The Top quark Vicaele Gallinard IP Lishon - Introduction - Discovery of the Top quark - Object reconstruction - Decay and production - Cross section measurements #### Contents - Introduction (discovery, object ID) - Top pair production at the Tevatron - Top pair production at LHC - Properties: differential cross section - Mass measurements will use c=1 today - Spin correlation, charge asymmetry - Single top production - Flavor Changing Neutral Currents (FCNC) - Search for top partners and 4th generation quarks - Search for ttbar resonances ## Introduction - Discovery - introduction to the top quark ## 1974 #### With the discovery of the J/Ψ : quarks $$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix}$$ leptons $$\begin{pmatrix} \boldsymbol{v}_e \\ \boldsymbol{e} \end{pmatrix} \begin{pmatrix} \boldsymbol{v}_{\mu} \\ \boldsymbol{\mu} \end{pmatrix}$$ ## 1975-1977 - Tau (τ) lepton in Mark I data (v_{τ}) from the decay $\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} b \\ b \end{pmatrix}$ kinematics) - Discovery at Fermilab of the Y $$\begin{pmatrix} a \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} b \end{pmatrix}$$ $\left(egin{array}{c} {m v}_e \\ {m e} \end{array} ight) \, \left(m v_\mu \atop {m \mu} \right) \, \left(m v_\tau \atop {m au} ight)$ - b: non SM? iso-singlet? SM iso-doublet? - 1984: DESY measurement of e⁺e⁻→bb FB asymmetry: (22.5 ± 6.5)% - cf. 25.2% SM iso-doublet, 0% iso-singlet - If SM is correct there must be a iso-doublet partner, the top quark - Mass? b/c/s 4.5/1.5/0.5: Mass=15 GeV? # Why? - The SM is not a "renormalizable" gauge theory in the absence of the top quark - Renormalizability is a crucial feature, enabling the SM to be theoretically consistent and be usable as a tool to compute the rate of subnuclear processes between quarks, leptons, and gauge bosons - Diagrams containing so-called "triangle anomalies" (right), cancel their contributions, thus avoid breaking the renormalizability of the SM, only if the sum of electric charges of all fermions circulating in the triangular loop is zero: $\Sigma Q = -1 + 3 \times [2/3 + (-1/3)] = 0$ lepton electric charge quark (up/down) charge ## Searches in e⁺e⁻ collisions - PETRA could reach ~20 GeV (late '70s) - Search for narrow resonance - Look for increase in R=(# of hadron events)/(# of μμ events) - Global event characteristics: look for spherical component - Negative results. Set limits: M_t>23 GeV - TRISTAN built to study the top quark (early '80s) - Similar search technique: - $-M_t>30 \text{ GeV}$ - SLC/LEP - -Look for Z→tt̄ - -M_t>45 GeV - Reached kinematic limit for direct searches at e⁺e⁻ colliders ## Indirect searches from etecolliders • In the SM, various EWK observables depend on the mass of the top quark - Precision measurement of the Z decay \Rightarrow predictions of M_{top} (consistency) - In the period 1990- up to the discovery: - Prediction upper limit<200-220 GeV # Early searches at hadron colliders #### CERN SppS (√s=540 GeV) built to observe W,Z - Access to much higher energies - Large backgrounds, low event rates - Difficult reconstruction: jets #### 1984: UA1 - W→tb→lvbb - Isolated high-p_⊤ lepton - 2 or 3 hadronic jets - Observe 5 events (e+ \geq 2 jets), 4 events (μ + \geq 2 jets) - Expected background: 0.2 events - Fake leptons dominate; bbar/ccbar negligible - Result consistent with M_{top}=40±10 GeV - Stop before claiming discovery... ⇒W+jet background was underestimated Michele Gallinaro - "The top quark" - April 15, 2013 ## Searches at hadron colliders - 1988 UA1 - Larger data sample (x6, 600nb⁻¹) - Improved understanding of the backgrounds - Fake leptons, W+jets, DY, J/Ψ, bbar/ccbar | <u>channel</u> | <u>observed</u> | expected background | | |--------------------|-------------------------------------------------------|-------------------------------|--| | $\mu + \ge 2$ jets | 10 events | 11.5 ± 1.5 events | | | $e + \ge 1$ jets | 26 events | $23.4 \pm 2.8 \text{ events}$ | | | | $(+23 \text{ expected if } M_{top} = 40 \text{ GeV})$ | | | ⇒conclude M_{top}>44 GeV # Fermilab joins the hunt - 1988-89: at CERN, UA2 remains after the upgrades - √1.8 TeV@FERMILAB vs. √0.63 TeV@CERN - Much better reach for larger mass (only 75 GeV@UA2) - At Tevatron, pair production dominates: tt→ Wb Wb | % | ev | μν | τν | qq^- | |-----------------|-----|-----|-----|--------| | ev | 1.2 | 2.5 | 2.5 | 14.8 | | μν | | 1.2 | 2.5 | 14.8 | | τν | | | 1.2 | 14.8 | | $q\overline{q}$ | | | | 44.4 | ## Searches at CDF #### eν+ ≥2 jets - Dominant background: W+jets - Discriminant: ev transverse mass - Background: W on-shell - Signal: W off-shell for M_{top} =40-80 GeV UA2 uses similar technique: M_{top}>69 GeV # Searches at CDF (cont.) #### eμ channel - Event rate much lower: 2xBR(W→ev) - Background very small - No W+jets - No Drell-Yan - Dominant background is $Z \rightarrow \tau \tau \rightarrow e \mu X$ (expect 1 event) - Observe 1 event - \Rightarrow M_{top}>72 GeV (expect 7 events for M_{top}=70 GeV) # Change of strategy: M_{top}>M_b+M_W - Top quark decays to on-shell Ws: no $M_T(Iv)$ discriminant - Main differences: - background: W+jets (largely quarks and gluons) - signal: W+jets (2 jets are b-jets) - CDF publication on 88-89 data: - Dilepton: include ee, μμ, eμ (require missing ET, Z-veto) - Single lepton: require low p_T muon (semi-leptonic b-decays) $$\Rightarrow$$ M_{top}>91 GeV # 19 countries 83 institutions, 664 physicists # D0 joins the hunt DØ Detector ## Searches at Tevatron: CDF and D0 #### 1992-1995 - Tevatron with higher luminosity - D0: excellent calorimetry, large solid angle and coverage - CDF: precision vertex detector, good tracker, magnetic spectrometer #### Run 1A: D0: optimized search for M_{top}=100 GeV ``` -e\mu+≥1jet+MET 1 evt (1.1 bkg) -ee+≥1jet+MET 1 (0.5) -e+≥4jets+MET 1 (2.7) -\mu+≥4jets+MET 0 (1.6) ``` ⇒M_{top}>131 GeV@95%CL # Detecting the top quark at CDF #### Strategy - dilepton: +2 jets - single lepton: b-tagging - 1) soft e/μ: semi-leptonic b-decay - 2) secondary vertex New: CDF vertex detector (SVX) (40 μm impact parameter resolution) powerful discriminant against background # Tagging b-jets - Top events contain B hadrons - Only 1-2% of dominant W+jets background contains heavy flavor ## 1993 #### Coll. Meeting, Aug. 1993: - Status report from each group (dilepton, single lepton) - Small, not significant excess in all channels | Type | observed | background | | |-------|-----------|----------------------------------------|-------------| | DIL | 2 events | 0.56 ^{+0.25} _{-0.13} | | | SVX | 6 tags | 2.3 ± 0.3 | 3 events ir | | SLT | 7 tags | 3.1 ± 0.3 | common | | total | 12 events | | | - In total, an excess of events - Background fluctuation probability: 2.8σ - Skepticism, additional studies, cross-checks - Additional 8 months before making the results public ## Final steps: CDF and D0 #### CDF: counting experiment yields 2.8o - Few checks: no major discrepancy - Other checks consistent with presence of signal - Mass distribution looked good - There were also other analyses at CDF - Difference of jet E_T spectra for signal and bkg - Separate two component for signal and bkg - -CDF chose not to use those for first publication - Use "counting" experiment - Observed 7 events (expect 4-6 from bkg) - No independent evidence # First evidence (1994) VOLUME 73, NUMBER 2 PHYSICAL REVIEW LETTERS 11 JULY 1994 #### Evidence for Top Quark Production in $\bar{p}p$ Collisions at $\sqrt{s}=1.8~{\rm TeV}$ We summarize a search for the top quark with the Collider Detector at Fermilab (CDF) in a sample of $\bar{p}p$ collisions at $\sqrt{s} = 1.8$ TeV with an integrated luminosity of 19.3 pb⁻¹. We find 12 events consistent with either two W bosons, or a W boson and at least one b jet. The probability that the measured yield is consistent with the background is 0.26%. Though the statistics are too limited to establish firmly the existence of the top quark, a natural interpretation of the excess is that it is due to $t\bar{t}$ production. Under this assumption, constrained fits to individual events yield a top quark mass of $1.74 \pm 10 \pm 1.3$ GeV/ c^2 . The $t\bar{t}$ production cross section is measured to be $1.3.9 \pm 6.1$ pb. Michele Gallinaro - "The top quark" - April 15, 2013 ## Discovery #### By early 1995 (Run 1A+1B), x3.5 data #### D0 further optimized for high mass: Require H_T (ΣE_T of all objects) to suppress the background: improves S/B by ~x2.5 ## First measurements VOLUME 74, NUMBER 14 PHYSICAL REVIEW LETTERS 3 April 1995 #### Observation of Top Quark Production in $\overline{p}p$ Collisions with the Collider Detector at Fermilab We establish the existence of the top quark using a 67 pb⁻¹ data sample of $\overline{p}p$ collisions at $\sqrt{s} = 1.8$ TeV collected with the Collider Detector at Fermilab (CDF). Employing techniques similar to those we previously published, we observe a signal consistent with $t\bar{t}$ decay to $WWb\bar{b}$, but inconsistent with the background prediction by 4.8σ . Additional evidence for the top quark is provided by a peak in the reconstructed mass distribution. We measure the top quark mass to be $176 \pm 8(\text{stat}) \pm 10(\text{syst}) \text{ GeV}/c^2$, and the $t\bar{t}$ production cross section to be $6.8^{+3.6}_{-2.4}$ pb Michele Gallinaro - "The top quark" - April 15, 2013 ## First measurements VOLUME 74, NUMBER 14 PHYSICAL REVIEW LETTERS 3 APRIL 1995 #### Observation of Top Quark Production in $\overline{p}p$ Collisions with the Collider Detector at Fermilab We establish the existence of the top quark using a 67 pb⁻¹ data sample of $\overline{p}p$ collisions at $\sqrt{s} = 1.8$ TeV collected with the Collider Detector at Fermilab (CDF). Employing techniques similar to those we previously published, we observe a signal consistent with $t\bar{t}$ decay to $WWb\bar{b}$, but inconsistent with the background prediction by 4.8σ . Additional evidence for the top quark is Michele Gallinaro - "The top quark" - April 15, 2013 ## First measurements VOLUME 74, NUMBER 14 PHYSICAL REVIEW LETTERS 3 April 1995 #### Observation of Top Quark Production in $\overline{p}p$ Collisions with the Collider Detector at Fermilab We establish the existence of the top quark using a 67 pb⁻¹ data sample of $\overline{p}p$ collisions at $\sqrt{s} = 1.8$ TeV collected with the Collider Detector at Fermilab (CDF). Employing techniques similar to those we previously published, we observe a signal consistent with $t\bar{t}$ decay to $WWb\bar{b}$, but inconsistent with the background prediction by 4.8σ . Additional evidence for the top quark is Michele Gallinaro - "The top quark" - April 15, 2013 ## Top quark and its relevance - Basics - How to detect the top quark - Tevatron vs LHC # About the top quark - Still the heaviest known elementary particle - Strongest coupling to the Higgs (~1) - Special role in EWK symmetry breaking (?) - Enhanced coupling to New Physics (?) - Only "bare" quark accessible for study - free from QCD - no hadronization, lifetime $<\Lambda_{OCD}$ - Precision measurements may provide insight into physics beyond SM #### quark masses ## The Large Hadron Collider - Built to explore new energy frontiers - First colliding beams in 2009 - started with "low" luminosity in 2010 - ~5 fb⁻¹@7TeV delivered in 2011 - ~20 fb⁻¹@8TeV in 2012 - re-establish SM measurements - access to new physics processes ⇒ Top quarks give access to SM and BSM (?) ## Tevatron vs LHC Energy: 1.96 TeV Int. Luminosity: 12 fb⁻¹ Age: ~25 years Events/exp (5.4 fb⁻¹) 350 ее еµµµ 3500 lepton + jets Energy: 7/8 TeV Int. Luminosity: 5/20 fb⁻¹ Age: ~3 years Events/exp (1 fb⁻¹) 2500 ее еµµµ 15000 lepton + jets ## What is the Top quark? Quarks: $$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$$ Leptons: $\begin{pmatrix} \nu_e \\ e \end{pmatrix} \begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix} \begin{pmatrix} \nu_{\tau} \\ \tau \end{pmatrix}$ - It is the heaviest fundamental particle - $-M_{top} = 173.2 \pm 0.9 \text{ GeV}$ (hep-ex/1107.5255v3) - Weak isospin partner of the b-quark - Completes the SM of quarks and leptons # How is the top quark produced? #### **Predicted cross sections:** For $$m_t = 172.5 \text{ GeV}$$ $\sqrt{s} = 1.96 \text{ TeV}$: $\sigma(pp \to t\bar{t})_{NNLOapprox} = 7.46^{+0.48}_{-0.67} \text{ pb}$ $\sqrt{s} = 7 \text{ TeV}$: $\sigma(pp \to t\bar{t})_{NNLOapprox} = 164.6^{+11.4}_{-15.7} \text{ pb}$. Lanenfeld et al. PRD 80, 054009 (2009) Aliev et al., Comp. Phys. Comm. 182, 1034 (2011) Kidonakis, Phys. Rev. D82, 114030 (2010) Ahrens et al., JHEP 1009, 097 (2010) arXiv:1105.5824 | | LHC | Tevatron | |----|------|----------| | gg | ~85% | ~10% | | qq | ~15% | ~90% | ## How does a top quark decay? - almost always t→Wb (i.e. V_{tb}~1) - lifetime is short, and it decays before hadronizing - the W is real: - can decay W→Iv (I=e,μ,τ), BR~1/9 per lepton - can decay W→qq, BR~2/3 # How do ttbar pairs decay? #### ⇒use all decay channels ## Interesting physics with Top quark #### **PRODUCTION** Cross section Resonances X→tt Fourth generation t' Spin-correlations New physics (SUSY) Flavour physics (FCNC) ... #### **PROPERTIES** Mass Kinematics Charge Lifetime and width W helicity Spin #### **DECAY** Branching ratios Charged Higgs (non-SM) Anomalous couplings Rare decays CKM matrix elements Calibration sample @LHC ... #### Particle identification Object identification and reconstruction ### Selection of top quark events - Trigger: - single or double (isolated) lepton - Leptons: - $-e/\mu$, p_T>20/30 GeV, $|\eta|$ <2.5 - Identification/reconstruction - Tracker/calorimeter isolation - Jets: - at least 2 jets, p_T >30 GeV, $|\eta|$ <2.5 - anti-kT algorithm, with cone 0.4-0.5 - b-tagging is optional - Missing transverse energy: - Typically require 30-40 GeV # Trigger - Trigger system is a very simple concept: two levels - L1 is hardwired to a flexible/programmable High Level Trigger - Challenge is to keep "reasonable" rate cross section with varying pile-up conditions, without "loosing" physics - Full use of the flexible HLT system Some of the offline features (PF and PU corrections) are implemented online #### Particle detection #### Need efficient: - Electron, muon, tau reconstruction - jet reconstruction - b-tagging capability - "Onion"-like structure - Each layer measures E and/or p of particles - Redundancy of measurements #### Particle Flow event reconstruction - Particle Flow (PF) combines information from all subdetectors to reconstruct particles produced in the collision - charged hadrons, neutral hadrons, photons, muons, electrons - use complementary info. from separate detectors to improve performance - tracks to improve calorimeter measurements - From list of particles, can construct higher-level objects - Jets, b-jets, taus, isolated leptons and photons, MET, etc. ### Electron and photon reconstruction #### Photon: - No track in inner detector - Electromagnetic shower in EM calorimeter - No signal in Hadronic calorimeter #### Electron: - Track in inner detector - Electromagnetic shower in EM calorimeter - No signal in Hadronic calorimeter #### Muon reconstruction - Minimum ionizing track in all detectors (about 3 GeV loss in the calorimeter) - At high momentum (few hundred GeV), bremsstrahlung in the calorimeter can be significant - Momentum measurement in inner detector, muon system A di-muon event at CMS #### Electrons and muons - W/Z cross section measurement with 36/ pb demonstrated that leptons and their "fake" rates can be modeled well - Muons have fewer "fakes" than electrons - Can construct analysis to minimize this impact: trade-off between efficiency and fake rate - Impact on Top: ⇒efficiency, QCD estimate & modeling ### Tau jet identification - Taus decay 65% to hadrons (i.e. jets) and 35% to leptons - Hadronic tau decays are reconstructed with PFlow - narrow jet with few tracks - Leptonic tau decays are similar to prompt leptons (lepton p_T is softer, 3-body decay) - Hadronic tau decays - Main background from jets/electrons - Identified based on decay modes, charged hadrons, and ECAL deposits - "Hadron Plus Strips" (HPS) algorithm - Uses photon conversion in tracker (γ→e⁺e⁻) - Combines PF EM particles (γ ,e $^{\pm}$) in "strips" - "strips" are combined with PF charged hadrons - Individual decay modes are reconstructed - Fake Rate ~3% for 70% efficiency # Challenge: Pile-up $Z \rightarrow \mu \mu$ Expected MET = 0 10 in-time + 10 out – of – time pileup ## Pile-up - About ~30 pp collisions per bunch crossing √0.07 - High multiplicity - ~1-2 thousand low energy charged particles/cross - ~1-2 thousand low energy photons/crossing - Challenge to reconstruct hard collisions - Jets and MET reconstruction - Lepton isolation - Assignment of particles to primary vertex - Particle flow reconstruction - Neutral energy: event-by-event energy subtraction ## Pile-up in 2012 Peak: ~40 pileup events Design value: 25 pileup evts (L=10³⁴cm⁻² sec⁻¹, 25 nsec) Michele Gallinaro - "The top quark" - April 15, 2013 #### Jet reconstruction - A "jet" is a cluster of energy deposited in a "small" η-φ region of the detector - It is not a unique object, it is defined by the jet algorithm (different choices yield different jets) - The jet algorithm uses detector reconstructed objects (clusters, tracks, combined objects) - It is "safe" to higher order effects when it does not change jet quantities - Efficient and pure: jets correspond to partons ## Challenge: jet reconstruction - measurements (for example Top mass) needs parton information, but we measure jets - Contribution of uncertainty sources depend on p_T, η - Use calorimeter information to correct jet energy to particle level - Jet energy corrections: - Look at quantities insensitive to JES (e.g. lepton p_T) - "b-jet" tag helps reducing number of permutations - JES "in-situ" calibration in ttbar events - Use W→jj constraint to measured W mass - Can be used in lepton+jets (and all-hadronic) channel ### Missing transverse momentum - Neutrinos (and "dark matter") escape the detector without detection - Also longitudinal momentum and energy of other final state particles escape undetected (along the beam-pipe) - Momentum is not measured along the z-direction - Missing momentum along z is unknown - The momentum of the neutrinos can be reconstructed in the transverse plane - Momentum which is missing to balance the total momentum to zero transverse energy vector $$extbf{\emph{E}}_{T}^{ ext{miss}} = -\sum_{i} extbf{\emph{p}}_{T}(i)$$ where the sum runs over the transverse momenta of all visible final state particles. # Challenge: MET - Performance of the MET measurement depends on the measurement of ALL particles in the event - Measurement is affected by: - Noise, mis-calibration, various calorimeter problems (dead channels, etc) - Modeling of QCD background events, pile-up, multiple interactions, ... - Muon momentum measurement (muons inside jets) - Cosmic background events - Beam halo (i.e. collisions upstream of detector, parallel to beam) - MET significance #### MET reco: PF vs Calo - Study of MET in W→ev events from early 2010 - Particle Flow improves MET resolution, making W's easier to distinguish from background # Challenge: b-tagging - •Lifetime: $\tau_b \sim 1-2 \text{ ps}$ - Reduction of background obtained by identifying jets from b-quarks - Two methods: - Secondary vertex tagging - Semileptonic decays of b-hadrons in jets ($b \rightarrow \ell \nu_{\ell} X$) Michele Gallinaro - "The top quark" - April 15, 2013 ### b-tag: fake rates and efficiencies - b-tag optimization: trade-off between fake rate and efficiency - studied the performance of several different tagging working points - Example: Track counting algorithms N_{tracks}=2,3 have ``working points'' with fake rates approx. 10%, 1%, 0.1% - Uncertainty on data/MC scale factor, depending on algorithms: - − ~10-15% for mistags - − ~5% for efficiencies - Impact on top: amount and uncertainty of light flavor background for all tagged analysis #### Measurements Measurement of the cross section ## Interesting physics with top quarks - Cross section - Mass - Kinematical properties - Is there a X→ttbar? - -W polarization - Spin correlations - Rare decays - Single top - Top quark is unusually heavy: maybe is it different? ### Top quark events - cross section ~20 times larger at LHC@7TeV - goal of the LHC is searching for New Physics - select ttbar events at LHC: - understand/calibrate detector - Measure SM quantities - event selection includes SM control events - ttbar final state is complex (i.e. not a mass peak) - Top quarks and new physics: - ttbar sample may contain new physics - look at jet multiplicity bins (since ttbar is background e.g. for SUSY), or other variables ### Theory cross sections: TeV vs LHC | Collider | $\sigma_{tt} \; ext{(pb)}$ | $\delta_{\mathrm{PDF+scales}+lpha_{\mathrm{s}}}$ (pb) | $\delta_{ m tot} \; (m pb)$ | |---------------------|-----------------------------|-------------------------------------------------------|---------------------------------------------| | Tevatron | 7.258 | +0.267 (+3.7%) -0.352 (-4.9%) | +0.390 (+5.4%) -0.469 (-6.5%) | | LHC 7 TeV | 172.7 | $^{+10.4}_{-11.8} \ (+6.0\%)$ | $^{+12.5}_{-13.7}$ $^{(+7.2\%)}_{(-8.0\%)}$ | | LHC 8 TeV | 248.1 | $+14.0 (+5.6\%) \\ -16.2 (-6.5\%)$ | +17.1 (+6.9%) -19.1 (-7.7%) | | $\rm LHC~14~TeV$ | 977.5 | $^{+44.1}_{-55.8} \ (-5.7\%)$ | +57.4 (+5.9%) -68.5 (-7.0%) | Including NNLO+NNLL approximations arXiv:1303.7215v2 (M. Czakon et al.) #### Top cross section at 7/8 vs 14 TeV - LHC collisions started at 7/8 TeV - LHC design is at 14 TeV - Top cross section drops faster than background processes at lower sqrt{s} - Top cross section drops by factor of ~5: - Cacciari, Frixione, Mangano, Nason, Ridolfi arXiv:0804.2800 - $-\text{Top }\sigma(14\text{TeV})=970\text{ pb}$ - Top σ (7TeV)=165 pb - · Background is more "flat" ## A word about QCD background - QCD may still be large background in Top events - From Tevatron to LHC - σ (ttbar) increases by 100 - $\sigma(W)$ increases by 10 ...however... σ(W+4 jets) increases 100 times ⇒W+jet background is large #### Slide by Michelangelo Mangano #### Cross section measurement $$\sigma_{t\bar{t}} = \frac{N_{obs} - N_{bgd}}{\varepsilon_{t\bar{t}} \cdot \int L dt}$$ - √ testing non-SM top production mechanisms - ✓ top sample may contain an admixture of exotic processes ### Dilepton channel Branching Ratio (BR) ~5% background: small ≻two leptons + ≥2 jets + ⊭_T >more kinematical variables ## Dilepton channel - Cleanest signature and lowest BR - Main backgrounds - Drell-Yan (veto Z window in ee/μμ, and rescale DY contribution from data) - Single top and VV (from MC) - Fake leptons (fake rate/efficiency) #### CMS: dilepton trigger Isolated lepton p_T>20 GeV, |η|<2.4 #### ATLAS single lepton trigger - Isolated electron/muon p_T>25(20)GeV - Require two leptons with opposite charge - Reject b-quark production & low mass Drell-Yan resonances production - Z veto and suppress Z+jet backgrounds ### Dilepton channel - Signal visible w/without b-tagging - Measure cross section: - Profile likelihood - Cut and count - Main systematics: jet energy scale, pileup, signal modeling $$\sigma_{t\bar{t}} = 176 \pm 5 ({ m stat.})^{+14}_{-11} ({ m syst.}) \pm 8 ({ m lum.}) { m pb}$$ ATLAS $\sigma_{t\bar{t}} = 161.3 \pm 2.5 ({ m stat.})^{+5.3}_{-5.2} ({ m syst.}) \pm 3.6 ({ m lumi.}) { m pb}$ CMS ### Tau dilepton channel #### Selection: - one isolated lepton (e/μ) - OS tau - at least two jets (one b-tagged) - MET>30 (45) GeV #### Determine τ fakes from data - Expected to be dominated by light flavor jet contribution - In W+jets gluon contribution canceled by OS-SS - Conservative approach: average W+jets and QCD $$\sigma_{t\bar{t}} = 186 \pm 13 \text{ (stat.)} \pm 20 \text{ (syst.)} \pm 7 \text{(lumi.)} \text{ pb, ATLAS}$$ $$\sigma_{t\bar{t}} = 143 \pm 14 \text{(stat.)} \pm 22 \text{(syst.)} \pm 3 \text{(lumi.)} \text{ pb } \text{CMS}$$ ### Lepton + jets BR ~30% background: moderate ≻one lepton + ≥3 jets + ⊭_T >may require b-tag # Single lepton channel - Include both muon and electron channels (untagged) - Use kinematical differences between ttbar and W+jets $\sigma_{t\bar{t}} = 179.0 \pm 3.9 \text{ (stat)} \pm 9.0 \text{ (syst)} \pm 6.6 \text{ (lumi) pb}$ ## Single lepton channel #### Main backgrounds: - Hadronic multijet: rejected by m_T,MET, controlled from sidebands - W+jets (heavy flavor) #### Use kinematics to select ttbar - Mass of sec. vertex - topology Categorize events and extract σ_{tt} from fit ``` ATLAS 179.0\pm3.9 (stat)\pm9.0 (syst)\pm6.6 (lumi) pb 158.1 \pm 2.1 (stat.) \pm 10.2 (syst.) \pm 3.5 (lum.) pb CMS arXiv:1212.6682 ``` ### All hadronic BR ~44% background: large - >≥6 jets + kinematical selection - >optimize S/√B - ➤ require b-tag ### All hadronic - Large BR, but large bkg - Select at least 6 jets - b-tagging reduces combinatorics - Top cross section from unbinned maximum likelihood to the reconstructed top mass - Multijet QCD is main background (modeled from data) - Use events with 4-5 jets - Re-weigh mass spectrum from anti-tagged sample Results: background data-driven) **ATLAS** $\sigma(pp \rightarrow t\bar{t}) = 167 \pm 18 \text{ (stat.)} \pm 78 \text{ (syst.)} \pm 6 \text{ (lum.) pb}$ $139 \pm 10 \, (\text{stat.}) \pm 26 \, (\text{syst.}) \pm 3 \, (\text{lum.}) \, \text{pb}$ **CMS** Fit χ^2 or top mass (signal from generator, ### Cross section at the Tevatron - Good agreement with expectations - Everything else we know of ttbar agrees with SM ### Top cross sections at 7 TeV Good agreement between measurements and predictions for all decay modes #### Cross section measurements Ahrens et al. (1105.5824) predict lower cross section * = preliminary red = 2011 result blue = 2010 results $\sigma(p\bar{p} \rightarrow t\bar{t} + X)$ [pb] Hint for NP? July 2011) - "The top quark" - April 15, 2013 $\sigma_{_{tar{t}}}$ [pb] 7 #### Current status ### Differential cross section - Measure differential cross section - Test perturbative QCD - Test BSM scenarios (Z' decays, etc) with narrow resonance - Reconstruct event kinematic properties - Cross sections measured as a function of p_T , η , invariant mass of the final state leptons, the top quarks, and the ttbar system - Good agreement found in dilepton and lepton+jet channels CMS-TOP-12-028 Michele Gallinaro - "The top quark" - April 15, 2013 ### Differential cross section - Measure differential cross section - Test perturbative QCD - Test BSM scenarios (Z' decays, etc) with narrow resonance - Reconstruct event kinematic properties - Cross sections measured as a function of p_T , η , invariant mass of the final state leptons, the top quarks, and the tt system - Good agreement found in dilepton and lepton+jet channels CMS-TOP-12-028 Michele Gallinaro - "The top quark" - April 15, 2013 ## Top quark mass ### Top quark mass and constraints - Top quark mass is a fundamental parameter of the SM - Known with good accuracy from the Tevatron: 173.2±0.9 GeV (arXiv:1107.5255) - Indirect constraint on the Higgs boson mass via EW corrections - \Rightarrow m_H=92⁺³⁴₋₂₆ GeV or <161 GeV - Top is the only fermion with the mass of the order of EWSB scale - Measuring precisely m_W and m_{top} - Test consistency of SM - Search for new Physics ## Top quark mass and constraints - Top quark mass is a fundamental parameter of the SM - Known with good accuracy from the Tevatron: 173.2±0.9 GeV (arXiv:1107.5255) - Indirect constraint on the Higgs boson mass via EW corrections - \Rightarrow m_H=92⁺³⁴₋₂₆ GeV or <161 GeV - Top is the only fermion with the mass of the order of EWSB scale Measuring precisely m_w and m_{top} - Measuring precisely m_W and m_{top} - Test consistency of SM - Search for new Physics ## Jet reconstruction in Top events Top mass measurement needs parton information, but we measure jets Use calorimeter information to correct jets to particle - Contribution of uncertainty sources depend on $p_{T},\,\eta$ - Jet energy correction uncertainty: - Look at quantities insensitive to JES (e.g. lepton p_T) - "b-jet" tag helps reducing number of permutations - JES "in-situ" calibration in ttbar events - Use W→jj constraint to measured W mass ## Top as a calibration tool - Top quarks can be used as calibration tool - Top mass, W mass, b/q jets - can determine: - b-tagging efficiency - jet energy scale ...or alternatively... - compare rates in different b-tag multiplicity bins - is the signal, ttbar or not? - BSM may appear in the sample and "distort" the distribution ## Jet energy correction from Top - Use semi-leptonic events –1 isol μ (p_T>30 GeV)+≥4 jets (40 GeV) - Estimate jet energy corrections by applying event-by-event kinematical fit to W and Top masses - Likelihood is used to assign jets - Kinematical fit returns $P(\chi^2)$ - Find best JES by minimizing χ^2 ## Measuring the top mass #### **Challenging:** #### Lepton+jets - undetected neutrino - P_x and P_v from E_T conservation - 2 solutions for P_z from M_W=M_{Iv} - leading 4-jet combinatorics - 12 possible jet-parton assignments - 6 with 1 b-tag - 2 with 2 b-tags - ISR + FSR #### > Dileptons - (less statistics) - two undetected neutrinos - less combinatorics: 2 jets #### LO final state: #### experiment sees: ## Lepton+jet channel - Best channel (for now) to measure top quark mass - Compromise between large branching ratio (BR=30%) and a good background rejection - Well defined final state (1 lepton, one neutrino, 2 b-jets, W→qq') ## Lepton+jet channel in-situ calibration of the light quark JES from W→ qq² ATLAS: template fit as function of JES and top quark mass CMS: kinematic fit + "ideogram" method combine event-per-event likelihood \Rightarrow m_{top}=174.4 ± 0.6 (stat) ± 2.3 (syst) GeV 172.6 ± 0.6 (stat) ± 1.2 (syst) GeV ATLAS CONF-2011-120 CMS PAS-11-015 ## Dilepton channel: challenges #### Combinatorics - Identify top quark decay products - Ambiguity - ISR/FSR introduces further complexity for selection (~70% of the events have both b-jets reconstructed and selected) #### Missing transverse energy - Constrains the contribution from undetected particles - In the dilepton channel: 2 neutrinos $\Rightarrow \vec{E}_T^{miss} = \vec{p}_T^{\nu} + \vec{p}_T^{\bar{\nu}}$ #### Jet energy scale - m_{top} reconstruction requires measuring the parton energy - parton→jet affected by resolution and absolute energy scale #### • Pile-up - Jet energy scale, MET measurement, extra jets/leptons - N_{pileup}≈ 6 (21) for most of data collected in 2011 (2012) ### Reconstructed mass CMS-PAS-TOP-11-016 - Select events - Reconstruct mass | Process | Pre-selection | KINb | =1 b-tag | ≥ 2 b-tags | |--------------------------|----------------|----------------|----------------|----------------| | Di-bosons | 73 ± 14 | 55 ± 10 | 18 ± 4 | 4 ± 1 | | Single top | 247 ± 92 | 182 ± 68 | 88 ± 33 | 76 ± 29 | | W+jets | 22 ± 10 | 16 ± 8 | 8 ± 6 | - | | $Z/\gamma^* o \ell\ell$ | 1091 ± 97 | 756 ± 71 | 238 ± 29 | 47 ± 11 | | other t t | 32 ± 4 | 28 ± 3 | 11 ± 2 | 14 ± 2 | | tī dileptons | 5057 ± 463 | 4209 ± 385 | 1379 ± 127 | 2623 ± 240 | | total expected | 6522 ± 482 | 5246 ± 398 | 1742 ± 134 | 2765 ± 242 | | data | 6358 | 5047 | 1692 | 2620 | | | | | | | Michele Gallinaro - "The top quark" - April 15, 2013 m_{Top} [GeV/c²] m_{Top} [GeV/c²] ## Signal and background - Signal component in the mass spectrum modelled: simulation - Fit: Landau+Gaussian - Categories: =1 and ≥2 b-tags - Background component in the mass spectrum modelled with data+simulation - Fit: Landau ### Reconstructed mass - Top quark mass is reconstructed in different categories - Signal and background shapes ≥ 2 b-tags (ee+μμ) N_{signal}=1008.9[†] Reconstructed Mass [GeV/c2] ### Correct for the bias Check and correct for the bias in the measurement ## Do not forget the systematics #### • Jet energy scale (JES) is the largest unc. - JES is varied up and down and difference in m_{top} is accounted for as systematics - Flavor (b) specific uncertainty added in quadrature #### Other systematics: - Difference with respect to reference sample used for signal - MC: compare Alpgen and Powheg with Madgraph - Vary factorization/matching scale, ISR/FSR | Source | $\Delta m_{\rm top} ({\rm GeV}/c^2)$ | | |--------------------------------------------|---------------------------------------|--| | JES | +1.90
-2.00 | | | flavor-JES | +1.08
-1.13 | | | JER | ± 0.30 | | | LES | $^{+0.12}_{-0.18}$ | | | Unclustered E _T ^{miss} | ± 0.43 | | | Fit calibration | ± 0.40 | | | DY normalization | ± 0.40 | | | Factorization scale | ± 0.41 | | | Jet parton matching scale | ± 0.65 | | | Pile-up | ± 0.19 | | | b-tagging uncertainty | ± 0.30 | | | mis-tagging uncertainty | ± 0.43 | | | MC generator | $\pm \ 0.14$ | | | PDF uncertainty | ± 0.39 | | | Total | +2.52
-2.63 | | ### Final fit $$m_{ m top} = 173.3 \pm 1.2 ({ m stat.})^{+2.5}_{-2.6} ({ m syst.})~{ m GeV/}c^2$$ CMS TOP-11-016 ## Summary of mass measurements #### **CMS Preliminary** #### Mass difference measurement CMS TOP-12-028 - CPT invariance ⇒ mass of particle=mass of anti-particle - Top quark decays before hadronizing $\Rightarrow \Delta m$ can be measured directly - Use lepton+jet final state $$\Delta m_t = m_t^{had} - m_{\bar{t}}^{had} = -272 \pm 196 \text{ (stat.)} \pm 121 \text{ (syst.)} \text{ MeV}$$ # end