Top quark: properties and beyond

Michele Gallinaro *LIP Lisbon*

- Mass, Vtb, taus
- Spin correlation
- Charge asymmetry
- Boosted topology
- Searches for New Physics

Contents

- Introduction (discovery, object ID)
- Top pair production at the Tevatron
- Top pair production at LHC
- (differential) cross section
- Mass, heavy flavor content, taus
- Search for top partners and 4th generation quarks
- Search for ttbar resonances
- Spin correlation, charge asymmetry
- Single top production
- Flavor Changing Neutral Currents (FCNC)

will use c=1

today

Top quark mass

Top quark mass and constraints

- Top quark mass is a fundamental parameter of the SM
 - Known with good accuracy from the Tevatron: 173.2±0.9 GeV (arXiv:1107.5255)
 - Indirect constraint on the Higgs boson mass via EW corrections
 - \Rightarrow m_H=92⁺³⁴₋₂₆GeV or <161 GeV

- Top is the only fermion with the mass of the order of EWSB scale
- Measuring precisely m_W and m_{top}
 - Test consistency of SM
 - Search for new Physics

Top quark mass and constraints

- Top quark mass is a fundamental parameter of the SM
 - Known with good accuracy from the Tevatron: 173.2±0.9 GeV (arXiv:1107.5255)
 - Indirect constraint on the Higgs boson mass via EW corrections
 - \Rightarrow m_H=92⁺³⁴₋₂₆GeV or <161 GeV

- Top is the only fermion with the mass of the order of EWSB scale
- Measuring precisely m_W and m_{ton}
 - Test consistency of SM
 - Search for new Physics

Jet reconstruction in Top events

- Top mass measurement needs parton information, but we measure jets
- Use calorimeter information to correct jets to particle level

- Contribution of uncertainty sources depend on p_T, η
- Jet energy correction uncertainty:
 - Look at quantities insensitive to JES (e.g. lepton p_T)
 - "b-jet" tag helps reducing number of permutations
- JES "in-situ" calibration in ttbar events
 - Use W→jj constraint to measured W mass

Top as a calibration tool

- Top quarks can be used as calibration tool
 - Top mass, W mass, b/q jets
- can determine:
 - b-tagging efficiency
 - jet energy scale

...or alternatively...

- use b-tag as a probe
 - compare rates in different b-tag multiplicity bins
 - is the signal, ttbar or not?
- BSM may appear in the sample and "distort" the distribution

Jet energy correction from Top

- Use semi-leptonic events
 -1 isol μ (p_T>30 GeV)+≥4 jets (40 GeV)
- Estimate jet energy corrections by applying event-by-event kinematical fit to W and Top masses
- Likelihood is used to assign jets
- Kinematical fit returns $P(\chi^2)$
- Find best JES by minimizing χ^2

Measuring the top mass

Challenging:

> Lepton+jets

- undetected neutrino
 - P_x and P_y from E_T conservation
 - 2 solutions for P_z from M_W=M_{Iv}
- leading 4-jet combinatorics
 - 12 possible jet-parton assignments
 - 6 with 1 b-tag
 - 2 with 2 b-tags
- ISR + FSR

> Dileptons

- (less statistics)
- two undetected neutrinos
- less combinatorics: 2 jets

LO final state:

experiment sees:

Lepton+jet channel

- Best channel (for now) to measure top quark mass
- Compromise between large branching ratio (BR=30%) and a good background rejection
- Well defined final state (1 lepton, one neutrino, 2 b-jets, W→qq')

Lepton+jet channel

in-situ calibration of the light quark JES from W→ qq²

ATLAS: template fit as function of JES and top quark mass

CMS: kinematic fit + "ideogram" method combine event-per-event likelihood

 \Rightarrow m_{top}=174.4 ± 0.6 (stat) ± 2.3 (syst) GeV 172.6 ± 0.6 (stat) ± 1.2 (syst) GeV ATLAS CONF-2011-120 CMS PAS-11-015

Dilepton channel: challenges

Combinatorics

- Identify top quark decay products
- Ambiguity
- ISR/FSR introduces further complexity for selection
 (~70% of the events have both b-jets reconstructed and selected)

- Constrains the contribution from undetected particles
- In the dilepton channel: 2 neutrinos \Rightarrow $\vec{E}_T^{miss} = \vec{p}_T^{\,
 u} + \vec{p}_T^{\,
 u}$

Jet energy scale

- m_{top} reconstruction requires measuring the parton energy
- parton→jet affected by resolution and absolute energy scale

Pile-up

- Jet energy scale, MET measurement, extra jets/leptons
- N_{pileup}≈ 6 (21) for most of data collected in 2011 (2012)

Reconstructed mass

CMS-PAS-TOP-11-016

- Select events
- Reconstruct mass

Process	Pre-selection	KINb	=1 b-tag	≥ 2 b-tags
Di-bosons	73 ± 14	55 ± 10	18 ± 4	4 ± 1
Single top	247 ± 92	182 ± 68	88 ± 33	76 ± 29
W+jets	22 ± 10	16 ± 8	8 ± 6	-
$Z/\gamma^* o \ell\ell$	1091 ± 97	756 ± 71	238 ± 29	47 ± 11
other t t	32 ± 4	28 ± 3	11 ± 2	14 ± 2
tī dileptons	5057 ± 463	4209 ± 385	1379 ± 127	2623 ± 240
total expected	6522 ± 482	5246 ± 398	1742 ± 134	2765 ± 242
data	6358	5047	1692	2620

Michele Gallinaro - "The top quark: a tool for discoveries" - April 22, 2013

Signal and background

- Signal component in the mass spectrum modelled: simulation
- Fit: Landau+Gaussian
- Categories: =1 and ≥2 b-tags

- Background component in the mass spectrum modelled with data +simulation
- Fit: Landau

Reconstructed mass

- Top quark mass is reconstructed in different categories
- Signal and background shapes

Correct for the bias

 Check and correct for the bias in the measurement

Do not forget the systematics

• Jet energy scale (JES) is the largest unc.

- JES is varied up and down and difference in m_{top} is accounted for as systematics
- Flavor (b) specific uncertainty added in quadrature

Other systematics:

- Difference with respect to reference sample used for signal
- MC: compare Alpgen and Powheg with Madgraph
- Vary factorization/matching scale, ISR/FSR

Source	$\Delta m_{\rm top} ({\rm GeV}/c^2)$
JES	+1.90 -2.00
flavor-JES	+1.08 -1.13
JER	± 0.30
LES	+0.12 -0.18
Unclustered E _T ^{miss}	± 0.43
Fit calibration	± 0.40
DY normalization	± 0.40
Factorization scale	± 0.41
Jet parton matching scale	± 0.65
Pile-up	± 0.19
b-tagging uncertainty	± 0.30
mis-tagging uncertainty	± 0.43
MC generator	± 0.14
PDF uncertainty	± 0.39
Total	+2.52 -2.63

Final fit

$$m_{\rm top} = 173.3 \pm 1.2 ({\rm stat.})^{+2.5}_{-2.6} ({\rm syst.}) \ {\rm GeV/}c^2$$

CMS TOP-11-016

Top quark mass

Results from LHC are rapidly improving (0.6%)

Top-antiTop mass difference

- Test of CPT invariance: particle and anti-particle have same mass
 - If masses are different →CPT violation
 - Top quark is unique because it decays before hadronizing
- use μ +jet ttbar events: positive/negative muons (L=1.1/fb)
 - Compare mass measured from μ^+/μ^- +jets
 - Use hadronic side

CMS-PAS-TOP-12-028

Dominant systematics:

- b vs bbar jet response
- signal fraction
- b vs bbar tagging

$$\Delta m_t = m_t^{had} - m_{\bar{t}}^{had} = -272 \pm 196 \text{ (stat.)} \pm 121 \text{ (syst.)} \text{ MeV}$$

Top mass from cross section

- Direct m_{top} measurements rely on details of kinematics, reconstruction, calibration
- Experimental measurement has small uncertainty: ~0.5%
- What mass is measured?
 - Could be interpreted as pole mass
- Compare theory prediction (measured) cross section vs pole mass (=m_{top})
- Exploit relation of cross section and mass:
 - $-\Delta\sigma/\sigma = -A \cdot \Delta m/m \qquad (A=4-5)$

Top mass from cross section

- determine top quark pole mass using the experimental ttbar production cross section
 - from lepton+jets channel (ATLAS) with 35/pb

$$m_{\text{top}}^{\text{pole}} = (166.4^{+7.8}_{-7.3}) \text{ GeV}$$

from dilepton cross section (CMS) with 1.1/fb

$$m_t^{pole} = 170.3_{-6.7}^{+7.3} \text{GeV}$$

Also determine m(MSbar):

Approx. NNLO × HERAPDF15NNLO	m_t^{pole} / GeV	$m_t^{\overline{\rm MS}}$ / GeV
Langenfeld et al. [7]	$171.7^{+6.8}_{-6.0}$	$164.3^{+6.5}_{-5.7}$
Ahrens et al. [9]	169.1+6.7	$161.0^{+6.8}_{-6.1}$
	CMS-P	AS-TOP-11-008

Not just cross sections

Interesting physics with Top quark

PRODUCTION

Cross section
Resonances X→tt
Fourth generation t'
Spin-correlations
New physics (SUSY)
Flavour physics (FCNC)

PROPERTIES

Mass
Kinematics
Charge
Lifetime and width
W helicity
Spin

...

DECAY

Branching ratios
Charged Higgs (non-SM)
Anomalous couplings
Rare decays
CKM matrix elements
Calibration sample @LHC

Michele Gallinaro - "The top quark: a tool for discoveries" - April 22, 2013

Spin correlation

- Important tool for precise studies of top quark interactions
- Top quark produced are not polarized
 - ...but spins between quark and anti-quark are correlated
- Top quark decays before spins decorrelate
 - Top quark decays before hadronization (τ ~10⁻²⁵ sec) ⇒ spin information transmitted to the decay products (W boson, b quark)
- Spin correlation depends on the production mode

$$\frac{1}{n_{\pm\pm}} + n_{\pm\mp}$$

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_1 d\cos\theta_2} = \frac{1}{4} \left(1 + \kappa \cos\theta_1 \cos\theta_2 \right)$$

----- Off Diagonal Basis

- Analyze spin using angular distributions of decay products
 - $-\theta_1$ and θ_2 are the angles of decay products wrt a "quantization axis"
 - value of κ depends on spin basis (for example, off-diagonal vs maximal)

Spin correlation

- Spin correlation may differ from that expected in the SM
 - top quark decays into a charged Higgs boson and a b quark (t→H⁺b)
 - Other BSM scenarios

Spin correlation: Tevatron vs LHC

$$A = \frac{N_{\uparrow\uparrow} + N_{\downarrow\downarrow} - N_{\uparrow\downarrow} - N_{\downarrow\uparrow}}{N_{\uparrow\uparrow} + N_{\downarrow\downarrow} + N_{\uparrow\downarrow} + N_{\downarrow\uparrow}}$$

- dominated by $q\bar{q}$ annihilation
- tt̄ pairs close to the threshold
- beam axis as spin quantisation axis
 NLO QCD: A = 0.78
 Bernreuther, Brandenburg, Si, Uwer, Nucl. Phys. B690, 81 (2004)
- optimised "off-diagonal" basis

- dominated by gg fusion
- tt̄ pairs far off the threshold
- helicity basis as spin quantisation axis
 NLO QCD: A = 0.32
 NS. B690, 81 (2004)
- maximal basis

complementary between Tevatron and LHC

Spin correlation

- Access spin information via the angular distributions of its decay products
- Most sensitive probes are leptons and d-type quarks
- Strategy: fit $\Delta \varphi$ dilepton distribution with binned SM distribution and in the case with uncorrelated spin distribution
- Translate result to maximal/helicity basis
- Main systematics: ISR/FSR and signal modelling
- Results in agreement with SM:

$$A = \frac{N_{like} - N_{unlike}}{N_{like} + N_{unlike}}$$

$$A_{\text{helicity}} = 0.34 \pm 0.07_{\text{stat}} \stackrel{+0.13}{_{-0.09}}_{\text{syst}} \qquad A_{\text{helicity}}^{\text{SM}} =$$

 $A_{\text{maximal}} = 0.47 \pm 0.09_{\text{stat}} \stackrel{+0.18}{_{-0.12}} _{\text{syst}}$

$$A_{\text{helicity}}^{\text{SM}} = 0.32$$

 $A_{\text{maximal}}^{\text{SM}} = 0.44$

ATLAS-CONF-2011-117

Charge asymmetry

- In qqbar→ttbar (Tevatron): top quarks are emitted in the direction of the incoming quark, anti-top quarks in the direction of the incoming anti-quark
- No FB asymmetry in gg→ttbar (LHC)

SM: Only small asymmetry due to ISR/FSR

New physics: production mechanisms with new exchange bosons could

enhance the charge asymmetry

At LHC quarks have larger momentum than anti-quarks (larger average momentum fraction of quarks leads to an excess of top quarks produced in the forward directions)

Asymmetry A_{FB} anomaly?

- Tevatron experiments observe a differential dependency on charge asymmetry
- Sign of new physics?

D0: PRL 100(2008)142002 CDF Note 10807

CDF: PRD 83(2011)112003

- At high mass, a 3σ discrepancy
- Study asymmetry vs mass of ttbar system

Charge asymmetry at LHC

$$A_{C} = \frac{N^{+} - N^{-}}{N^{+} + N^{-}}$$

N⁺(N⁻): number of events with positive (negative) values in the sensitive variable Anomalous axial-vector coupling of gluons to quarks could explain the Tevatron anomaly [PRD84:054017,2011]

⇒Good agreement between data and SM expectations

800

Constraints on New Physics

EPJC 72(2012)2039

Heavy flavor content (i.e. V_{tb})

Top quark decays

top decay t→Wb, but really 100%?

Indirect measurement using the CKM matrix:

- Elements $|V_{ub}|$ and $|V_{cb}|$ measured to be very small from decay of B mesons
- Unitarity and only three generations implies |V_{tb}| is 0.998 @ 90% CL

With top quark samples we can measure it directly as "R":

$$R = \frac{BR(t \to Wb)}{BR(t \to Wq)} = \frac{\left|V_{tb}\right|^{2}}{\left|V_{td}\right|^{2} + \left|V_{ts}\right|^{2} + \left|V_{tb}\right|^{2}} \quad \text{where } q = \{d, s, b\}$$

Use the ability to identify jets with a distinguished secondary vertex: b-tagging

• The number of b-tagged jets depends strongly on R and b-tagging efficiency ε_h

We classify the ttbar sample based on the number of b-tagged jets

The relative rates of events with 0/1/2 b-tags is very sensitive to R

Is BR($t\rightarrow Wb$)~100%?

• In the SM, R=
$$\frac{BR(t\rightarrow Wb)}{BR(t\rightarrow Wq)} \sim |V_{tb}|^2$$
 0.9980

- measure R by comparing the number of ttbar events with 0, 1 and 2 b-tags
- SM: R=1 constrained by CKM unitarity. R<1 could indicate new physics (e.g. 4th generation hep/ph-0607115)

Measure R simultaneously with ttbar cross section:

$\sigma_{p\bar{p}\to t\bar{t}}(pb)$	7.4 ± 1.1
R	0.91 ± 0.09
$ V_{tb} $	0.95 ± 0.05

CDF prelim. 7.5 fb⁻¹ lepton+jets channel

$$\sigma_{t\bar{t}} = 7.74^{+0.67}_{-0.57}\,\mathrm{pb}$$
 R=0.90±0.04 (stat+syst) $|V_{tb}|$ =0.95±0.02 (stat+syst) $|V_{tb}|$ >0.88 @99.7% C.L.

D0 5.4 fb⁻¹ I+jets & dilepton

PRL 107, 121802 (2011)

Not yet sensitive to SM

Measure of V_{tb}

- Measurement with the single top production final state
- direct measure of |Vtb|
- sensitive to non-SM phenomena (W', FCNC)

Measure R in dilepton channel

 $R \equiv \frac{BR(t \to Wb)}{}$

 $BR(t \rightarrow Wq)$

- Probe heavy flavor content of ttbar events
- Use ttbar dilepton final state
- Advantages:
 - less background
- Disadvantages:
 - lower statistics
 - jet assignment

- 2 leptons+ ≥2 jets + MET
- no b-tagging in preselection

CMS TOP-11-029

- Clean signature
- Goals:
 - measure $\varepsilon(b)$ and R

Michele Gallinaro - "The top quark: a tool for discoveries" - April 22, 2013

How to model the background

Events are classified in 3 cases (weight α):

- 1) 2 correctly assigned b-jet
- 2) 1 corr. ass. b-jet
- 3) 0 corr. ass. b-jet

1 reconstructed b-jet (α_1)

Compute invariant mass of all lepton-jet pairs Model background using:

- jets from different events
- rotate lepton direction

Background dominates at M>M_{cut}

Signal or background?

CMS TOP-11-029

Use tail to model background in signal region

Signal vs background

CMS TOP-12-035

Signal or background

CMS TOP-12-035

Scale shape to match spectrum observed with $M_{ij}>180$ GeV

Heavy flavor content

CMS TOP-12-035

- Fully data-driven measurement
 - b-tagging multiplicity parametrized as function of R ε_b , ε_q , top contribution
 - Number of reconstructed t→Wq is estimated from lepton-jet invariant mass
- R=1.02±0.04 (stat.⊕ syst.)
 - Lower boundary with confidence interval @95%CL after requiring R≤1 ⇒ R>0.945 @95%CL

Measure R

CMS TOP-12-035

- Variation of the likelihood used to measure R from data
- Fit different categories

Summary of R results

b-tagging efficiency

CMS BTV-11-003

- Can determine b-tag efficiency and/or R
- b-tagging efficiency measured
 (assume R=1)
- absolute *b-tagging* efficiency measured from data and predicted from simulation
- Ratio of data/simulation
- Total (stat.+syst.) uncertainties

Results of the fit to the b-tagging multiplicity

Top quark decays and taus

Probing the Wtb vertex

- Measurement of ttbar cross section with tau leptons in final state is important:
 - channel not well explored
 - Cross-check to other channels
 - increase acceptance of ttbar events
 - involves only 3rd generation leptons/quarks
 - probe non-standard physics (t→H[±]b, ...)

Channel	Signature	BR
Dilepton(e/μ)	ee,μμ,eμ + 2 <i>b</i> -jets	4/81
Single lepton	e,μ + jets + 2 <i>b</i> -jets	24/81
All-hadronic	jets + 2 <i>b</i> -jets	36/81
Tau dilepton	e τ, μτ +2 <i>b</i> -jets	4/81
Tau+jets	τ + jets + 2 <i>b</i> -jets	12/81

- If top quark plays special role in EWK symmetry breaking, couplings to W may change
- Charged Higgs may alter coupling to W
- Search for final states with taus

Charged Higgs

Tau dilepton channel is of particular interest as existence of charged
 Higgs can give rise to anomalous tau lepton production

⇒directly observable in this channel

Charged Higgs

- BR(t→H⁺b) could be large
- H⁺→t ⁺ν_τ enhanced if tanβ large

⇒observe more taus

(tanβ: ratio of vacuum expectation values)

⇒number of tau dilepton events can be large

Taus in top quark decays

Selection:

- one isolated lepton (e/ μ)
- OS tau
- at least two jets (one b-tagged)
- MET>30 (45) GeV

Determine τ fakes from data

- Expected to be dominated by quark/gluon jets
- Conservative approach: average W+jets and QCD

Tau fake rate

- Main background from "fake" tau jets
- Background estimated from data:
 - Select "W+≥3 jets (1 lepton+MET+≥3 jets)
 - Apply to every jet the "jet→tau probability"
 - tau fake probability evaluated from data
 - Function of p_T , η , jet width
- Good agreement with expectations

Quark vs gluon jets:

- Different coupling to strong field
- Gluon jets have higher multiplicities and softer constituents

Tau dilepton channel

PLB 717(2012)89 $\sigma_{t\bar{t}} = 186 \pm 13 \text{ (stat.)} \pm 20 \text{ (syst.)} \pm 7 \text{(lumi.)} \text{ pb.} ATLAS <math>\pm 15\%$ $\sigma_{t\bar{t}} = 143 \pm 14 \text{(stat.)} \pm 22 \text{(syst.)} \pm 3 \text{(lumi.)} \text{ pb. CMS} \pm 16\%$

 $\sigma_{
m tar t}=143\pm14({
m stat.})\pm22({
m syst.})\pm3({
m lumi.})\,{
m pb}\,$ CMS PRD85(2012)112007 Michele Gallinaro - "The top quark: a tool for discoveries" - April 22, 2013

52

Is there a charged Higgs?

 If anomalous tau production in ttbar decays there may be contribution from charged Higgs decays

Yields in agreement with expectations ⇒ set limits

$$80 < m_{H^+} < 160 \text{ GeV}.$$

$$BR(t \rightarrow H^+b) < 2 - 3\%$$

CMS HIG-11-019

ttbar resonances

How else is top produced?

 $64.57^{+2.09}_{-0.71}$ $^{+1.51}_{-1.74}$ pb

Kidonakis,N. PRD83:091503,2011

 $4.63 \pm 0.07^{+0.19}_{-0.17}$ pb

Kidonakis,N. PRD81:054028,2010

 $15.74 \pm 0.40^{+1.10}_{-1.14}$ pb

Kidonakis,N. PRD82:054018,2010

Resonance Production?
Top Color-Assisted Technicolor
OR
?????

Top quark pair resonance

- No resonance expected in SM
- Why is Top so heavy?
 - new physics?
 - is third generation 'special'?
 - couples predominantly to third generation quarks
- Top is relatively unknown experimentally
- Experimental check
 - search for a bump in the invariant mass spectrum

Search for resonances

- Semi-leptonic (muon+jets) channel
- Z' →ttbar cross section normalized to SM ttbar
- Progressive loss in reconstruction ability due to jet merging

Search for heavy resonances

- search for massive neutral bosons decaying via a ttbar quark pair
- use dilepton/lepton+jet final states (electron and muon)
 - Reconstruct M_{ttbar} in different categories (e/ μ , n-jets, n b-tags)
 - I+jet events: full event reconstruction
 - Dileptons: use NN approach to improve S-B separation
- systematics include shape (JES, b-tag, theory model) and rates (eff. bkg yields)

Michele Gallinaro - "The top quark: a tool for discoveries" - April 22, 2013

Search for ttbar+jet resonance

• Search for a heavy new particle M produced in association with a top quark:

$$p\bar{p} \to Mt \to \bar{t}qt$$

- Resonance in the system t+jets of ttbar+jets
- Select events in lepton+jets channel with at least 5 jets and 1 b-tag

Boosted topology

Jets and boosted topology

Boosted topology

• In many models there is high potential to discover new physics in the top sector in search for heavy resonances

$$pp \to X \to t\bar{t}$$

• Simple approach to merge neighboring jets

- At LHC energy, EWK scale particles produced beyond threshold
- Jets are highly collimated
- Jet-parton matching breaks down
- Decay products and FSR collected in a fat jet

Boosted jet topology

- At LHC energy, EWK scale particles produced beyond threshold
- Jets are highly collimated
- Decay products and FSR collected in a fat jet

Michele Gallinaro - "The top quark: a tool for discoveries" - Ap

Jet/Event selection

- Locate hadronic energy deposit in detector by choosing initial jet finding algorithm
- Impose jet selection cuts on fat jet
 - Recombine jet constituents with new algorithm
 - Filtering: recombine n sub-jets min d(i,j)
 - Trimming: recombine sub-jets with min p_T
- Minimum distance between jets is R

UE, ISR, Pile-up, hard interaction

Boosted top topology

- Highly boosted top: three hadronic decays of the top are merged in one top jet
- Moderately boosted top: three hadronic decays of the top are merged in one W jet plus and one b jet candidates

Boosted top topology

Tested using hadronic top in semilep. tt events:

- One high-pT isolated muon from PV.
- At least two jets $p_T>30$ GeV with a leading jet $p_T>2$ GeV and at least one b-tagged jet
- Events with W tagged jets used to reconstruct the \
 and the top mass of the hadronic side

Top quark and new physics

- Top quark production is main background in many searches for new physics
- Top quark sample may be contaminated by NP processes
- Is top quark sample compatible with top quark SM hypothesis?
- Need to compare distributions, gain good understanding of top sample

SUSY and 4th generation

Cross section measurements

Michele Gallinaro - "The top quark: a tool for discoveries" - April 22, 2013

Charged Higgs

This study focuses on the mass range $100 \le H^+ \le 160 \, \mathrm{GeV/c^2}$, where we may observe an anomalous excess of events in the τ dilepton channel when compared to the SM decay of $t\bar{t} \to W^+W^-b\bar{b} \to \tau\nu_{\tau}l\nu_{l}b\bar{b}$, $l=e,\mu$.

Implies a larger measured cross section (see MG, Lecture #6)

⇒probe non-standard physics (t→H[±]b, ...)

Scalar top quark

- SUSY is one plausible extension of the SM
- such that the lighter stop f 1 can be even lighter than the top quark
- Decays dictated by mass spectrum of other SUSY particles

i.e. <u>similar signature as in ttbar</u>

Light stop:

$$m_{ ilde{t}_1} \lesssim m_t$$

$$m_{ ilde{t}_1} \lesssim m_t \mid ilde{t}_1
ightarrow b + ilde{\chi}_1^\pm
ightarrow b + ilde{\chi}_1^0 +
u + \ell$$

Heavy stop:

$$\tilde{t} \to t \tilde{\chi}^0$$

SUSY: direct stop production

- Due to the large top mass, the scalar top quark can be lighter than the top quark
- 1st and 2nd generation squarks can be very heavy

• Direct stop production:
$$ilde t o t ilde \chi_1^0 o b W ilde \chi_1^0 \ ilde t o b ilde \chi_1^+ o b W ilde \chi_1^0$$

Michele Gallinaro - "The top quark: a tool for discoveries" - April 22, 2013

SUSY: search for scalar top

$$\widetilde{t}\widetilde{t} \rightarrow t\overline{t} \chi^0 \chi^0 \qquad \widetilde{t}\widetilde{t} \rightarrow b\overline{b} \chi^+ \chi^- \rightarrow b\overline{b} W^+ W^- \chi^0 \chi^0$$

Status:

- Final state: both dileptons and 1lepton+MET +2jets+2b jets
- limitations due to small xsec, large ttbar background

Taus

Assume each stop decays to tau and b (R-parity violation)

$$\tilde{t}_1\bar{\tilde{t}}_1{\longrightarrow}\tau^+\tau^-b\bar{b}$$

- Similar final state as in ttbar dilepton with taus
- Look for e/μ+ ≥2 jets + MET
- Define 6 regions in: m_T(I,MET) vs N_{jet} plane
- Find 2 evts in signal region (2.2 expected)

FERMILAB-PUB-08-045-E CDF: PRL 101 (2008) 071802

Michele Gallinaro - "The top quark: a tool for discoveries" - April 22, 2013

Search for Dark Matter with taus

CMS SUS-11-007

- search concentrates on heavy BSM particle production
 - astrophysical evidence for dark matter points to the existence of weakly-interacting massive particles (WIMPs) at EWSB scale
 - These particles escape detection ⇒ large MET
- Not constrained to a specific theory
 - general BSM search in events with jets, MET, and OS dileptons (at least one tau)

Multi-top production

- Production of 4 tops is an attractive scenario in a number of new physics models (SUSY, compositeness, resonances strongly coupled to top, etc.)
- The SM cross section is a few fb

Multi-top in SUSY?
$$\tilde{g}\tilde{g} \to t\bar{t}t\bar{t}\chi_0\chi_0$$

- Example: require one muon, at least 8 jets (one central)
- Yields in 30 fb⁻¹ (gluino mass 450 GeV):
 - 330 signal events, 120 ttbar+jets, 30 W+jets

Multi-top production

CMS SUS-11-020

- SUSY models with four top quarks
- Consider models of gluino pair production

Type A1:
$$\tilde{g} \to t\bar{t}\tilde{\chi}_1^0$$

Type A1: $\tilde{g} \to t\bar{t}\tilde{\chi}_1^0$ • Fina Type A2: $\tilde{g} \to \tilde{t}_1\bar{t}$, $\tilde{t}_1 \to t\tilde{\chi}_1^0$ (stop on-shell)

$$ttar{t}ar{ ilde{ ilde{t}}} ilde{\chi}_1^0 ilde{\chi}_1^0$$

Multi-top production

CMS SUS-11-020

 Study of SUSY signal with pairs of sbottom quarks

$$\widetilde{b_1} o t \widetilde{\chi^-} \hspace{0.5cm} ext{Type B1: } pp o \widetilde{b_1} \widetilde{b_1}^* \ ext{Type B2: } pp o \widetilde{g} \widetilde{b_1}, \ \ \widetilde{g} o \widetilde{b_1} \overline{b}$$

Final states with up to 4 isolated leptons

 $m(\tilde{b}_1) > 380 \text{ GeV } @95\%C.L.$

ttbar+Higgs

- ttbar produced in association with H
 - -ttbar is a "clean" tag
- direct measurement of H couplings

ttbar+Higgs (cont.)

- Search for associated SM Higgs production: ttH(→bbar)
- Both "dilepton" and "l+jets" channels
 - ATLAS results only for I+jets (~11 x SM)
- Simultaneous fit for S and B fractions
 - different categories: jet and b-jet multiplicity
- Use ANN to discriminate S and B
 - b-tagging information provides best discrimin.
- Main background: ttbar(+bbar), Z+jets

end