

Higgs searches in the H→bb channel

Patricia Conde Muíño (LIP-Lisboa)

Course Physics at the LHC 9^{th} July 2012

- Introduction
 - ≻ Why H→bb?
- > ATLAS detector
- Reconstruction of leptons, jets, missing ET at ATLAS
- ≻ WH
- ≻ ZH
- Exclusion limits

Higgs decays in the SM

Decay branching ratios depend on the Higgs mass

- Low mass range:
 - ≻ H→bb dominates
 - Affected by large QCD background
 - ≻ H→γγ and H→ZZ have small BR but clear signatures

H→bb decay

- It can add new information to searches
- Important to test Higgs boson nature:
 - Might get enhanced in SUSY!
 - Can provide a measurement of the Higgs couplings to quarks

Higgs couplings

Prod	luction	Decay	Global fit					
eeeeen i	GF:	$H \to Z Z^{(*)} \to 4l$						
	Gluon Fusion	$H \to WW^{(*)} \to l\nu l\nu$						
788999	$(gg \rightarrow H)$	$H \rightarrow \gamma \gamma$				$-\Gamma_{z}/\Gamma_{W}$		
q'	WBF:	$H \to ZZ^{(*)} \to 4l$	-	×	AILAS	$-\Gamma_{v}/\Gamma_{W}$		
W, Z	Weak Boson	$H \to WW^{(*)} \to l\nu l\nu$			$\int L dt = 300 \text{ fb}^{-1} \dots$	·····Γ-/Γ···		
W, Z	Fusion	$H \to \tau \tau \to l \nu \nu l \nu \nu$		0.7	J = = = = = = =	$\Gamma_{\tau} / \Gamma_{W}$		
q	(qq H)	$H \to \tau \tau \to l \nu \nu had \nu$		0.6		1 _b /1 _W		
		$H \rightarrow \gamma \gamma$				without syst. uncertainty		
eeee t	$t\bar{t}H$	$H \to WW^{(*)} \to l\nu l\nu (l\nu)$		0.5				
$t \rightarrow -H$		$H \rightarrow b \bar{b}$		-	$-\lambda$			
ooogo t		$H \to \tau \tau$ (not included)		0.4				
		$H \rightarrow \gamma \gamma$		0.3				
W.Z	WH	$H \to WW^{(*)} \to l\nu l\nu (l\nu)$		0.3				
		$H \to \gamma \gamma$		0.2		•		
`	ZH	$H \rightarrow \gamma \gamma$		-				
				0.1				
				0-	110 120 130 140 150 1	60 170 180 190		
						m _H [GeV]		

Main backgrounds

- The di-bjet cross section is about
 8 orders of magnitude larger than the Higgs cross section!
- Impossible to isolate a direct
 pp→H→bb signal
- Will need some handles to lower background
 - Leptons
 - > Missing E_{T}
 - Forward jets

- Two very forward/backward jets produced
- Higgs produced centrally
- Rapidity gap without hadronic activity

P. Conde Muíño

 $H \rightarrow bb$ Searches in ATLAS

9

5. SM Higgs production: gg fusion

Despite of that, the $gg \rightarrow H$ cross section still affected by uncertainties

 Higher-order or scale uncertainties: K-factors large \Rightarrow HO could be important HO estimated by varying scales of process

 $\mu_0/\kappa \leq \mu_{\mathbf{R}}, \mu_{\mathbf{F}} \leq \kappa \mu_0$ at IHC: $\mu_0 = \frac{1}{2} \mathbf{M}_{\mathbf{H}}, \kappa = 2 \Rightarrow \Delta_{\text{scale}} \approx 10\%$ • gluon PDF+associated α_s uncertainties:

gluon PDF at high-x less constrained by data α_s uncertainty (WA, DIS?) affects $\sigma \propto \alpha_s^2$ \Rightarrow large discrepancy between NNLO PDFs PDF4LHC recommend: $\Delta_{pdf} \approx 10\%$ @lHC

 Uncertainty from EFT approach at NNLO $m_{
m loop}\gg M_{
m H}$ good for top if $M_{
m H}\!\lesssim\!2m_t$ but not above and not b (pprox 10%), W/Z loops Estimate from (exact) NLO: $\Delta_{
m EFT}\!pprox\!5\%$

• Include $\triangle BR(H \rightarrow X)$ of at most few %

LHC-HxsWG; Baglio+AD \Rightarrow

M_H [GeV]

 $\sigma(gg \rightarrow H)$ [pb]

Foz do Arelho, 6-9/09/2011

Higgs Phenomenology – A. Djouadi – p.33/84

350

5. SM Higgs production: associated HV

Let us look at all the main Higgs production channels at the LHC: The associated HV production:

Similar to $e^+e^- \to HZ$ process used for Higgs searches at LEP2. Cross section $\propto \hat{s}^{-1}$ sizable only for low $M_H \lesssim 200$ GeV values. Cross section for $W^\pm H$ approximately 2 times larger than ZH. In fact, simply Drell–Yan production of virtual boson with $q^2 \neq M_V^2$ $\hat{\sigma}(q\bar{q} \to HV) = \hat{\sigma}(q\bar{q} \to V^*) \times \frac{d\Gamma}{dq^2}(V^* \to HV)$ \Rightarrow radiative corrections are mainly those of the known DY process (at 2-loop, need to consider also $gg \to HZ$ through box which is \neq).

Foz do Arelho, 6-9/09/2011

Higgs Phenomenology – A. Djouadi – p.25/84

H→bb Searches in ATLAS

P. Conde Muíño

Foz do Arelho, 6–9/09/2011 Higgs Phenomenology – A. Djouadi – p.26/84

$H \rightarrow bb$ Searches in ATLAS

$1\dot{3}$

5. SM Higgs production: associated HV

Radiative corrections needed:

- for precise determination of σ
- stability against scale variation
 HO also needed to fix scales:
- renormalization μ_R for α_s
- factorization μ_F for matching.
- RC parameterized by K-factor:
 - $\mathbf{K} = rac{\sigma_{\mathrm{HO}}(\mathbf{pp}
 ightarrow \mathbf{H} + \mathbf{X})}{\sigma_{\mathrm{LO}}(\mathbf{pp}
 ightarrow \mathbf{H} + \mathbf{X})}$

Can also define K-factor at LO.

QCD RC known up to NNLO. EW RC known at $\mathcal{O}(\alpha)$: small.

VH search at ATLAS

ATLAS has searched for the H→bb in the associated production channel VH

Search channels:

$$\succ$$
 pp \rightarrow WH \rightarrow lv bb

- \succ pp \rightarrow ZH \rightarrow vv bb
- Clean signatures:
 - High p_T isolated leptons
 - Two b-jets
 - > Large E_{τ}^{miss} in the WH channel
 - $\succ~\mbox{Very}~\mbox{large}~\mbox{E}_{_{T}}^{_{\mbox{miss}}}$ in $ZH \rightarrow~\nu\nu~bb$
- Depend on all sub-detectors!!

where $l = \mu$, e

Main backgrounds

- SM backgrounds:
 - W/Z+jets
 - QCD multijet production
 - Top quark production
 - Di-boson production: WZ, WW, ZZ
- $\succ ~\sigma_{_{WH}} \approx ~2 \cdot \sigma_{_{ZH}}$ but ZH less affected by top background

LHC delivered data

Data sample used for the $H \rightarrow bb$ results that follow:

- > 5.2 fb⁻¹ of 7 TeV pp collisions
- Average pile-up: 6.3/11.6

The ATLAS detector

Muon Spectrometer: $|\eta| < 2.7$ Air-core toroids and gas-based muon chambers $\sigma/pT = 2\%$ @ 50GeV to 10% @ 1TeV (ID+MS)

EM calorimeter: $|\eta| < 3.2$ Pb-LAr Accordion $\sigma/E = 10\%/\sqrt{E \oplus 0.7\%}$

Hadronic calorimeter: $|\eta| < 1.7$ Fe/scintillator $1.3 < |\eta| < 4.9$ Cu/W-Lar σ /Ejet= 50%/ $\sqrt{E \oplus 3\%}$

>44 m long, 25 m heigh
>≈10⁸ electronic channels
>3-level trigger reducing 40 MHz collision rate to 300 Hz of events to tape

Inner Tracker: $|\eta| < 2.5$, B=2T Si pixels/strips and Trans. Rad. Det. $\sigma/pT = 0.05\% pT (GeV) \oplus 1\%$

Object reconstruction

Electrons

- EM calorimeter clusters:
 - Small leakage in Had. Calorimter
 - Most energy deposited in the second sampling of the EM calorimeter
 - Narrow shower
 - Shower shape in first sampling
- Matching Inner Detector track
 - Good quality
 - Exploit transition radiation
 - Count high thresholds hits in TRT
 - ≻ E/p
 - B-Layer hit, track pointing to PV

All information combined in a tight id.

Muons

Jet reconstruction

- B-quarks cannot be reconstructed
 - Recombination into hadrons
 - Subsequent hadron decays
- Can only see *jets* of particles
 - Parton level: outgoing partons
 - Hadron level: spray of long lived observable particles
 - Calorimeter level: energy depositions
- Jet algorithms:
 - Relate the measurements to the original partons
 - Should have the same behaviour at parton, particle and detector level

- 1. Start with a list of preclusters.
- 2. For each precluster i, define $d_i = p_{T,i}^2$ For each pair of preclusters,

$$d_{ij} = \min(p_{T,i}^{-2}, p_{T,j}^{-2}) \frac{\Delta R_{ij}^2}{D^2}$$

- 3. Find the minimum of all d_i and d_{ij} .
- If d_{min} is a d_{ij}, merge preclusters i and j into a new precluster.
- 5. If d_{min} is a d_i , precluster i is a jet.
- 6. Repeat until no preclusters _{5/09} remain. Kerstin Perez, ISS

- > Merge objects with high relative k_{T}
- Soft stuff within R of a high k_T
 object will be merged with it.
- ➢ If two hard jets are close the energy will be shared based on ∆R_µ

P. Conde Muíño

Jet energy calibration

- Hadronic showers consist of:
 - Visible EM energy: ~50%
 - Visible non-EM energy: ~25%
 - Invisible energy: ~25%
 - Nuclear excitation and break-up
 - Escaped energy: ~2%
- Each component is dependent
 on energy and subject to large fluctuations
- In addition:
 - Energy loses due to algorithmic effects
 - Energy deposition from other particles in the same event

Need to correct the jet energy with dedicated calibration tools

 $H \rightarrow bb$ Searches in ATLAS

Jet energy scale uncertainty

- JES for light jets uncertainty dominated by
 - Underlying event and hadronization models
 - Single particle response
 - Closure tests of calibration algorithm
- Pile-up uncertainty
 - Energy from extra pp collisions in the same event
- b-jet energy scale uncertainty
 - 2.5% in addition
 - Coming from b-jet fragmentation models

P. Conde Muíño

 $H \rightarrow bb$ Searches in ATLAS

systematic uncertainty

Fractional JES

Jet selection

- - Jet vertex fraction: fraction of \geq tracks belonging to the main primary vertex should be larger than 0.75

P. Conde Muíño

H→bb Searches in ATLAS

Missing transverse energy

Missing ET performance

- Good data-MC agreement in 2011
- ETmiss resolution worsens significantly with increasing pile-up
- Corrections:
 - CellOut and SoftJets terms scaled by the ratio of: sum p_T of tracks associated to the main primary vertex over all tracks.
- Result: flat dependence in the number of primary vertices

 $H \rightarrow bb$ Searches in ATLAS

- Combine the 3D impact parameter and secondary vertex information using a Neural Network
 - ε(light)~0.6%, ε(c-jets)~20%, ε(b-jets)~70%
- Compared efficiency in data-MC with two different methods
 - Scale factors very close to 1

b-jet selection

$WH \rightarrow l\nu$ bb selection

WH $\rightarrow l\nu$ bb selection

- > Trigger: e (p_{τ}^{e} >20 GeV or 22 GeV for latest periods) or μ (p_{τ}^{μ} >18 GeV)
- Exactly 1 isolated lepton with p₁ >25 GeV
- \rightarrow E_T^{miss} > 25 GeV
- > $M_T = [2p_T^{\ \nu}p_T^{\ \nu}(1-\cos\Delta\phi_{\nu})]^{1/2} > 40 \text{ GeV}$

- > Exactly 2 jets with $E_{\tau}^{\text{lead}} > 45 \text{ GeV}$ and $E_{\tau}^{\text{sublead}} > 25 \text{ GeV}$
 - > For Higgs mass reconstruction: $|\eta_{iet}|$ <2.5
 - > No other jets with: $|\eta_{iet}| < 4$, $p_T > 20$ GeV
 - > ΔR >0.7 if p_T^Z < 200 GeV
- Both jets b-tagged

After the selection, the dominant background is W+jets, followed by top and QCD multijet production

$ZH \rightarrow II bb selection$

P. Conde Muíño

- Trigger:
 - > e (p_T^{e} >20 GeV or 22 GeV)
 - μ (p_T^μ>18 GeV)
 - > 2e/2 μ trigger (p_T¹>12 GeV)
- Exactly 2 leptons p_T > 20 GeV
- Z mass cut: 83 < m₁ < 99 GeV</p>
- $\rightarrow E_{T}^{miss} < 50 \text{ GeV}$
- Exactly two b-tagged jets
 - > $E_{T}^{lead} > 45 \text{ GeV}$
 - $> E_{T}^{sublead} > 25 \text{ GeV}$
 - > ΔR >0.7 if p_T^z < 200 GeV

04

H→bb Searches in ATLAS

$ZH \rightarrow II bb selection$

- Background dominated by Z+jets, top and dibosons
 - Multijets negligible

ZH $\rightarrow \nu\nu$ bb selection

ZH $\rightarrow \nu \nu$ bb selection

- > Trigger: $E_{T}^{miss} > 70 \text{ GeV}$
- > E_{T}^{miss} > 70 GeV, p_{T}^{miss} >30 GeV
- > $\Delta \phi(E_T^{miss}, p_T^{miss}) < \pi/2$
- > $\Delta \phi(E_T^{miss}, nearest jet) > 1.8$
- > $\Delta \phi(E_{T}^{miss}, bb)>2.7$ (2.9) for

 $p_{_{T}}^{^{~V}}$ < 160 GeV ($p_{_{T}}^{^{~V}} \ge$ 160 GeV)

Background estimation

- Determine separate W/Z+b, W/Z+c and W/Z+light-jet fractions from data in 2-jet events requiring m(jet-jet) < 80 GeV:</p>
 - in events with one b-tagged jet, based on the b weight of the second jet.
 - in events with no b-tagged jets, based on the b weight of the first two jets.
- Shapes from exclusive MC samples
- Absolute normalization
 from m_{bb} distribution in
 sidebands

- Simultaneous fit to m_{bb} side bands and top control regions:
 - m_{bb} < 80 GeV, 150 < m_{bb} < 250 GeV</p>
 - Ratio sigle-top/top pair production from NLO QCD calculation
- Extrapolation of these backgrounds to signal region done with MC
- Good agreement data-MC after the corrections

Z+jets control regions

Only one b-tagged jet:

Multi-jet background

- Templates from multi-jet enriched sample obtained by reversing isolation criteria
- ≻ Fit:
 - \blacktriangleright E_T^{miss} for WH
 - m for ZH
 - > Negligible background!

- Tested results in a multi-jet control region
- > For ZH $\rightarrow \nu\nu$ bb:
 - > Ratio of events with $\Delta \phi (E_{T}^{miss}, nearest jet) > 1.8$ and <1.8, for $\Delta \phi (E_{T}^{miss}, p_{T}^{miss}) > \pi/2$
 - > Apply the ratio to the region with $\Delta \phi(E_{T}^{miss}, p_{T}^{miss}) < \pi/2$

- Leading instrumental effects:
 - > b-tagging efficiency: 5-19% depending on p_{τ}^{b-jet}
 - > b-jet energy scale: 3-14% depending on η , p_{τ}
- Backgrounds:
 - W+jet, Z+jets flavour composition: varied by 30% (from fit)
 - W+jet, Z+jet, top uncertainties from the fits and comparisons done in the control regions
- Theoretical uncertainties: 4% for both WH, ZH.
- PT of the W and Z bosons: 4-8% depending on the channel
 - Differences in acceptance between PYTHIA and POWHEG due to jet veto
- Luminosity: 3.9%

Z	¥1 /	ł.										
ž	$ZH \rightarrow \ell^+ \ell^- b\bar{b}$				$WH \rightarrow \ell \nu b \bar{b}$				$ZH \rightarrow \nu \bar{\nu} b \bar{b}$			
_	bin	bin $p_{\rm T}^V [{\rm GeV}]$			p_{T}^{V} [GeV]				p_{T}^{V} [GeV]			
		0-50	50 - 100	100-200	>200	0-50	50-100	100-200	>200	120-160	160-200	>200
	Number of events for $80 < m_{b\bar{b}} < 150 \text{ GeV}$											
	signal	1.3 ± 0.1	1.8 ± 0.2	1.6 ± 0.2	0.4 ± 0.1	5.0 ± 0.6	5.1 ± 0.6	3.7 ± 0.4	1.2 ± 0.2	2.0 ± 0.2	1.2 ± 0.1	1.5 ± 0.2
	top	17.4	24.1	7.3	0.2	229.9	342.7	201.3	8.2	35.2	8.3	4.1
	W+jets	-	_	_	_	285.9	193.6	85.8	17.5	13.2	7.8	4.8
	Z+jets	123.2	119.9	55.9	6.1	11.1	10.5	2.8	0.0	31.5	11.9	7.1
	diboson	7.2	5.6	3.6	0.7	12.6	11.9	7.8	1.4	4.6	4.3	3.6
	multijet	-	—	-	_	55.5	38.2	3.6	0.2	-	_	—
	total BG	148 ± 10	150 ± 6	67 ± 4	6.9 ± 1.2	596 ± 23	598 ± 16	302 ± 10	27 ± 5	85 ± 8	32 ± 3	20 ± 3
	data	141	163	61	13	614	588	271	15	105	22	25
		Components of the relative systematic uncertainties of the background [%]										
	b-tag eff	1.4	1.0	0.3	4.8	0.9	1.3	0.9	7.2	4.1	4.2	5.5
	BG norm	3.6	3.4	3.6	3.8	2.7	1.8	1.8	4.5	2.7	2.2	3.2
	$jets/E_T^{miss}$	2.1	1.2	2.7	5.1	1.5	1.4	2.1	9.5	7.7	8.2	12.1
	leptons	0.2	0.3	1.1	3.4	0.1	0.2	0.2	1.7	0.0	0.0	0.0
	luminosity	0.2	0.1	0.2	0.4	0.1	0.1	0.1	0.2	0.2	0.5	0.7
	pileup	0.9	1.6	0.5	1.3	0.1	0.2	0.8	0.5	1.6	2.5	3.0
	theory	5.2	1.3	4.7	14.9	2.2	0.3	1.6	14.8	2.9	4.0	7.7
	total BG	6.9	4.3	6.6	17.3	3.9	2.7	3.4	19.6	9.7	10.6	16.0
	Components of the relative systematic uncertainties of the signal [%]											
	b-tag eff	6.4	6.4	7.0	13.7	6.4	6.4	7.0	12.1	7.1	8.2	9.2
	$jets/E_T^{miss}$	4.9	3.2	3.5	5.5	5.8	4.6	3.7	3.3	7.3	5.1	6.3
	leptons	0.9	1.2	1.7	2.6	3.0	3.0	3.0	3.2	0.0	0.0	0.0
	luminosity	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9
	pileup	0.5	1.1	1.8	2.2	1.2	0.3	0.3	1.6	0.2	0.2	0.0
	theory	4.6	3.6	3.3	5.3	4.4	4.7	5.0	8.0	3.3	3.3	5.6
	total signal	10.1	9.1	9.6	16.5	11.4	10.8	11.0	16.0	11.8	11.4	13.4
P. Conde Muíño $H \rightarrow bb$ Searches in ATLAS 44									44			

Results

$WH \rightarrow lv bb results$

No excess of events observed

P. Conde Muíño

$ZH \rightarrow ll bb results$

P. Conde Muíño

H→bb Searches in ATLAS

250

250

$ZH \rightarrow vv$ bb results

 $H \rightarrow bb$ Searches in ATLAS

Exclusion limits

- > Alternative procedure: search for high p_{τ} Higgs to a b-quark pair
- Higgs p_T > 200 GeV
 - > 5% signal acceptance but larger decrease in backgrounds
- Select V events (V=W,Z decaying leptonically) and search for a single H→bb jet:
 - Search for a high p_T jet (Cambridge-Aachen algorithm, R=1.2)
 - Search jet clustering in reverse order to look for a large mass drop

H→bb Searches in ATLAS

P. Conde Muíño

Boosted MC study

Monte Carlo (full simulation) ATLAS study:

- Cut based analysis
- > The three channels together could reach 3.7 σ with 30 fb⁻¹
- But the sensitivity drops fast when the background uncertainty increases

- Detailed study of QCD jets substructure
- After splitting/filtering, the jet mass is well modelled by the LO parton shower generators
- Splitting/filtering procedure reduces jet mass sensitivity to pile-up

- > Select events consistent with W $\rightarrow l\nu+1$ jet, with $p_T^{jet} > 180$ GeV and $\Delta \phi^{W,jet} > 1.2$
 - Apply jet filtering (C/A, R = 1.2)
 - No b-tagging is applied
- tt, W+jets, and SM WW processes included
- Peak consistent with W→jj in tt events

These first results are encouraging, promising new results with boosted jet substructure techniques in the near future

Observation of a signal

- Máximo observado a 126.5 GeV
 - Significância local: 5σ
 - Probabilidade de flutuação do fundo: 3x10⁻⁷
- Significância global:
 - 4.1-4.3σ (para LEE em 110-600 o 110-150 GeV)

But...

It will take several years at 14 TeV center of mass energy to demonstrate if any signal is the SM Higgs!

Acknowledgements

Backup

Jet Energy Calibration

- \succ EM energy scale set with test-beam measurements for e/ μ
- Needs corrections for
 - Calorimeter non-compensation
 - Dead material corrections
 - Particles whose shower is not contained in the calorimeter
 - Algorithmic effects
- Jet level corrections derived from MC

Jet cleaning

Jet and E_T performance studied in minimum bias events

- Apply jet cleaning cuts to remove noise jets
 - Non-collisions background (cosmic muons, beam-gas collisions)
 - Noise cells
- After cleaning cuts
 - > Jet p_{T} spectrum consistent with MC
 - E_T resolution in agreement with MC

Higgs in SUSY

- SUSY solves the hierarchy problem, provides a candidate for dark matter, a mechanism for unification of EW and strong forces, ...
- In the Higgs sector

In SUSY, the couplings of the Higgs to fermions, boson may change

≻ H→bb might dominate in the entire mass range!
P. Conde Muíño H→bb Searches in ATLAS