x1, X2, ", Xn)
marginal distribution g(x,) is given by

+ oo + o0
8(xr)=J: dxf dx, - dxrl dxr+l f dx P(xl’xl""’xn)

" = probability distribution for a single variable x,.

Expectation value of x, is given by

+ 00 + oo + oo
=J dxlf dxz"'f dxnxrp(xl’xZ’ "‘»xn)
—— 00 — 00 - 00
+ o0

= dx, x,g(x,)

A distribution is described by
Variance: 0;2 = E( [x; — E(x;)1?)
Covariance: cov(i, ))=E( [x; — E(x)]ix; — E(xp)])
i.e. cov(i, i)= 0;2
Note: cov(ij)= cov(j,i)
If there is no correlation between the variables x; and x;,

cov(@,j)=0

i) Gaussian distribution with multi-variables
General formula is G(x —a) =kexp[—(x — a)‘ W(x a)/ 2]

a: n component constant column vector
x: n component column vector

xt: transport

W: nxn matrix

k: normalisation factor (f dx G(x — a) = 1‘)

Expectation value

E(x—a)=£+mw®(x—a)G(x—a)=kf_+:dx(x—a)exp[— (x—-a)[;V(x—a) =a—-a=0

E(x)=a
We also find

d E(x—a) :fj:dx a[(x—agaG(x —a)) _. +wdx[—-Il+(x"a)(x—a)tW]G(x"a')"'

oa e
C=—J+H(x-a)(x-af)W=0



e
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The second term is nothing but the covariance, 1.e.
of covl,2)
V=W '=E(x-a)(x—a)")=| cov(12) of

The matrix Vis called the covariance matrix. (The matrix W is often called the weight matrix.)

Vew-lz of covl,2)
cov1,2) of
Inverting V, we obtain

W 1 ( o7 —cov(l,Z))

o2 6F—cov(2,1)* \—coll,2) of

Example: two variables

If the two variables are uncorrelated, i.e. cov(1,2) =0

9o
of
W= 1
0 -5
03

and
2
oL el imad’) ] Gamadf
27t0'1 o)) 2(512 2(522

i.e. a product of two Gaussians as expected.
y/ det{ W)
(2 TC) nl2
When a correlation is present, by introducing the cerrelation coefficient p defined as

_cov(1,2)
T 010y

( the general normalization factor: k=

the matrix B can be written as

Probability contour:
A probability contour on which the probability is down by 1/\e compared with the
point x=a is given by
(x—a)'W(x—a)=1

ie. ) :
(x1-ay)’ N (xp—aj)® 2(x;-ay{xa—aj)p —1-p2
o2 o2 . 0,0,

(note Ipl <1) which can be illustrated as



ar,+o07o

a;—0»
a1—0] a1+o;

For a given value of x = X;, the value of y giving the higest probability is

given by
aG(il, x2)
Bl it S0 Y
a.xZ
(x2 —2‘12) _ (xl "al)p -0
1e.

~ 192 o)
X=p—=4t| G P
o o

If no correlation:

x1(x7), which maximises the probability, is independent of x(x1), ie. ax(ay)-
Positive correlation:

x1(x2), which maximises the probability, increases with ;z(xl).
Negative correlation:

x1(x7), which maximises the probability, decreases with x(x1)-

16
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i .=S) 'TRANSFORMI.NGVARI_IA:BLES"-AND ERROR PROPAGATION

o ATransformann of varlables

x—)yw1thy—y(x) => dy=|dy/rd'x|dx
probability‘ di_stributions' transform as . ,
= gy)=|dc/ dy|fx)

Note: _ . : ,
fg(y)dy =ff(x) % —%‘dx:fﬂx)dx

i.c. they are properlyinbm}alised.

‘Many variables:
X=(X1,%2, ... Xp) —=>Y=(V1,¥2, -+ Yn) = gy =Jxly) fix)
where ' "
a.x 1 ax 2
a)’1 8y1
ox
XY _ 2
is called Jacobian.
Example -

1) Linear transformation _
y=Tx+a (y =T;xj+a;)a:constants
Expectation value is given by
Egy)=TEx)+a
Covariance matrix is given by
v,=E{ [y-Eo)] b-E0)]' } |
~E{ [Tx+a-TEx)+al[Tx+a- TE(x)+a] }
=TE{ [x - E@] [x - B@)]" } T

=TV, T
Transformation of the covariance matrix is glven by

V=TV, T'




oY E ':2) Nonlmearcase '

'»Assume that x is not far from E(x) ie.

B + AR aly, :'x_,;i.
PR > y‘(E( )) Z(%)::a(x) Z(Bx ax") =E(x)516xk :
A fvhere 57 xX— E( ) VlC E(@)=E(x,—E(xj))=0 |

| | E()’.)= (E(x)) IZ(axa }é}k) E(,)CQV(J"’ k) +

and

s3] w58 o335

i)x=

thus
2,

A=) B (578 B3 (3ot

- The variance can be given by

I (v
o Xy) = Ep?) - EX( i)=;(£i) . )(—a%’l) o )COV(kJ)

or more generally
’ V,=TV,T t
with
G
ox; dx,
T = @
axl

If there is no correlation between x; and x;, we obtain

0% =070 ;(ﬂ)j N a?(xk)

axk

L whlch 1s usually referred as "error propagatlon




An example of error propagatxon ' _ : _
| A detector measures the x and y coordmates of a pomt thh errors Oy and Oy, 7
mdependently B
—> polar coordmate _
- r2=x24y?, tanf=y/x
Using o o
orfox=x[r," 'ar/ay ﬁy/r _
ae/ax— —y/r2, 00/dy= x/r?
variances become
0,2 = (3r/ 9x)2 0,2 + (3r/ 9y)? 0,2 = (2o, +y20, ) [ 12
‘ og? = Yoy Hx2o)[r
On the other hand
x=rcos,y=rsind
1e. » ,
0x/dr = c0s6, dx/d6 = —r sinb

and -

2= () ot (5] od 25 55) i 0

1 (x cos20 + y2 sin’6) o] + L (y2 c0526 + x2sin0 ) —2rsin@ cos@ Cov(r, 6)

whichgives
- 2 co 2 cinZg — r2 2 0520 + x2 sin?
_ Cov(r, e)zx cOoS 94:y sin“@ —r x2 y co;? x“sin“@ y2
2 r3sin @ cos 6 2 r3sin 6 cos 6
_y200529+x2811126( 2 2)_ y2x2 ( 2_0_2)
" 2r3sin@cos® ‘¥ */ risinfcosh
XY (42_ 52
T3 (Gy Q-x)

This should be compared with

‘ ' ror
o} Cov(r,6)|_| 9x dy | g2 0
\Cov(r,0) o2 | |28 a0 1\ 0 o,

v
N =
SR
@

~——
Q
~
’QJ
>

QU
‘<

QU
<

b4 2 r X
r o, 0 r- r2
2 flog]l 2 2
r2 r r?
+y20% «x
Y Oy _)’_(02_62)
) 39y ~ Ox
y20'x2+x20'y2
0.2-__.0.2)
. C Y ] X r4




if 0,=0,, no correlation between o, and.og -

if op<oy, the correlation is positive for x>0, y>0




' '6)ICENTRAL LIMIT TTHEQREM' e

Theoentrallmnttheoremxs » _ ' o B L o
If the x=(x1; X257 Xpr) are aset of n mdependent vanables all followmg an arbltray dlsmbutlon 7'
with mean a and variance [o2R then in the limit n—-)oo thelr anthmetlc mean . - ‘

,x_12r

follows a Gauss distribution with mean-a and variance 2/ n o
If x;(xl, X2, ..-Xy) are from #n distributions with different mean a; and variance ¢2;, £ still follows a
Gauss distribution of mean (1/n)Xq; and variance (1/n)26‘2- The distribution of each x; is irrelevant. .\
If x; are already Gaussian, £ is a Gaussian for n>1, else for some "large n.
. (how large? see Ubungen V)




7) CHI SQUARE DISTRIBUTION -

Assume x follows a Gauss distribution with a mean 0 and a variance 1 (the standard Ga_tussiém); ‘

Draw a sample Xy, X3, X3, - X,. A sum of squares
2= s -

follows the probability function

f(ZZ):Hn/ZI)zn/z (Zz)hlz_le_lez

which is referred as chi square distribution and n is the number of degrees of freedom.

Note:
E()=n, E{((2)}=n2+2n,
_()=2n
and ‘
f2=0)= oo n=1
0.5 n=2
0.0 n=>3

The probability that the random variable »? does not exceed yo? is given by

A 1 /'(02
F(ZO)— F(n/Z)Z"’ZfO u

nf2-1 e—-u/2 du i

10
08 |
06 |
N
04 P,

0.2
33

8 10




General definition of y? :
2_ @ —a)’+ (=)’ + - +(x,—a)’
o? ‘

X

where x; follows a Gauss distribution with an expectation value a and variance G2.

Recall previous estimation for the variance (Chapter 3)
N
e NSk
14

where x; is drawn from a normal distribution with variance 2. Then, (N—1)6'x2 o2 follows
the y2 distribution with (N~1) degrees of freedom.
Proof: if we define

M .
)’1=T/175(x1—xz),)’2=751—x=§(x1+x2—2x3), )’3=73—X—5(x1+x2+x3—3x4)

Yn-1= (o +xp 4330 2, 1~ (n-1)x,)

(n—1)xn

1 : : N
)’;zzﬁ(x1+x2+x3‘”+xn):/ﬁx

y; follows a normal distribution with variance 0‘_2 and expectation value E(y)=0.
Then Zy;2=3x;2.
It follows that
(n—1)6 =_Zl(x — %) =Z EDWIEIIEDY
= :

Le.

~2 -
(n— l)o-x - 1 nzl )"2 . _
o2 o2 &7 .

follows y2 distribution with (n—1) degrees of freedom.

Why n—1 degrees of freedom ?
due to the constraint

n
> x=
i=1

the degrees of freedom ‘is reduced from n to n—1.




- 8 THE M‘ETHQD_*,’OF MA}_{IMUM' LIKELIHOOD

A) leehhood functlon ' - - :

Function fix;4 ) describes the probablhgy of the random vanable x=(x1, X2, ** Xy) with a
specific set of parameters 4 =(A1, A2, =+ A,). When N measurements are made with
x(), x(2), - x(N) the probability to have such N events is given by

I = uf (x0); 2)

whlch is a function of A . which is called likelihood function.

Note: fix;4 ) must be properly normalised, i.e. ™ dx f(x /1) =1
) Xmin

Example:

We have an asymmetric coin and want to decide whether this belong to class A or B.
A B
“heads 1/3 273
tails  2/3 1/3
After 5 tosses, one heads and four tails were obtained. Likelihood functions are
A: L= (1/3)x(2/3)* = 0.0658
B: L= (2/3)x(1/3)* = 0.00823
i.e. class A is the likely solution.
b)Maximum likelihood

general extension of the example

— a set of parameters A which gives the highest value of the likelihood function have the

7
" highest conﬁdence as the estimation.

Find A which makes L maximum!

L

uniquely defined, symmetric uniquely defined, asymimetric 272777777177

For computational reasons, it is easy to use a log likelihood function" defined as

- oee{fena)

maxnmsmg L = maximising I

Single parameter case
" At maximum, dI/dA=0;

24



and obtam the hkehhood equaﬁon

a5 ]
=1 f( A)

- Example: Repeated measurements with different accuracy"s.

Assume that the accuracy of each experiment can be expressed by a

normal dlstrlbuuon with vanancc 0;2. The likelihood function is given as

b Hf HJ— P[(x—(]z)&—f_)z

J

"and the log 1ikelihood function is

)2 |
-1 z + constant

N (o 0)_ ) X
a _ ¥ Y '1) Zx—j)—lz—l—=0

di /=1 0'3 =1 O'j2 =1 0’;2

we obtain

3 =0

j = 0- ,] .
A=—Ff—"— weighted average

A

ol
B) Information inequality

A good estimation of a parameter A, S must be "unbiased" and its variance 02 (S) must be
as small as possible. o |
'\ —-there exist an optimised relation bctween these two requirements--
information inequality

BS)= [ 5.7 (6 2) 7 (% 2) - (% 2) ) e -

and : '
E(S) =B ()+A
B (A): possible bias
B(A)+ A= fsf 2 ) f( (™). ) ()dx(z)---dx(N)‘

By differentiating respect to l,- we obtain

’s SR



'_"'}B"(i)+1‘=_JS[ —ff—(fM]f( (0, x)f(xm ,1) f(x(N) g)dx(l)dx(Z) dx(zv) o

s f(x”l)D
| | _,E(s[l; 00, 2) E(Sl) |
 Since clearly E(l") = 0, we can derive | | '
B'(A)+1=E(S1)-E@E)E()= E{[S E(S)]l)
and usmg [E(xy)}? <E(22) E(?), it follows that B
[B"(A)+11>< E{(s- E(S)]Z)E(l'z)

We can also derive

w8 2] ol )l | )
e ]

where the second term vanishes using E [ f'(x(9; A)/ fx®D; )] = f £'(x®; 1) dx(? —0

(3E)
f

By introducing

=N | dx

-el) e £

£ A) .

where I() is called "information", we have

oqmzh+23@r

which is referred as the "information inequality”. In the case of vanishing bias,

(S)_Im

" C) Error on the estimated parameter value
1) Single parameter
a) Asymptotic case:
For the limit of N—o° , i.e. a large number of measurements;

leehhood finction L becomes a Gauss distribution respect to the parameter A

L= 111 f (xv(‘j};l) - L4)= ﬁ; p expl— (/12 0/12) ]

o ietfy)
7¢,=_yax(/1) :

RN T o
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. The log hkehhood functxon becomes

l(l) = In L(X) =- ('1. l) + constan‘t -
The Gcan be obtamed as ‘
o= 1
- _ 9% LA)
oA

- The 68 (96)% confidence interval for the estimated parameter 4 is glven by between
2—0'(20') and /1+0'(20') or A = Ato(20); ie.
Pl 1—0'(20') < A< A+0(20) ] = 0.683 (0.955).
Note: at ),—LQ’(ZO'), log likelihood function is reduced by 0.5 (2) from its
 maximum o B
I(A=A%0) = l;ax=0.5, (A=2226) = Imax—2  With Ipax = I(A)

L(A) =
_________________________________ L P[A = rzxo]
Linax § 7 = [Ldr=0.683
// :: o P[)\,:X‘_*IZG]
S X = [ L dr=0.955
________________ /:‘__,____.ﬁ'
; A

I=1nL(Y) § 5
I ' B | |

Inax — 0.5

Imax — 2

26 A-G X MO M2

~ Thus, procedure for the maximum likelihood method is;
i) build the log likelihood function I(A) =1n L(A)
ii) find the parameter value A which maximises /, i.e. Imax = I(A)

iii) determine the error on A by




- a) calculatmg

/ 8 lnl{/l)
oA |

ﬁﬂ:i,

or

b) calculating two points wherc'
I(A-) = I(A4) = Imay—0.5: A<A¢
Then o= A-A_= A+A. o
The probability that the true E(4) is between A+0 and A-G is 68% and
between A+20 and A-20 is 96%. |

b) General case:

Assume that the log likelihood function I=InL(x,2) is a continuous function of lwand '
has its maximum [y« at A=A. The expectation value of A is the estimated to be A. At
around /=Iax, there exists a transformation g=g(x,A) which transform [ into a

parabolic form;

_le-G1" G( 1°
20

l,=1nL{x.g)= + constant

g
where the estimated expectation value of g, G(x) is given by G(x)=g(x,4). It can be
shown that G does not depend on x for a large number of measurements N. As shown
previously, the 68% and 96% confidence intervals in the g parameter space are given

by G—O'g<g<G+0‘g and G—20'g<g<G+20'g respectlvely and we have
1(Gto)=1G)-L

and
‘ lg(G t20 ) g(G)
Transformatiohs of the confidence intervals into the original A parameter space,
A_<A<Ay and 2.__{2.<l+ + are given by
| HA)=1(A) = = -
and :
IA,)=1(A_)=lpa—2
So, we do not need know the actual transformation g=g(x,A) in order to obtain the
conﬁdence interval on A. The procedure for the maximum likelihood method is
identical to the asymptotic case up to the second step. The error determination is done .
by the method b).
Note: in the most general case
AA_# A+—A, i.e. errors are asymmetric. -




Cand
2.+ +—2, # 2(7L+——2,) i e 68% conﬁdencc 1nterva1 is
" not related t0 96% conﬁdence mterval

' ' g it iy
G-20,G-6, G G+0y G+20, | Ao A A A Ay

2) Multi-parameters

The log likelihood function with p parameters A =(41, Ay, ... 4,) can be expanded around the

expectatlon values as

l(}')zl(i)+z(aazll)a_ (B= - 2121 1(3,1,3/1) = 2 (= A

=1

Since dl(A ) / 94;=0 at &:A,-, we obtain
z(a):z(i)—%(x—i)‘H(x—,i)nu

where
321 9321

- AL 01,04, ]
9%1 9%l

oA, 04, OAF

A=21

The higher order terms can be neglected in the region where A is very close to their

expectation values. The likelihood functxon is then given by
L kexp [— (21— A H(A- 1)]

where k is the normalisation constant. As discussed in section 4-1, H -1 can be identified as
the covariant matrix given by
o covl,2)
C=H"'=|cov1,2) oF

a)Confidence reglon for two parameter case
A simple demonstration for the confidence reglon can be gwen for a case with




- _‘uncorrelated two parameters havmg the same standard dev1at10n O. The hkehhood

The probability to have Xl between Zl—d and /'T1+0" and A, between —oo and +o0 is

\

: funchon is glven by

given by

- o R Ao
P(li—6<ll<}{1+6,—oo</12<+oo)=f_ dllf dﬂQL(Al,}Q)
R . o

A=

ipo (A, -4,
d . 1 1 =
J27c0 f ;tleXP[ 202 |

The probabﬂity to have 7»1 between A;—0 and A;+0 and A, between I;;_—G and

'

0.683

Aytois given by

_ A+o A+o
A~ 6</11</11+c Ay—0C<Ay<Ay+0)= J d/llf_ dA, L (A, A,)=0.466

A~0o

Finally, the probability to have A; and A; within the one standard deviation contour is
obtained by

P[("LI’ },2)<(il to, izio)] :ﬁl—i,)z-r(/l—-iz)2<02

1 ("4 ra 0393
_«/i;r—czjb ¢J0rrex 0'2)

This means that when the maximum likelihood method yields estimations for the

dA,dA, LA, A,)

expectation values for A; and 4, and their variance o, the probability that the true
expectation value for A; lies within +c while A, can be anywhere is 68%. The
probability that the true expectation values for both parameters lie within +0 is only
47% and that the true-expectation values for both parameters lie within the circle with

aradius ois 39%.

“Note that the one standa:d deviation (4, A2) contour is identical to the contour for-



(L )} = e =05,

' General Case: s

= Asin the case of the siriglé parameter, when the likelihood function is -
no longer Gaussian, the confidence regions is given by the equal
likelihood (A1, A2) contour with In{L(4;, A2)} = In(L)max — 0.5,

" L=In(L.y)-05
- '(Lm)

A

7“1— 7V1+

where the probability that the true expectation value of 4; lies between

A1 and A4 is 68% and that the true expectation values of A1 and 4,

lie inside of the contour is 39%. The region given by A;-<A;< 41+ and
- Ap_<Ay< Ay, (rectangle shape) is usually not used since its statistical

meaning is unclear.

b)Confidence region for many parameters

-Single parameter confidence intervals are identical to the two parameter case
and A;_ and A, are given by

In{L(A1z, A2 - An) }=In(Linax)—0.5
where L(A1+, Ap = A,) is maximised respect all A's eXcept A1. Thenthe
probability that the true expéctation value of Ay lies between A;— and A,
irrespective of all the other parameters is 68%.

-The probability that all n parameters are within the equal likelihood contour
drawn by In{L(A, A2 -+ 4,) }=In(Lmax)—down is given by F(2down) where
F(2down) is the integral of chi square distribution with n degrees of freedom

from O to 2xdown;

1 2 xdown
F(2xdown)=——————',2_[ unl2-1eg-ul2 gy
Nn/2)2m"“Jo
For example,
No. of parameters down probability down probability

2 - 05 0393 1.0 0.632
3 0.5 0.199 1.0 0.428
4 0.5 0.090 1.0 0.264
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9) THE METHOD OF LEAST SQUARES

A) Simple example: direct measurement

A set of n measurements
a;=E(a) + ¢; ; E expectation value, i=1 to N, g; error distributed normally around O

E(g;) =0, E(g;?) = 62
The probability distribution for a; is given by

. {_ (2~ E(@)® }
Aro, P 207

The log likelihood function is then given by

N 2
1nL=lnHﬁTCXp{~E%ljf—§»—}=—

=1

+ constant
maximising In L —>

minimising

The method of least squares:
4 - the best estimate for the expectation value of a gives minimum M

n A
[BM] 2% (@-24) _,
0a ly-q =t of
N N
4 _4 1
i=1 ,‘2 i=1 G,'z
i.e.
N
ai
d— = O-iz
- N
Z 1
~ o?
and the variance of 4 is given by
2~ _ 1
od)=—x—
1
2
i=1 O;

Note that the newly estimated error €;'=a;~a follows a normal distribution with
the mean 0 and the variance o;2. Then the minimised M

N (a;-a)*
Mminimum: Zl l 2
=

O

follows the chi-square distribution with N—1 degrees of freedom, i.e.
E(Mminimum) =N-1

—> %2 test (see the next chapter)
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example: two experiments E731 at FNAL and NA31 at CERN measured
a CP violation parameter Re(e'/€) to be
Re(—%—) =(7.4£59)x 107" (E731), (23.0+65)x 107" (NA3I)
The method of least squares gives
Re{£-)= (144 44)x 10"

and
M. =316 (expectation value = 1)

B) Indirect Measurement

In general, a measured quantity is a function of unknown parameters. A set of n observations

a =

is obtained from a distribution with expectations
HIEQ)]
E(a)=
S LE(A)]
where f; is a function of p unknown parameters
Ay
A=|
A p
The method of least squares is to estimate the expectation values of the unknown parameters
A by minimising
M=[a~f(A)]" Wla - f (4]
with W=V"! where V is the covariant matrix of a, i.e.
ol cov(l,2)
V={covl,2) o}

i) Linear case
The function f; depends linearly on 4 , i.e.

P
E(a,-)=;c‘.jij orda=CA
The best estimate for the expectation values of A can be obtained by minimising
M={a-CA)'W(a-CAa)
At its minimum, we have
6M=—(a— ci)‘ Wcs,I:—(a' wc-1'c'w C) SA=0

By noting W '=W, it follows that
i=(c'wc) 'C'Wa
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and using the error propagation shown in Chapter 5, it follows that
vid)=l(ctwo) et wlvlctw o) ctw) =(ctvYa) )
where we used W=V (a), V'=V and W'=W. The improved measurements and their errors
are given by
a= C/'l,andV CV(/'l)Ct
Simple example: The case of direct measurement can be obtained by

1
al 0-12 1
A=Aa=| * |[W=| O % and C =
a o2 1
N
In this case, we obtain
N
> L
2
~ _ -1 = -
1=(C"WC) lCtWa:(—15+—12-+---—1—2) (_al_2+a_22+...a_1\£)zwl_l_
i Oy Oy i O3 ON 1
i=1 O"iz
and
-1
D=(cw O =Ly dyroe L) =l
o Oz ON 2 1
i=1 O'

i

which agrees with the case of a direct measurement.

if) Non linear case
Even if the function f; no longer depends linearly on 4 , it can be expmded as

fi(l)Zﬁ()LO)+J§=:1(ag/1(.))1_%(,1~/10)j+...zfi +;Cij51j+...

where A o is a starting value for estimating the expectation value of A . The function M is then

given by
M=a-CcA-f—) Wla-CA-f---)

ofi (4) (3f1 (1))
( 04, )}.:Ao 0Ay Ja=a,
A 5,50

where

1

A
and fO=| 5°

If A ¢ is close to its expectation value, the higher orders in 84 can be neglected (linear

approximation). At M=Mminimum. W€ have
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M=-a—CA-f) WCoL=
- (a~f°)‘wc_5z'ctwc] =0

L

and it follows that

si=(ctwo)y ' 'c'wla-r9
and the estimation of E(4 ) is given by
A« 1 2104- 5i

Then we use A  as a starting value and repeat the process again with newly calculated C and f.

When the change in A becomes "sufficiently" small after m iteration, the process is
considered to be converged and A ,, is taken as the best estimate. A rapid convergence is

obtained if the starting value is close to the true value and the linear approximation is valid.
The covariance matrix of 4 ,, is given by

V(A,)=(Choz, V' Caca, )"

and "improved" measurements and their errors are given by
_ 70
a = m—l+Cl=lm_[(2'm_2’m——l)

and

V@)=Ch-a, V(A ) Caz2a

m—1

It must be noted that Minimum follows the chi-square distribution with

N — p degrees of freedom
E(Mminimum) =N —p

C) Measurements with constraints and no unknown parameter
Lagrangian multipliers are a commonly used mathematical tool for the minimisation of a
function with constraints. Suppose we want ti minimise a function f(x, y) under the constraint

g(x,y)=constant. It follows that

a d, 0 )
df (x,y) = —aixdx+$fdy: 0, and dg(x,y)= a—idx+—é§dy =0

which can be satisfied by having

s &
o _ I _
F 8
ox dy
This leads to 5 ;
f 4 J I8
ax—ugx——o, and B_y_'LLc?y_o

which is equivalent to minimising
L=f-ug

where ( is the Lagrangian multiplier.




We consider a case where the estimated expectation values of N measurements
a' = (ay, ay, ... a,) must fulfil g constraints,

81(‘7) d
82(‘3) _ d,
gq,@)] \d,

The estimates @ are obtained by minimising
[=@-a)W@-a)+ p'g @)

1.e.
SL=—(@a-a)wdi+ u'dg@=0

where gt = (i, [, ... [ig) are the g Lagrangian multipliers.

i) When the constraints are linear functions of a, i.e.
g@+d=Ba+d,
it follows that
L=(@-a)W@-a)+ u'(Ba+d)
and where L is minimum at a@ = 4, i.e.
SL=— (a—4) W&+ u'B&=0
“This requires that
(@a—a)W=u'B
ie.
d=a-WB'qu
The constraints are now
Ba-d=B@-W'B'y)-d=0
which gives us the estimation of g to be
a=BwW'BY!'Ba-d).
Thus the estimation 4 is given by
d=a-WIB'(BWBY ! (Ba-d).

The covariance matrix for 4 is obtained by propagating errors and
c@=[w'-wirp@w'p)'Bw!']"

Example: measurements of three angles of a triangle, a; * ¢}, az * &2, a3+ 63 which
should satisfy aj+az+a3=180°. The improved measurements which fulfil this constraint

can be obtained using the method of least squares shown above with

38
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a, 1/@2 0 0
ad a, | B={111), d=180 " W=| 0 YV o
a3 2 1
0 0 /032

i1)When constrains become non-linear, we need to expand g (@) by introducing
N

N (4
a=a, ]=

<1\ 94,

where ag are initial values for 4 (measured values of a for example). It follows that
8L=— (a—ag—8a ) Wda+ u'Bda

where
( 981 (a) ) ( 9g; (a) ) _
aal a=a, aa2 a=a gq
_ dg, (a) dg, (a) . _ g3
B= ( aal a=a, aa2 a=aqa : and §o=
89
Using 8L=0
(@-a)'W=-—u'B
with
a=ap+ da
we obtain

da=(@-ap)-WB' 1
and from the constraint equation
g0+Bdi-d=g'+B(a-ap)-W B 'y l-d=0
a estimate for the multiplier is given as
a=BW'BY 1 [g0+B@—-ap)—d]
thus improved measurements are give by
d=ag+8a=a-W'B' (BWBY ! [g+B@—-agp-d].

By replacing ap with 4 and recalculating g0 and B, we repeat m times this procedure till da

becomes sufficiently small. Once this procedure converges, error propagation gives
c@=[wl-wlp@wlp)ylpgw']™"

where B is calculated by @ obtained from the m—1-th iteration.

It must be noted that My jnimum follows the chi-square distribution with

q degrees of freedom.
E(M minimum) = ¢

D) Measurements with constraints and unknown parameters
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Finally, we consider a system with N measurements, a, and r unknowns, y, and g

constraints, g, which are the functions of a and y;

a, ¥ gi(a,y)

a g2(a, y)
a= :2 Y= y:2 g= 2:

an Yr 84(a y)

An example is given in Ubungen XI. The best estimate for y, ¥ , and the improved
measurements d are obtained by minimising

[=@-d)W@-d)+ pn'g@?y)
ie.

SL=—(a—-d)Wdi+ u'dg@, 5)=0
under the constraints

g@y)=d

Linearization of g gives

g@5)=g"+Ad +Boa

with
dg; (a, ) dg (a, y)
aal a=4a aaz a=4ay
y=% y=%
B ( 9, (@, y) ) ( dg, (@, y) )
- da, Je=a da, Ja=a
y=% y=x% .
(agq(a,y))
Ny
and
(agl (a’)’)) (agl (a,)’))
OO SR
4o (agz(a,y)) (agz(a,y))
oo ozw Uiy
dg, (a, y)
ayp a=a,
y=%
and
g1(ao ¥o)
_ g2(a ¢ ¥o)
8o0= .
8q(ao’YO)

As before, ag and yg are the initial values for dand y,1.e.
d=ay+0oa and §=yo+ 0y




Thus, the problem is reduced to solve

(a—ay—8a)W' -pu'B=0
'A=0

g’ +Ady+Bda=d

for 8a and Jy.

It must be noted that Moinimum follows the chi-square distribution with

q — r degrees of freedom.
E(Mminimum) =q-—-r

41
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10) HYPOTHESIS TESTING

Let us define:
x: sample of variables, A : parameters

and
H,(x,4,): null hypothesis, hypothesis to be tested

H, (x,A,): alternative hypothesis
When A, are completely fixed parameters, H, is called “simple” and else “composite”. The critical
region S, is the region of x for the null hypothesis where we reject the Hy. The probability distribution
of x for H, and H, are given by Py(x,A,) and P, (x,4,) respectively. The following figure illustrate the

situation for the single variable case:
Py Hg rejected Hg accepted

The area 0. is the probability for x to fall inside S, under the null hypothesis: Py(x€ S, Ay)- The area f3
is the probability for x to fall outside of S, under the alternative hypothesis: P, (x¢ S, A
Type-1error:  Rejecting the null hypotbesis although it is the correct one, since observed x is
in S_. The probability for Type-I error to occur is ., which is called
“significance”
Type-Il error:  Accepting the null hypothesis although the correct one is the alternative
hypothesis since observed x is outside of S,. The probability for Type-I
error to occur is , where 1-f is called “power”.

The critical region S, has to be choose so that

o as small as possible

1-B: as large as possible

for an optimal hypothesis testing.
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11) CHI-SQUARE TEST

The minimum value of the least square, often called "chi-square”, is expected to follow the x?
probability distribution with n degrees of freedom, f(¥?), if the measurements are described by the

Gauss distribution. The degrees of freedom n is given by

N(number of measurements) ' direct measurement
N — p(number of parameters) indirect measurement
g(number of constraints) — r(number of unknowns) with constraint.
1.0
0.8 '\
n=1
0.6
N\
04 _fl — 2
02}~ ~—__
n=3 -, _5 —
f( X2) Jl_%:-(' ] 1 n=10—

2 2 4 6 8 10

The expectation value and variance are given by n and 2n. For very large values of n, the 2

distribution can be described by a Gauss distribution with an expectation value n and o2=2n.

0.06Illllllllllllllllllllll!lllll

005F g% —7/ Gauss

=
H
o)

-

0.04

0.03

0.02

0.01

lllllllllll1!llll|l!lllllll

llllllllllllllllllllllllIllL

P
’||1|||||1|14|||||||

0 10 20 30 40 50

X

0

[N
<

Let us denote s to be a value of chi-square obtained from the method of least squares. The

probability that a value of chi-square will exceed s is given by
A
Fu)=1-] flxAar?
The value of F,(s) indicates ###the probability that the hypothesis applied is consistent with the data.
When F,(s) is too small, we may conclude that the hypothesis applied to fit the data is not the right

one. How small is too small? This is, unfortunately, up to you...

In the previous example of the two measurements of Re(g'/ ), it gives
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11) CHI-SQUARE TEST

The minimum value of the least square, often called "chi-square", is expected to follow the x?
probability distribution with n degrees of freedom, f( 22), if the measurements are described by the

Gauss distribution. The degrees of freedom n is given by

N(number of measurements) ' direct measurement
N — p(number of parameters) indirect measurement
g(number of constraints) — r(number of unknowns) with constraint.
1.0
0.8 ”\
n=1
0.6
N
04 =2
02 f Ta~—
n=3 -, _ -
B Xz) ;’I_L_S%:(' 1 t n=10—

x2 2 4 6 8 10

The expectation value and variance are given by n and 2n. For very large values of n, the 2

distribution can be described by a Gauss distribution with an expectation value n and 6%=2n.

0'06IIll]llll]llllIllll'llll"lll'll
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Let us denote s to be a value of chi-square obtained from the method of least squares. The

probability that a value of chi-square will exceed s is given by
5
Fols)=1 —JO fulxHdx?
The value of F,(s) indicates ###the probability that the hypothesis applied is consistent with the data.
When F,(s) is too small, we may conclude that the hypothesis applied to fit the data is not the right

one. How small is too small? This is, unfortunately, up to you...

In the previous example of the two measurements of Re(e'/ €), it gives
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1- f s () dx?> =0.076
0

i.e. the probability that the two measurments are compatible is 7.6%.

It must be noted that a too small value of chi-square is also suspicious. As seen from the 2
distribution for various #n, not only too large values but also too small values of ¥2, i.e. much smaller
that n, are improbable for n>3. A too mall value of x? is often due to the overestimation of the
experimental errors.

For the case where the fits are repeated many times, such as fitting track parameters seen by a
spectrometer, the distribution of the obtained values of chi-square must be examined whether they
indeed follow the ¥2 distribution with the corresponding number of degrees of freedom. An easy way
is to plot the distribution of probabilities f,(chi-square). If the values of chi-square indeed follow the
2 distribution, this probability distribution should be flat between 0 and 1.

Another useful application of the chi-square test is to choose the right hypothesis by selecting
one which gives the largest F,,(s). This does not avoid, of course, selecting a wrong hypothesis

because the right one was not tested!!!!
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12) RUN TEST

Consider the data and errors shown in the following figure:

The straight line obtained by the ¥ test is also shown. The visual inspection indicates a systematic
deviation of the data from the straight line hypothesis. However, the obtained vale of x* is reasonably
small, which could be due to overestimated errors. In this case, “the run test” provide an extra
information.
There are six points above (A) and below (B) the straight line in a sequence, AAABBBBBBAAA,,
i.e. arun of A, a run of B then a run of B giving a total of three runs. What is the probability for
having a particular number of runs, r, for a given number of A, N, and B, Ny. The number of ways
to have N, and N, for a given N, N= N, +Nj is given by,

C(N.Ny)=

N4 INg!
Next, suppose  is even and the sequence starts with A, for example
AA BBB AAAA BB AAA B
i.e. A’s are divided in to
AATAAAA T AAA
and there are r/2—1 division. There are N,—1 places to put the first division, N,—2 places for the
second division etc. giving C(N,~1, r/2-1) possibilities for the sequences. A similar possibilities are

valid for B’s. The probability to have r (even) run is given by
C(Na =1,r/2-1)x C(Ng —1,r/2~1)
P=2 r:even

C(N,Ny)

where 2 takes the cases starting with B into account. For r odd, we have
C(Np = 1,r=3/2)x C(Ng =1,r=1/2)+ C(Np — L, = 1/2) X C(Ng - 1,r-3/2)

P, = r: odd
C(N,Ny)
From these, we obtain
N
E(r) = 1+ 2NaNs
N
2NANB(2NANB - N)
V(r)= >
N*(N-1)

When N, and N, are sufficiently large, >10 to 15, one can use a Gaussian approximation.
The example shown in the figure, we have N=12 and N, = 6. It follows E(r) =7 and V(r)=2.73. To
have r = 3 has a significance of ~1% which is rather low. Therefore, the straight line hypothesis can

be rejected although y* test accepts the hypothesis.
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13) KOLMOGOROYV TEST

We take the values of the measured variable and arrange them in increasing order. Then we plot
the cumulative distribution cum(x), divided by the number of measurements N. We also plot the
cumulative distribution cum[P(x)] for a probability distribution of x with the considered hypothesis.
By defining

D: absolute difference between the two plots,

d=DxN"
d provides the hypothesis test. For large N, we have
S.: d>1.63 d>136 d>1.22  d>1.07
Significance: 1% 5% 10% 20%
1 JRa
el .
cum(P) 1 D
./ N
o T
.- ,{'./_ N
L7
0l

The broken line is for data and the other line corresponds to the cumulative distribution for the

probability distribution with a hypothesis that variables are distributed evenly.
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14) MONTE CARLO METHOD

1) Uniform distribution

The probability is constant in the interval @ < x < b and 0 outside of this region:

f(x)=b ca<x<b, f(x)=0:x<a,x>b
—a

where f(x) is properly normalised, i.e.

[ f(x)dx =1.
The distribution function F(x) is given by

l: x>b
F(x)z_[x f(x)dx = 1Tl a<x<h
— b-a
0: x<a
and the expectation value and variance are given by
a+b (bta)
O

Computers can generate “random numbers”, a chain of values of randomly and evenly distributed

between 0 and 1.

2) Geﬁeration of any distribution by transformation of the uniform distribution
Let us consider that x is described by a uniform distribution of the type

fx)=1:0<x<1,  f(x)=0:x<0,x>1
and y is a random variable described by the probability distribution g(y). The variable transformation
gives, g(y)dy = dx. By integration both side, we obtain

x= jiog(z)dz = G(y).

From this equation, we conclude the following:
i) draw x, il)invert x=G(y), i.e. y=G~ (x).
The random variable y is distributed following the probability distribution g).
Even G(y) is not known, random numbers distributed as g(y) in the interval a <y < b can be obtained
in the following way:
i) Find then maximum, g, of g(y) in the interval a < y < b.
ii) Draw a random number, y,, from a uniform distribution of the rage a <y < b.
iii) Draw a random number, g,, from a uniform distribution of the rage 0 < g, < g,
iv) Keep g, only if g, <g(,)-
Repeating this, the distribution of y, kept follow g(y).

3) Monte Carlo integration method

An integration of




48

1
I = I() g(x)dx
where the integrand g(x) varies in the region 0 < g(x) < 1. The integral I is identical to the surface of

the area  shown in the figure.

Y g(x)

0
0 1

Now we generate N pairs of random numbers (x, y) where x and y are evenly distributed between O

and 1. If we find n pairs in the area , i.e. [x, y < g(x)], the integral / is given by

n
I=1im—
N—)ooN

The integral can be generalised easily to any rage with many variables.
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