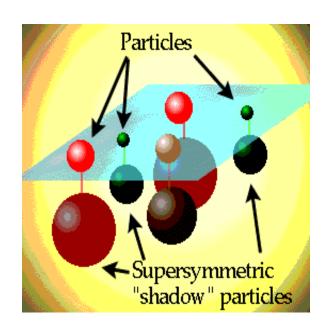

# Physics at LHC: SUperSYmmetry

Pedrame Bargassa





LIP 28/05/2012


#### **Outline**

- Reminders of last time: Different physical SUSY sectors
- Deeper look in Higgs sector
- Getting into experimental feedback
- Exercises

#### Advised readings:

- "SUSY & Such" S. Dawson, arxiv:hep-ph/9612229v2
- "A supersymmetry primer" S. P. Martin, arxiv:hep-ph/9709356

## Quick reminders of last time

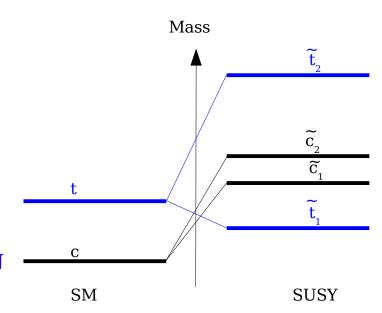


### MSSM: Effective Lagrangian

- We don't know <u>how</u> SUSY is broken, but can write the **most general** broken effective Lagrangian
- Maximal dimension of soft operators: ≤ 3 → Mass terms, Bilinear & Trilinear terms

$$\begin{split} -\mathcal{L}_{soft} &= m_1^2 \mid H_1 \mid^2 + m_2^2 \mid H_2 \mid^2 - B\mu\epsilon_{ij} (H_1^i H_2^j + \text{h.c.}) + \tilde{M}_Q^2 (\tilde{u}_L^* \tilde{u}_L + \tilde{d}_L^* \tilde{d}_L) \\ &+ \tilde{M}_u^2 \tilde{u}_R^* \tilde{u}_R + \tilde{M}_d^2 \tilde{d}_R^* \tilde{d}_R + \tilde{M}_L^2 (\tilde{e}_L^* \tilde{e}_L + \tilde{\nu}_L^* \tilde{\nu}_L) + \tilde{M}_e^2 \tilde{e}_R^* \tilde{e}_R \\ &+ \frac{1}{2} \Big[ M_3 \overline{\tilde{g}} \tilde{g} + M_2 \overline{\tilde{\omega}_i} \tilde{\omega}_i + M_1 \overline{\tilde{b}} \tilde{b} \Big] + \frac{g}{\sqrt{2} M_W} \epsilon_{ij} \Big[ \frac{M_d}{\cos \beta} A_d H_1^i \tilde{Q}^j \tilde{d}_R^* \\ &+ \frac{M_u}{\sin \beta} A_u H_2^j \tilde{Q}^i \tilde{u}_R^* + \frac{M_e}{\cos \beta} A_e H_1^i \tilde{L}^j \tilde{e}_R^* + \text{h.c.} \Big] \quad . \end{split}$$

Specificity of SUSY: Writing the most general Lagrangian, generalizing the spins of fields, SUCH that quadratic divergences are always shut down


### MSSM: Squark & Slepton sector

## Physical states are 2 scalar mass-eigenstates: Mixtures of left-&-right chiral superpartners (scalars) of SM quark and leptons

Let's pick-up example of the top sector: If  $[f_L - f_R]$  chiral basis:

$$M_{\tilde{t}}^{2} = \begin{pmatrix} \tilde{M}_{Q}^{2} + M_{T}^{2} + M_{Z}^{2}(\frac{1}{2} - \frac{2}{3}\sin^{2}\theta_{W})\cos 2\beta & M_{T}(A_{T} + \mu\cot\beta) \\ M_{T}(A_{T} + \mu\cot\beta) & \tilde{M}_{U}^{2} + M_{T}^{2} + \frac{2}{3}M_{Z}^{2}\sin^{2}\theta_{W}\cos 2\beta \end{pmatrix}$$

- $\widetilde{M}_{0}$ : Left squark mass
- $\widetilde{M}_{II}$ : Right squark mass
- A<sub>T</sub>: Trilinear coupling specific to the top sector
- $M_0 = M_T$ : Mass of the SM particle
- μ: Higgs (bilinear) mixing parameter
- β: Higgs vev-specific parameter (see in a couple of slides): Plays a role in the mixing



### MSSM: Chargino sector

# Physical states are 2 fermionic mass-eigenstates: Mixtures of charged winos and charged higgsinos, which are SUSY eigenstates

In the charged [wino – higgsino] basis:

$$M_{\tilde{\chi}^{\pm}} = \begin{pmatrix} M_2 & \sqrt{2}M_W \sin \beta \\ \sqrt{2}M_W \cos \beta & -\mu \end{pmatrix}$$

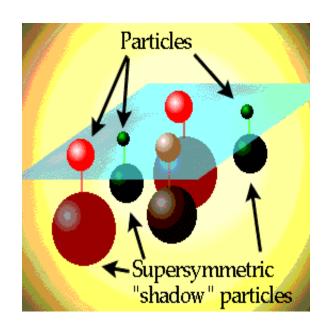
- $M_2$ : Mass of the wino
- μ: Higgs (bilinear) mixing parameter
  - The more  $M_2 \gg 1$ : The more the charginos are wino-like

Comments:

- The more μ » 1: The more the charginos are higgsino-like
- β: Not playing a role in mixing

#### MSSM: Neutralino sector

Physical states are 4 fermionic mass-eigenstates: Mixtures of neutral winos  $\mathbf{w}^0$ , bino b, and 2 neutral higgsinos, which are SUSY eigenstates


In the charged [b -  $w^0$  -  $h^0_1$  -  $h^0_2$ ] basis:

$$M_{\tilde{\chi}_i^0} = \left( \begin{array}{cccc} M_1 & 0 & -M_Z \cos \beta \sin \theta_W & M_Z \sin \beta \sin \theta_W \\ 0 & M_2 & M_Z \cos \beta \cos \theta_W & -M_Z \sin \beta \cos \theta_W \\ -M_Z \cos \beta \sin \theta_W & M_Z \cos \beta \sin \theta_W & 0 & \mu \\ M_Z \sin \beta \sin \theta_W & -M_Z \sin \beta \cos \theta_W & \mu & 0 \end{array} \right)$$

- M<sub>1</sub>: Mass of the bino
- $M_2$ : Mass of the wino
- μ: Higgs (bilinear) mixing parameter

<u>Exercise</u>: Qualitatively gauge the influence of each parameters in the mass-matrix above on the "type" of neutralinos

## Higgs sector: "Richer" than others...



#### MSSM: Higgs sector

#### **<u>2</u>** Higgs complex doublets:

$$V_{H} = \left( |\mu|^{2} + m_{1}^{2} \right) |H_{1}|^{2} + \left( |\mu|^{2} + m_{2}^{2} \right) |H_{2}|^{2} - \mu B \epsilon_{ij} \left( H_{1}^{i} H_{2}^{j} + \text{h.c.} \right) + \frac{g^{2} + g'^{2}}{8} \left( |H_{1}|^{2} - |H_{2}|^{2} \right)^{2} + \frac{1}{2} g^{2} |H_{1}^{*} H_{2}|^{2} .$$

8 degrees of freedom – 3 (massive gauge bosons) = 5 physical Higgs fields:  $\mathbf{h} / \mathbf{H} / \mathbf{H}^{\pm} / \mathbf{A}$  (CP-odd)

2 VEVs: 
$$\langle H_1^0 \rangle \equiv v_1 \\ \langle H_2^0 \rangle \equiv v_2$$

 $\rightarrow$  Key MSSM parameter:  $\tan \beta \equiv \frac{v_2}{v_1}$ 

$$\tan \beta \equiv \frac{1}{v_1}$$

$$\tan 2\alpha = \frac{(M_A^2 + M_Z^2)\sin 2\beta}{(M_A^2 - M_Z^2)\cos 2\beta + \epsilon_h/\sin^2\beta}$$

3 parameters to describe the MSSM Higgs sector:

Once 
$$v_{1,2}$$
 are fixed such that:

$$M_W^2 = \frac{g^2}{2}(v_1^2 + v_2^2)$$

This whole sector is described by (only) 2 other parameters:

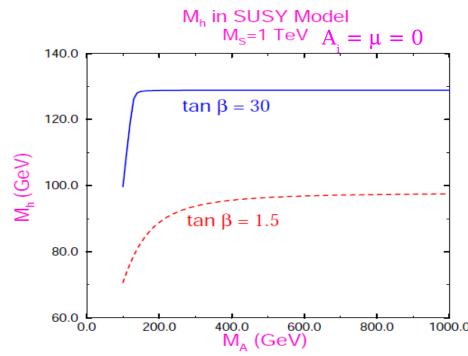
$$\rightarrow \tan \beta$$

$$\rightarrow \mathbf{M}_{\mathbf{A}}$$
:

$$M_A^2 = \frac{2 \mid \mu B \mid}{\sin 2\beta}$$

### **MSSM:** Higgs mass & squarks / Limit

Equation governing lightest Higgs mass:


$$M_{h,H}^2 = \frac{1}{2} \left\{ M_A^2 + M_Z^2 + \frac{\epsilon_h}{\sin^2 \beta} \pm \left[ \left( M_A^2 - M_Z^2 \right) \cos 2\beta + \frac{\epsilon_h}{\sin^2 \beta} \right)^2 + \left( M_A^2 + M_Z^2 \right)^2 \sin^2 2\beta \right]^{1/2} \right\}$$

with: 
$$\epsilon_h \equiv \frac{3G_F}{\sqrt{2}\pi^2} M_T^4 \log\left(\frac{\tilde{m}^2}{M_T^2}\right)$$

with:  $\epsilon_h \equiv \frac{3G_F}{\sqrt{2}\pi^2} M_T^4 \log \left(\frac{\tilde{m}^2}{M_T^2}\right)$  Contribution of 1-loop correction only! Squark masses: Higgs mass particularly sensitive to  $\sim$ t<sub>1,2</sub> system

Upper bound:

$$M_h^2 < M_Z^2 \cos^2 2\beta + \epsilon_h$$



Here: No mixing. M(h) can go higher is stop-sector mixing larger

- $\rightarrow$  The "well-known"  $M_h < 135 \text{ GeV/c}^2$ limit for any-SUSY lightest Higgs
- → ...is dependent on
   → 2-loop calculations

  - → Renormalization calculations

which can evolve...

### **MSSM:** Higgs mass & squarks / Limit

Equation governing lightest Higgs mass:

$$M_{h,H}^2 = \frac{1}{2} \Big\{ M_A^2 + M_Z^2 + \frac{\epsilon_h}{\sin^2\beta} \pm \left[ \left( M_A^2 - M_Z^2 \right) \cos 2\beta + \frac{\epsilon_h}{\sin^2\beta} \right)^2 + \left( M_A^2 + M_Z^2 \right)^2 \sin^2 2\beta \right]^{1/2} \Big\}$$

with: 
$$\epsilon_h \equiv \frac{3G_F}{\sqrt{2}\pi^2} M_T^4 \log\left(\frac{\tilde{m}^2}{M_T^2}\right)$$
 Contribution of 1-loop correction only! Squark masses: Higgs mass

particularly sensitive to  $\sim t_{1.2}$  system

Upper bound: When  $M_{\Delta} \rightarrow \infty$ 

$$M_h^2 = M_A^2 - f(M_A^4)$$
  
 $M_H^2 = M_A^2 + f(M_A^4)$ 

#### <u>Just to know</u>:

- $\rightarrow$  With richer Higgs structure: Can also have  $M_{_{\text{\tiny L}}}^{\text{max}} > 130 \text{ GeV/c}^2$
- $\rightarrow \mu B$  perturbative up to Planck-scale:

For any SUSY:  $M_h^{max} \sim 150 \text{ GeV/c}^2$ 

### **MSSM:** Higgs couplings to bosons

#### Let's look at couplings:

$$Z^{\mu}Z^{\nu}h: \qquad \dfrac{igM_Z}{\cos\theta_W}\sin(\beta-\alpha)g^{\mu\nu} \qquad \qquad \sin(\beta-\alpha) \qquad o 1 \ {
m for} \ M_A o \infty \ Z^{\mu}Z^{\nu}H: \qquad \dfrac{igM_Z}{\cos\theta_W}\cos(\beta-\alpha)g^{\mu\nu} \qquad \qquad \cos(\beta-\alpha) \qquad o 0 \quad . \ W^{\mu}W^{\nu}h: \qquad \dfrac{igM_W}{\sin(\beta-\alpha)g^{\mu\nu}} \qquad {
m Similar \ for \ coupling \ to \ } \gamma \ \& \ {
m fermions}$$

$$Z^{\mu}Z^{\nu}H: \frac{igM_Z}{\cos\theta_W}\cos(\beta-\alpha)g^{\mu\nu}$$

$$W^{\mu}W^{\nu}h: igM_W \sin(\beta-\alpha)g^{\mu\nu}$$

SM couplings

Similar for coupling to  $\gamma$  & fermions

Exercise: Demonstrate the 2 relations above

#### It is possible that:

#### 1/ Light h "SM like":

- → Mass: Rather low
- $\rightarrow$  Br(h ->  $\gamma\gamma$ ) ~ Like in SM

#### $2/\{H, H^{\pm}, \underline{A}\}$ much heavier & degenerate

- $\rightarrow$  Couplings of lightest Higgs to fermions/ $\gamma/W/Z \sim Like$  in SM
- $\rightarrow$  Couplings of "additional" Higgs to fermions/ $\gamma/W/Z \sim 0$

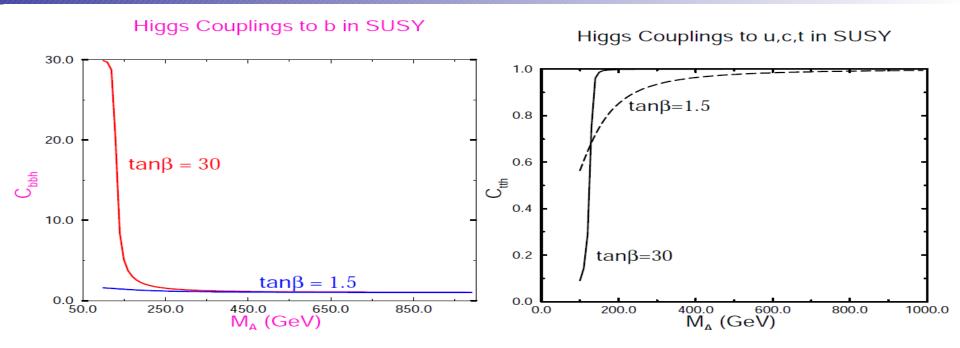
#### This is called the decoupled regime:

1/ The lightest Higgs field is a) rather light b) behaves a la SM 2/ The "new" physical Higgs fields are (much?) higher in mass

### MSSM: Higgs couplings to fermions

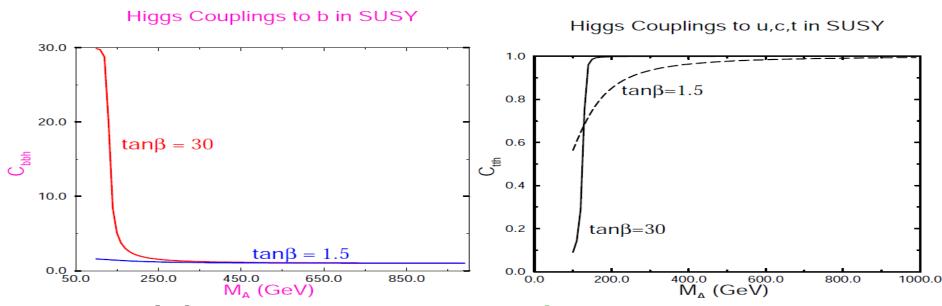
Let's plug in  $L_{vukawa}$  the full MSSM Higgs fields & the SM fermions:

$$\mathbf{L}_{\text{yukawa}} = -\mathbf{G}_{\mathbf{d}}(\mathbf{\bar{u}},\mathbf{\bar{d}})_{\mathbf{L}} (\phi^+,\phi^{10}) \mathbf{d}_{\mathbf{R}} - \mathbf{G}_{\mathbf{u}}(\mathbf{\bar{u}},\mathbf{\bar{d}})_{\mathbf{L}} (\phi^{20},\phi^-) \mathbf{u}_{\mathbf{R}} + \mathbf{hc}$$
  
Then break EW with  $\phi = (1/\sqrt{2})(0,\mathbf{v}_{1,2} + \text{Higgs}) \leftarrow \text{"Rapid" notation}$   
Then re-rewrite things in terms of coupling:


$$\mathcal{L} = -\frac{gm_i}{2M_W} \left[ C_{ffh} \overline{f}_i f_i h + C_{ffH} \overline{f}_i f_i H + C_{ffA} \overline{f}_i \gamma_5 f_i A \right]$$

- Coupling to same fermions: "Opposite" behaviors of 2 lightest neutral higgs h and H
- Coupling to the same Higgs: "Opposite" behaviors of u/d quarks
- Let's see what the 2<sup>nd</sup> case graphically means...

| f | $C_{ffh}$                        | $C_{ffH}$                        | $C_{ffA}$    |
|---|----------------------------------|----------------------------------|--------------|
| u | $\frac{\cos \alpha}{\sin \beta}$ | $\frac{\sin \alpha}{\sin \beta}$ | $\cot \beta$ |
| d | $-\frac{\sin\alpha}{\cos\beta}$  | $\frac{\cos \alpha}{\cos \beta}$ | $\tan \beta$ |

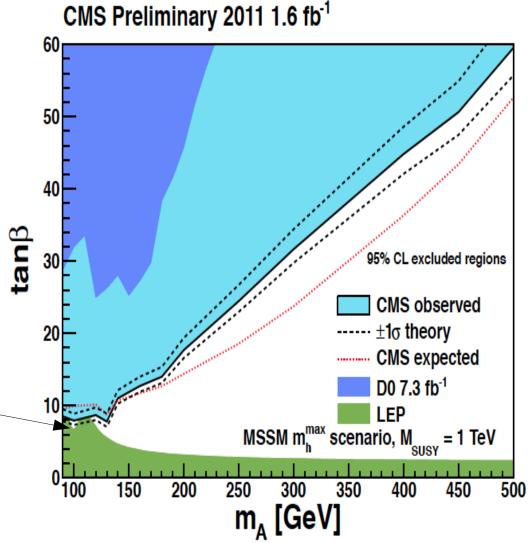

$$\tan 2\alpha = \frac{(M_A^2 + M_Z^2)\sin 2\beta}{(M_A^2 - M_Z^2)\cos 2\beta + \epsilon_h/\sin^2\beta}$$

### MSSM: Higgs couplings to fermions



#### Let's find the different effects

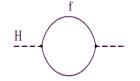
### MSSM: Higgs couplings to fermions




- > Opposite behaviours versus  $M_A$ : See couplings:  $C_{ddh} \alpha 1/\cos\beta \alpha \tan\beta$
- Different behaviours versus tanβ: See couplings
- Down/Up quark couplings: Always bigger/smaller than 1
  - $\rightarrow$  MSSM Higgs hunters are interested in final states with b,  $\tau$  !
    - Only interesting @ high tanβ AND low M<sub>Δ</sub>
- ► High  $M_{\Lambda}$ : All h-fermion coupling  $\rightarrow 1$ !
  - In decoupled regime: No enhancement effect for down quarks. Things are pretty "democratic" across quark generations
    - Guess what's the present experimental picture...

#### Do present Higgs search limits "exclude MSSM"?

### Not really:


- M<sub>A</sub> has no (dynamic) reason to be < 500,  $700 \text{ GeV/c}^2$ 
  - High M<sub>A</sub> region still quite open
- Be careful: Do not interpret this plot as a "probability density plot for something to exist": IF SUSY exists, it will be in 1 given spot
  - Could be here
- Now one thing is sure: IF SUSY exists, M<sub>A</sub> pretty high: Decoupled regime seems preferred



The 1<sup>st</sup> M in MSSM means Minimal: We are dealing with 124 parameters here... "Not constrained at all" framework

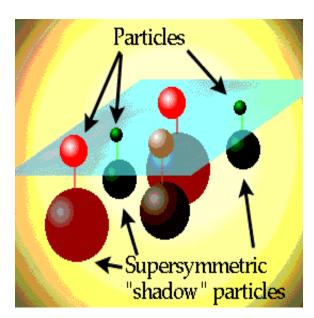
## **Motivation for the \tilde{\mathbf{t}}\_1:** Special relations with the Higgs

Stop/Higgs yukawa coupling



$$M(h) = f [M(\widetilde{q}, \widetilde{t}_{1,2})]$$

$$M_{h,H}^2 = \frac{1}{2} \Big\{ M_A^2 + M_Z^2 + \frac{\epsilon_h}{\sin^2\beta} \pm \left[ \left( M_A^2 - M_Z^2 \right) \cos 2\beta + \frac{\epsilon_h}{\sin^2\beta} \right)^2 + \left( M_A^2 + M_Z^2 \right)^2 \sin^2 2\beta \right]^{1/2} \Big\}$$


with: 
$$\epsilon_h \equiv rac{3G_F}{\sqrt{2}\pi^2} M_T^4 \log\Bigl(rac{ ilde{m}^2}{M_T^2}\Bigr)$$

Squark masses: Higgs mass particularly sensitive to ~t<sub>1,2</sub> system

LHC: Higgs & stop searches can <u>constraint</u> each other Stop masses Higgs masses 200 20 120 115 110 anb 500 10 105 100 5 400 -1  $a_0 = A_0/(M_0^2 + 4M_{1/2}^2)^{1/2}$  $a_0 = A_0 / (M_0^2 + 4M_{1/2}^2)^{1/2}$ 

Demina et al., PRD 62, 35011

## Experimental feedbacks, Hints (?)...



## **Looking for SUSY in EW data**

#### Why did-we not get any hint of SUSY in EW Data?

 $\rightarrow$  When looking at sector other than Higgs: Such SUSY contributions are suppressed  $\alpha \ [M_{_W}/M_{_{SUSY}}]^2$  where  $M_{_{SUSY}}$  is the scale SUSY particles

## What about performing a global fit to the EW data and try to fix SUSY spectrum?

- → No stringent limit on physical masses
  - → Not really astonishing: Try to fit with 124 degrees of freedom...
- $\rightarrow$  There "seems" to be information about tan $\beta$ : Two "preferred" values:
  - $\rightarrow$  tan $\beta$ ~2 : Well, this is more & more suppressed by Higgs searches
  - $\rightarrow tan\beta \sim 30: ...$ 
    - → What to think about this ? Probably better to look more directly for SUSY particles

### **Looking "a bit more" directly:** Br(b -> s X)

Famous "on the edge of SM" measurement:

$$BR(B \to X_s \gamma) = (2.32 \pm .67) \times 10^{-4}$$

Out of SM...?

- → Either statistical fluctuation
- → Or new physics around corner

Let's plug-in SUSY: Let's draw a SUSY diagram allowing such a process

## **Looking "a bit more" directly:** Br(b -> s X)

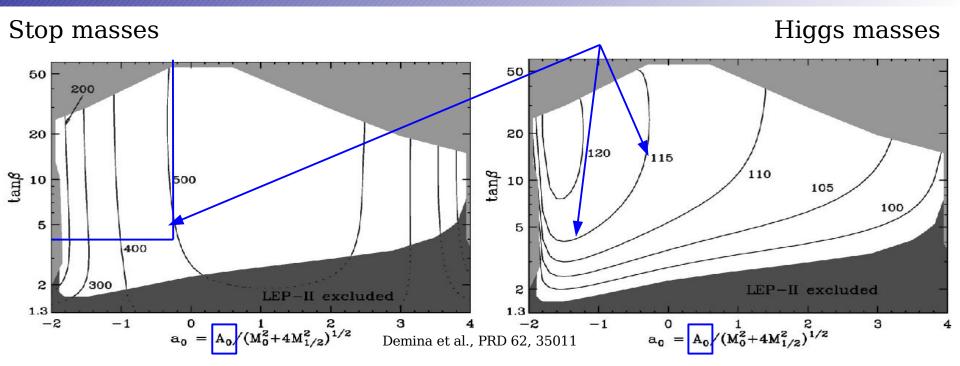
Famous "on the edge of SM" measurement:

$$BR(B \to X_s \gamma) = (2.32 \pm .67) \times 10^{-4}$$

#### Out of SM...?

- → Either statistical fluctuation
- → Or new physics around corner

Let's plug-in SUSY:  $b \rightarrow Loop \{\chi_1, t_1\} \rightarrow s$ 

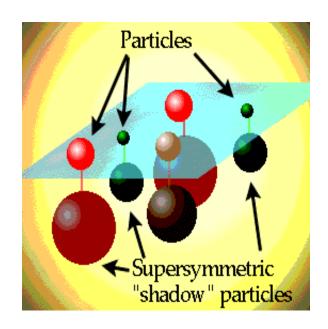

$$\frac{BR(b \to s\gamma)}{BR(b \to ce\overline{\nu})} \sim \frac{|V_{ts}V_{tb}|^2}{|V_{cb}|^2} \frac{6\alpha}{\pi} \left\{ C + \frac{M_T^2 A_T \mu}{\tilde{m}_T^4} \tan \beta \right\}^2$$

<u>SM prediction</u>: Slightly above measurement  $\rightarrow$  Indication of  $A_{T}\mu$ <0

Depending on  $tan\beta$ : This probes  $t_1$  masses in [100,300] GeV/ $c^2$  region

*Let's look at the of*  $A_{\pi}\mu$ *<0 issue...* 

### Looking "a bit more" directly: Indications?




## $A_{T}\mu$ <0: Compatible with:

$$1/ M(h) > 115, 120 \text{ GeV/c}^2$$
  
 $2/ M(t_1) < 500 \text{ GeV/c}^2$ 

Other thoughts?

## **Exercises**



Let's start from the bottom of the SUSY scale...

$$\chi^{0}_{2} \rightarrow l \; l \; \chi^{0}_{1}$$

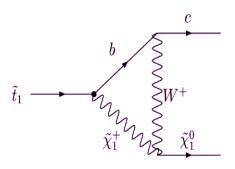
$$\chi^{\pm}_{1} \rightarrow l^{\pm} \nu \; \chi^{0}_{1}$$

@LHC: Give a production process for lightest chargino production Then give the full diagram

$$t_{1} \rightarrow b \chi_{1}^{\pm}$$

$$t_{1} \rightarrow t \chi_{1}^{0}$$

$$t_{1} \rightarrow c \chi_{1}^{0}$$

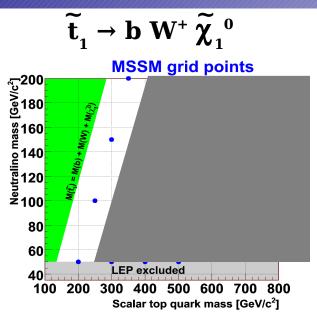

Let's start from the bottom of the SUSY scale...

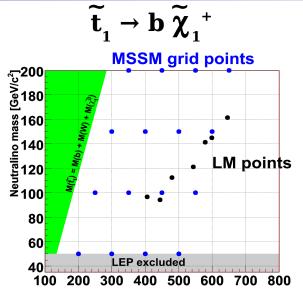
$$\chi^{0}_{2} \rightarrow l \, l \, \chi^{0}_{1}$$

$$\chi^{\pm}_{1} \rightarrow l^{\pm} \nu \, \chi^{0}_{1}$$

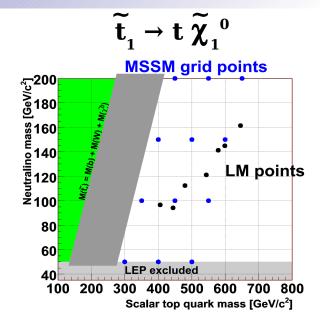
@LHC: Give a production process for lightest chargino production Then give the full diagram

$$\begin{aligned} & t_1^{\phantom{\dagger}} \rightarrow b \; \chi^{\pm}_{\phantom{\dagger}1} \\ & t_1^{\phantom{\dagger}} \rightarrow t \; \chi^0_{\phantom{\dagger}1} \\ & t_1^{\phantom{\dagger}} \rightarrow c \; \chi^0_{\phantom{\dagger}1} \\ & t_1^{\phantom{\dagger}} \rightarrow b \; W \; \chi^0_{\phantom{\dagger}1} \end{aligned}$$





@LHC: Give an example of simplest production mode for  $t_{_1}$  Now push it to the semi-leptonic final state via b  $\chi^{_\pm}$  scenario




Welcome to exercise & verify with MadGraph

## Stop decays: Different diagrams for different domains



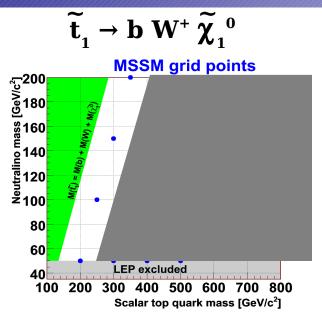


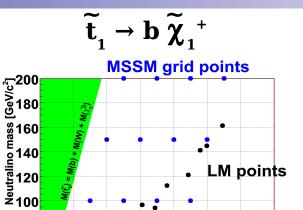
Scalar top quark mass [GeV/c<sup>2</sup>]



#### **Conditions:**

b+W+
$$\widetilde{\chi}_{1}^{0} < \widetilde{t}_{1}$$
 $\widetilde{t}_{1} < t+\widetilde{\chi}_{1}^{0}$ :
Close  $\widetilde{t}_{1} -> t+\widetilde{\chi}_{1}^{0}$ 

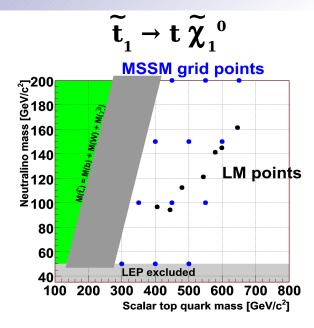

$$b+W+\widetilde{\chi}_{1}^{0} < \widetilde{t}_{1}$$


$$W+\widetilde{\chi}_{1}^{0} < \widetilde{\chi}_{1}^{+} < \widetilde{t}_{1}^{-}b$$

← Not exclusive: Will co-exist →

 $t + \widetilde{\chi}_1^0 < \widetilde{t}_1$ 

## Stop decays: Different diagrams for different domains






LEP excluded

200 300 400 500 600 700 800

Scalar top quark mass [GeV/c<sup>2</sup>]



#### **Conditions:**

$$b \! + \! W \! + \! \widetilde{\chi}_{\scriptscriptstyle 1}^{\scriptscriptstyle \ 0} < \widetilde{t}_{\scriptscriptstyle 1}^{\scriptscriptstyle \ }$$

$$\widetilde{t}_{1} < t + \widetilde{\chi}_{1}^{0}$$
:

Close 
$$\widetilde{t}_1 \rightarrow t + \widetilde{\chi}_1^0$$

$$b+W+\widetilde{\chi}_{_{1}}{}^{_{0}}<\widetilde{t}_{_{1}}$$

80

60

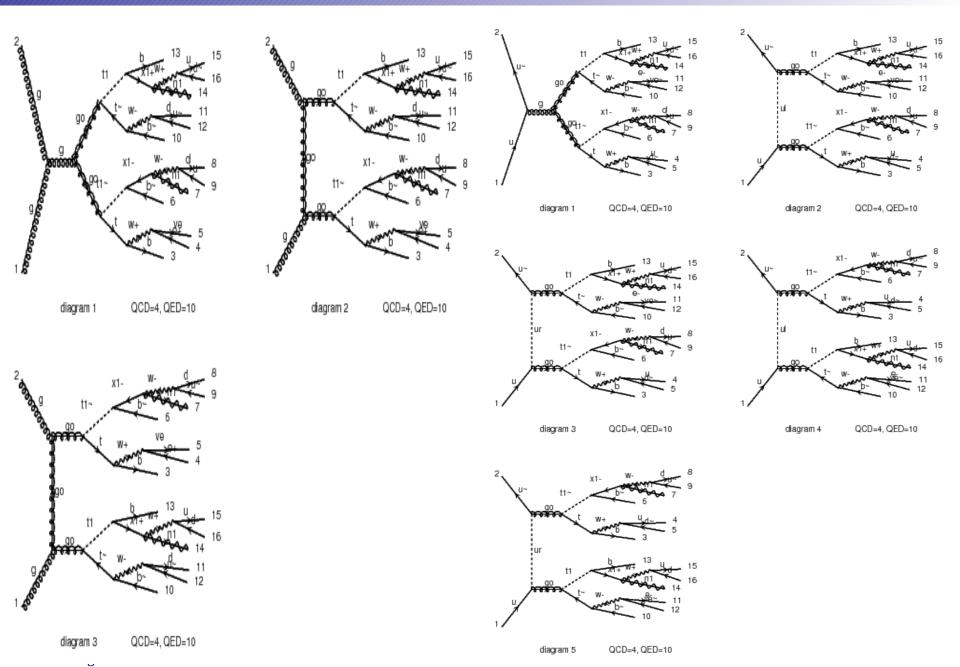
$$W + \widetilde{\chi}_1^0 < \widetilde{\chi}_1^+ < \widetilde{t}_1 - b$$

$$t + \widetilde{\chi}_1^0 < \widetilde{t}_1$$

← Not exclusive: Will co-exist →

#### "Dominance" conditions:

$$\widetilde{t}_{_{1}}<\widetilde{\chi}^{_{_{-1}}}+b:$$


Make  $\widetilde{\chi}^{+}_{1}$  virtual

$$t + \widetilde{\chi}_{_1}{^0} < \widetilde{\chi}_{_1}^{^+} + b:$$

Privilege vs b  $\widetilde{\chi}_{_1}^{_+}$ 

- @LHC: Give an example of simplest production mode for:
  - → squarks
  - → gluino
  - → squark+gluino production

Simplest diagram for  $t_1$  production via gluino pair-production



t<sub>1</sub> production via – give each time the mass condition(s):

- → Simplest squark production
- → Simplest sbottom production
- → Squark production with intermediate slepton
- $\rightarrow$  t<sub>2</sub> production