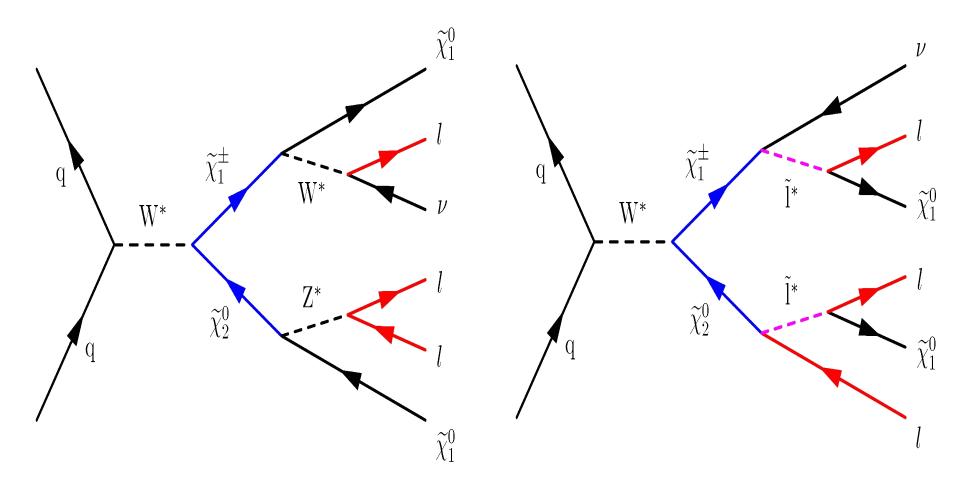

Physics at LHC: SUperSYmmetry

Pedrame Bargassa

LIP 15/06/2012

Outline


- Example of Chargino search
- Example of Neutralino search
- Example of Squar/Gluino search

Try to come up with diagrams for production of a chargino at a hadronic machine

Production mode: Think about W production @ hadronic machine

2 decay

- M(slept) » $M(\chi_2^0)$: Z/W exchange dominates: $Br(\chi_2^{+-}, \chi_2^0 \rightarrow lept.)$ low
- **scenarios:** M(slept) ~ $M(\chi_2^0)$: Slepton exchange dominates: $Br(\chi_2^{+-}, \chi_2^0 -> lept.)$ maximal

Think about experimentally:

What are the background processes to such a signal/signature?

What are the inconvenients of such a processes?

How would-you design a selection?

Think about experimentally:

What are the background processes to such a signal/signature? WZ production ZZ production where 1 lepton is lost (Z)

(ttbar → Dilepton)

→ It's basically a low-background processes!

What are the inconvenients of such a processes?

How would-you design a selection?

Think about experimentally:

What are the background processes to such a signal/signature?

WZ production

ZZ production where 1 lepton is lost

(Z)

 $(ttbar \rightarrow Dilepton)$

→ It's basically a low-background processes!

What are the inconvenients of such a processes?

Low cross-section \rightarrow High (integrated) luminosity type of search WZ background is irreducible

How would-you design a selection?

Think about experimentally:

What are the background processes to such a signal/signature?

WZ production

ZZ production where 1 lepton is lost

(Z)

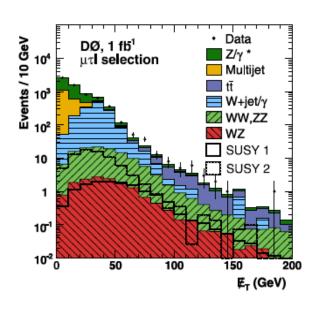
(ttbar → Dilepton)

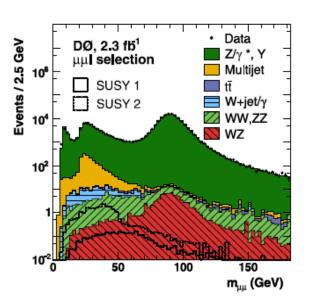
→ It's basically a low-background processes!

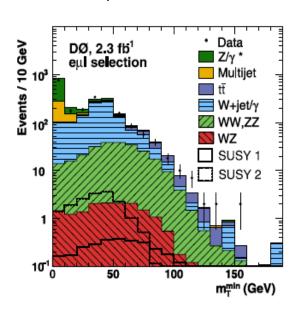
What are the inconvenients of such a processes?

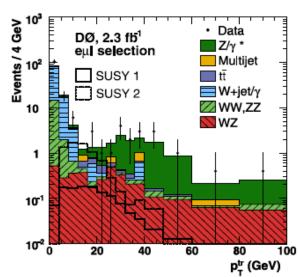
Low cross-section \rightarrow High (integrated) luminosity type of search WZ background is irreducible

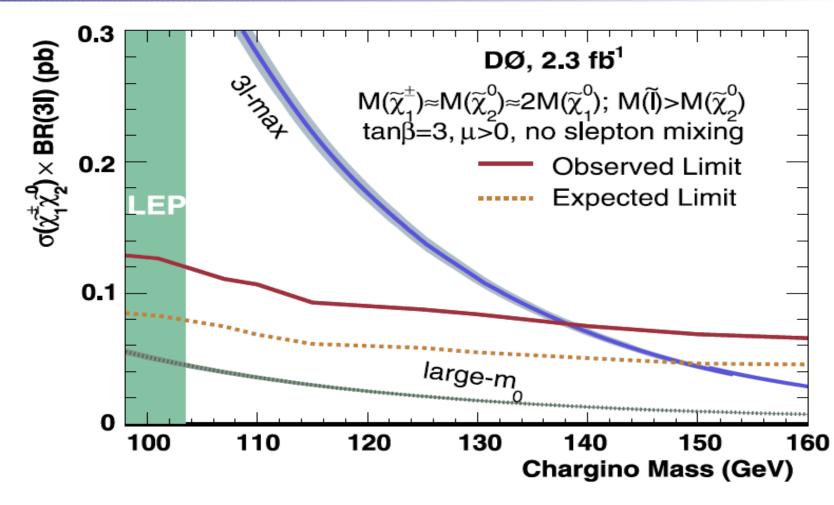
How would-you design a selection?


Require 3 leptons, 2 of them with opposite charge


Increase statistics: The 3rd lepton can be a "track": Enough to beat dilepton SM background w/o paying price of lepton identification Minimal MET to beat down the ZZ processes


D0 RunII


Trileptons:


eμl, eel, μ^{+} μ^{-+} l, μ^{+-} μ $^{+-}$ l, eτ l, μ τ l

 $M(\chi_1^{\pm}) \ge 141 \text{ GeV/c}^2$

For large scalar mass: No limit yet!

→ And this is only within mSUGRA interpretation

Neutralino search

Try to come up with diagrams for production of a neutralino at an ee machine

Neutralino search

Production
$$\chi_{1}^{0} \chi_{2}^{0} \chi_{2}^{0} \rightarrow Z^{*} \chi_{1}^{0}$$

2 production channels in interference:

- Large m_0 : $s : e^-e^+ -> Z^* -> \chi_{-1}^0 \chi_{-2}^0$
- Small m_0 : $t : e^-e^+ -> \sim l -> \chi_{-1}^0 \chi_{-2}^0$

- Large $m_0: \mathbf{M}(\chi_1^0) \ge 51 \text{ GeV/}\mathbf{c}^2$
- For all $m_0 : \mathbf{M}(\chi_1^0) \ge 46 \text{ GeV/}\mathbf{c}^2$

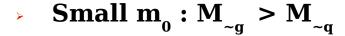
Try to come up with diagrams for production of:
Squark pair
Gluino pair
associated Squark-Gluino at a hadronic machine

Let's try to think things as function of the mass of the proponents...

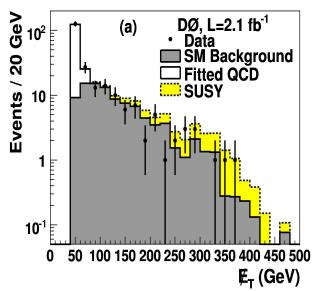
3 SUSY cases:

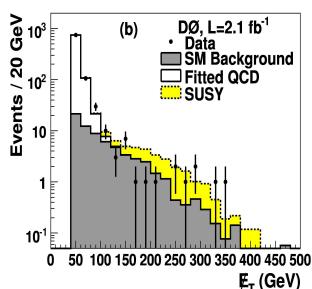
 \rightarrow qg -> q g qq , gg -> \sim g

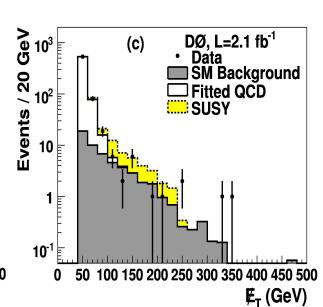
Now experimentally:


What are the main backgrounds?
-> Which "basic" selection would-you apply?

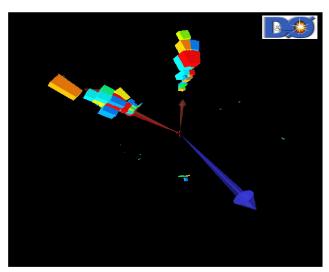
How to distinguish \sim q \sim q from Standard Model (QCD) qq ? -> Think about the decay of \sim q


D0 RunII


3 signal selections for 3 Susy cases:

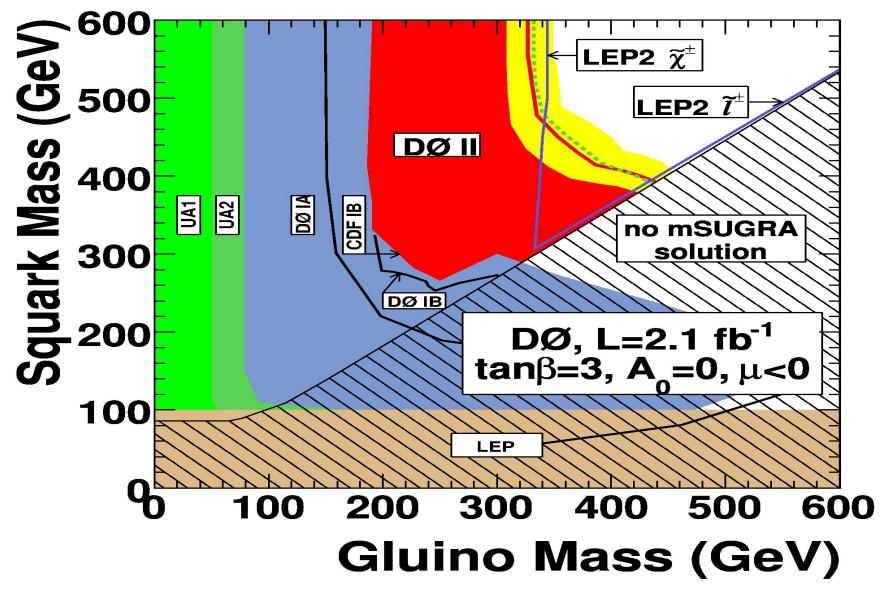

Usage of MET of course! Why would QCD have low MET?

- qq , gg -> ~q ~q
- Signature: 2 acoplanar jets
- Large $m_0: M_{q} > M_{g}$
 - qq , gg -> ~g ~g
 - Signature: N(jets) > 3
- Intermediate $m_0 : M_{q} \sim M_{q}$
 - \rightarrow qg -> ~q ~g qq , gg -> ~g ~g
 - > Signature : N(jets) > 2



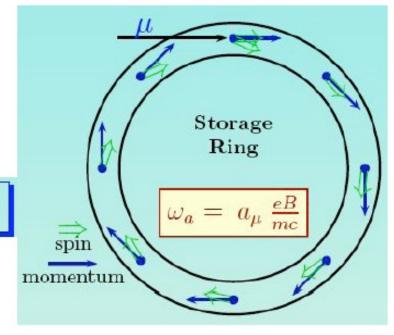
D0 RunII

- 3 signal selections for
- 3 Susy cases:



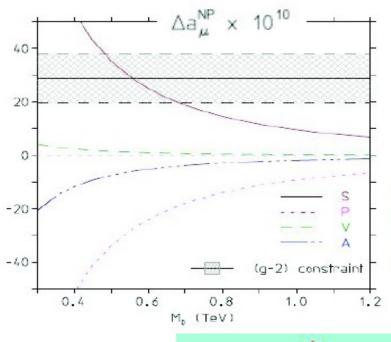
$$\rightarrow$$
 Small $m_0 : M_{\sim g} > M_{\sim q}$

- qq, gg -> ~q ~q
- Signature: 2 acoplanar jets
- $Large m_0: M_{q} > M_{q}$
 - qq , gg -> ~g ~g
 - Signature: N(jets) > 3
- ► Intermediate m_0 : $M_{q} \sim M_{q}$
 - \rightarrow qg -> q g qq , gg -> ~g ~g
 - > Signature : N(jets) > 2

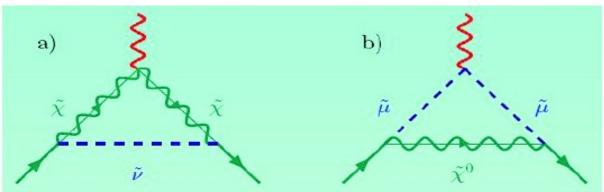

 \tilde{q} \tilde{q} event?

$$MET = 350 \text{ GeV}$$

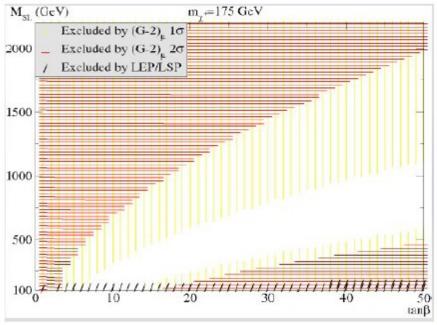
 $E_{_{T}}(j1,j2) = 264, 106 \text{ GeV}$


$$\vec{\mu} = g_{\mu} \frac{e\hbar}{2m_{\mu}c} \vec{s}$$
; $g_{\mu} = 2(1 + a_{\mu})$

Dirac: $g_{\mu} = 2$, $a_{\mu} = \frac{\alpha}{2\pi} + \cdots$ muon anomaly


$$a_{\mu}^{\text{Exp.}} = 1.16592089(63) \times 10^{-3}$$
 $a_{\mu}^{\text{The.}} = 1.16591797(61) \times 10^{-3}$ $\delta a_{\mu}^{\text{NP?}} = a_{\mu}^{\text{Exp.}} - a_{\mu}^{\text{The.}} = (292 \pm 88) \times 10^{-11}$,

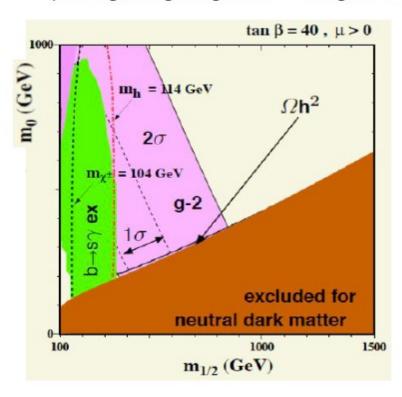
Possible SUSY explanations...

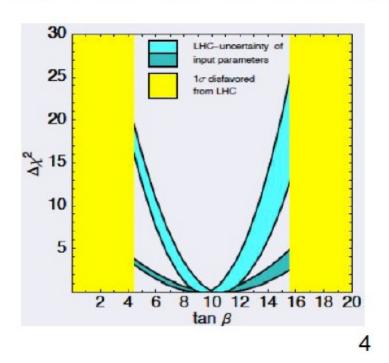

$$\left(\delta a_{\mu}\right)_{1L}^{MSSM} \sim \frac{\alpha}{2\pi} \left(\frac{m_{\mu}}{M_{SUSY}}\right)^2 \tan\beta \operatorname{sign}(\mu M_2)$$

- Linear dependance on tan β;
- Same sign as the SUSY parameter μ : $\mu > 0$ favoured;
- Light chargino/Sneutrino required.

2

And with a 125 GeV Higgs?


Model	Minimum $\chi^2/\text{d.o.f.}$	Fit Prob- ability	$m_{1/2}$ (GeV)	m_0 (GeV)	A ₀ (GeV)	$\tan \beta$
CMSSM						
$M_h \simeq 125 \; { m GeV}, (g-2)_{\mu}$	30.6/23	13%	1800	1080	860	48
NUHM1						
$M_h \simeq 125 \text{ GeV}, (g - 2)_{\mu}$	29.7/22	13%	830	290	660	33


3

Complementarity btw g-2 and LHC

- $(G-2)_{\mu}$: essentially sensitive to 2nd generation sleptons $(\tilde{\nu}_{\mu}, \tilde{\mu})$;
- Higgs mass: essentially sensitive to 3rd generation squarks (\tilde{T}, \tilde{B}) ;

putting things together... the g-2 translates into the direct $tan\beta$ measurement

