Electroweak symmetry breaking

Search for the missing piece of the Standard Model II

Pedro Ferreira da Silva – psilva@cern.ch

(CERN/LIP)

Plan for today

- Summary from 1st lecture
- ZZ production at the LHC
- The golden channel: $H \rightarrow ZZ \rightarrow 4I$
- High mass search: $H \rightarrow ZZ \rightarrow 2I2v$

Summary from 1st lecture

Gauge bosons have self interactions

• The Standard Model allows for **pure gauge-bosons interactions**

$${\cal L}_{
m gauge-fixing} = -rac{1}{4} W^{~~i}_{\mu
u} W^{\mu
u^i} - rac{1}{4} B_{\mu
u} B^{\mu
u}$$

$$\begin{split} \mathsf{F}_{_{\mu\nu}} \text{ is the field strength tensor which for the electroweak sector is given by:} \\ W^i_{\mu\nu} &= \partial_{\mu}W^i_{\nu} - \partial_{\nu}W^i_{\mu} - g_W\epsilon^{ijk}W^j_{\mu}W^k_{\nu} \qquad \qquad B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} \end{split}$$

This allows for triple and quartic gauge boson interactions

Longitudinal vector boson scattering

- Longitudinal polarization is possible for the massive vector bosons
- Scattering of longitudinal polarized W bosons breaks unitarity at high s^{1/2}

$$\sigma(W_L^+ W_L^- \to W_L^+ W_L^-) \sim s$$

- At $s^{1/2} \sim 1$ TeV interactions become strong unless unitarity is restored
- Scalar boson (H) interaction is a possible mechanism provided that:

$$g_{HWW} \sim M_W \qquad g_f \sim M_f \qquad M_H < 1 \text{ TeV}$$

• Then the cross section satures (i.e.becomes constant) at high s^{1/2}

$$\begin{aligned} A(W^+W^- \to W^+W^-) &\stackrel{s \gg M_W^2}{\longrightarrow} \frac{1}{v^2} \left[s + t - \frac{s^2}{s - M_H^2} - \frac{t^2}{t - M_H^2} \right] \\ a_0 &\stackrel{s \gg M_H^2}{\to} - \frac{M_H^2}{8\pi v^2} \quad \Rightarrow \quad M_H < 870 \text{ GeV} \end{aligned}$$

Possible scenarios for VV scattering

6/46

• If the scalar boson is strongly interacting / absent should observe distinct effects

• VV scattering = fundamental probe of how the original EWK symmetry is broken

Original idea behind the Higgs mechanism

 The proponents
 F. Englert and R. Brout PRL 13-[9] (1964) 321

 P.W. Higgs PL 12 (1964) 132 and PRL 13-[16] (1964) 508

 G.S. Guralnik, C.R. Hagen and T.W.B. Kibble PRL 13-[20] (1964) 585

7/46

What else do we know about the Higgs

[Updated: Summer 2010]

What else do we know about the Higgs

- The mass of the heaviest
 particles is correlated from loop
 corrections including the Higgs
 boson
- The preferred region is still compatible at 68% CL with the not yet excluded SM Higgs mass at 95% CL

Higgs partial widths (tree level)

- Fermions: proportional to the mass and velocity dependent (1 factor from the matrix elem.+ 2 from phase space)
- Vector bosons: dominate due to the fact the longitudinal polarized bosons
 couple ~E → coupling to Higgs as to rise as fast
- **Gluons:** through top quark loops
- Photons through top and W boson
 loops (Zγ partial width is similar in structure)

$$\Gamma_{far{f}} = rac{N_c G_F \, m_f^2 \, M_H}{4\sqrt{2} \, \pi} \, eta^3 \qquad ext{where} \ \ eta = \sqrt{1 - rac{4m_f^2}{M_H^2}}$$

$$\begin{split} \Gamma_{VV} &= \frac{G_F M_H^3}{16\sqrt{2}\pi} \, \delta_V \beta \left(1 - x_V + \frac{3}{4} x_V^2 \right) \\ &\text{where} \, \begin{cases} \delta_{W,Z} &= 2, 1 \\ \beta &= \sqrt{1 - x_V} \\ x_V &= \frac{4M_V^2}{M_H^2} \end{cases} \end{split}$$

$$\begin{split} \Gamma_{gg} &= \left. \frac{\alpha_s^2 G_F M_H^3}{16\sqrt{2} \pi^3} \right| \sum_i \tau_i \left[1 + (1 - \tau_i) f(\tau_i) \right] \right|^2 \\ \text{with} \quad \tau_i &= \frac{4m_f^2}{M_H^2} \quad \text{and} \quad f(\tau) = \begin{cases} \left[\sin^{-1} \sqrt{1/\tau} \right]^2 & \tau \ge 1 \\ -\frac{1}{4} \left[\ln \frac{1 + \sqrt{1 - \tau}}{1 - \sqrt{1 - \tau}} - i\pi \right]^2 & \tau < 1 \end{cases} \end{split}$$

$$\Gamma_{\gamma\gamma} \;=\; rac{lpha^2 G_F M_H^3}{128\sqrt{2}\,\pi^3} igg| \sum_i N_{c,i} Q_i^2 F_i igg|^2$$

$$F_1 = 2 + 3\tau [1 + (2 - \tau)f(\tau)]$$

$$F_{1/2} = -2\tau [1 + (1 - \tau)f(\tau)]$$

$$F_0 = \tau [1 - \tau f(\tau)]$$

10/46

Higgs partial widths and branching ratios

Diboson production

- Processes which produce WW, WZ or ZZ final states can help answering
 - why are EWK bosons massive?
 - how does the EWK symmetry breaking occur?
- New Physics expected to lead to EWKSB may be sought in di-boson production:
 - direct evidence of new particles
 - indirect evidence of observing anomalous TGCs

Anomalous Triple Gauge Couplings

$$L/g_{WWV} = ig_1^V (W_{\mu\nu}^* W^{\mu} V^{\nu} - W_{\mu\nu} W^{*\mu} V^{\nu}) + i\kappa^V W_{\mu}^* W_{\nu} V^{\mu\nu} + \frac{\lambda^V}{M_W^2} W_{\rho\mu}^* W_{\nu}^{\mu} V^{\nu\rho} \qquad \text{charged}$$

$$L = -\frac{e}{M_Z^2} [f_4^V (\partial_{\mu} V^{\mu\beta}) Z_{\alpha} (\partial^{\alpha} Z_{\beta}) + f_5^V (\partial^{\sigma} V_{\sigma\mu}) \tilde{Z}^{\mu\beta} Z_{\beta}] \qquad \text{neutral}$$

- All these anomalous terms are allowed in the SM lagrangian
 - Couplings are usually proportional to s or s^{1/2} and lead to tree level unitarity
 - Apply effective cut-off scale

Final State	WZ	Wγ	ww	ZZ	Zγ
SM	W [±] TIGC W [±] Z	W [±] W [±] Y	W ⁺ TIGC Z/Y W ⁻	\times	\times
an.TGC	W [±] TGC W [±] Z	W [±] W [±] Y	W+ TGC Z/Y W-	Z TGC Y/Z Z	۲ ۲GC ۲/Ζ Ζ
Coupling	Source L	λ (fb ⁻¹) λ	Δκ ₂	Δκ.	λι

14/46

Coupling	Source	L (fb ⁻¹)	λ_Z	$\Delta \kappa_Z$	$\Delta \kappa_{\gamma}$	λ_{γ}
$WW\gamma$ from $W^{\pm}\gamma$	D0 [27]	0.16			[-0.88, 0.96]	[-0.2, 0.2]
WWZ from W [±] Z WWZ from W [±] Z	D0 [24] CDF	1.0 1.9	[-0.17, 0.21] [-0.13, 0.14]	[-0.12, 0.29] [-0.82, 1.27]		
$WWZ = WW\gamma$ from W^+W^-	D0 [30]	0.25	[-0.31, 0.33]	[-0.36, 0.33]		
from W^+W^- , $W^\pm Z$	CDF [31]	0.35	[-0.18, 0.17]	[-0.46, 0.39]		

Note: more recent results are available, also from LHC experiments

ZZ production

- t-channel production dominates
 - unlike WZ and WW which have contribution from triple gauge coupling
- s-channel production is suppressed
 - → O(10⁻⁴)
 - if in excess: anomalous gauge couplings
 - resonant production: Higgs, gravitons
- Cross section measurement
 - → At the LHC only measured in 4I ▶
 - important to compare decay channels
 (in particular when looking for deviations)

$\sigma(pp \rightarrow ZZ) \times BR(Z \rightarrow II)^2 = 6.4 \pm 0.3 (NLO)$

ATLAS: $ZZ \rightarrow llll$	$8.4^{+2.7}_{-2.3}(stat)^{+0.4}_{-0.7}(syst) \pm 0.3(lumi)$
CMS: $ZZ \rightarrow llll$	$3.8^{+1.5}_{-1.2}(stat) \pm 0.2(syst) \pm 0.2(lumi)$

Search for resonant ZZ production at the Tevatron 16/46

D0 – arXiv:1104.3078

- cross section in agreement with SM
- No particular excess in M(4I)

CDF – arXiv:1111.3432

Cross section in agreement with SM

Search for resonant ZZ production at the Tevatron

- Privileged role in resonant production searches for M_x>200 GeV/c²
 - → BR(ZZ \rightarrow 2l2v) ≈ 6 x BR(ZZ \rightarrow 4l)
 - Expected to lead exclusion limits

Challenges:

- partial reconstruction of the kinematics E_T^{miss} = p_T(v₁)+p_T(v₂)
- resonant signature through transverse or visible mass spectrum

$$\begin{split} M_T^2(ZZ) &= [\sqrt{M_Z^2 + p_T^2(\ell\ell)} + \sqrt{M_Z^2 + p_{Tmiss}^2}]^2 \\ &- |\vec{p_T}(\ell\ell) + \vec{p_T}_{miss}|^2 \end{split}$$

 backgrounds: Z+jets (instrumental) and di-bosons (mainly SM ZZ)

arXiv:1111.3432 ~ 10 CDF. L=6 fp1 CDF. L=6 fb data data GeV/ GeVI 9 (b) muon channel (a) electron channel G .M=325GeV G_M=325GeV 8 Z+jets Z+jets Events / 20 3 W+jets.Wy W+jets vents / 6 WW,WZ,ZZ WW,WZ,ZZ 5 G +jet G +jet 200 300 400 500 600 700 200 300 400 500 600 700 100 M_{vie} (GeV/c²) M_{vie} (GeV/c²)

Neither CDF or D0 observe significant excesses in the 2l2v final states

(similar results in the 2l2q channel)

The golden channel $H \rightarrow ZZ \rightarrow 4I$

Channel signature - 1

- It's the cleanest channel among all
 - → 2 high mass lepton pairs : $50 < m_{71} < 120 \text{ GeV/c}^2$ and $12 < m_{72} < 120 \text{ GeV/c}^2$

(the second pair is allowed to be an off-shell Z)

Channel signature - 2

- It's the cleanest channel among all
 - → 2 high mass lepton pairs : $50 < m_{z1} < 120 \text{ GeV/c}^2$ and $12 < m_{z2} < 120 \text{ GeV/c}^2$

(the second pair is allowed to be an off-shell Z)

Channel signature - 3

- 4 isolated leptons in the final state: 4e / 2e2µ /4µ
 - Leptons are soft in $p_T : p_T^e > 7 \text{ GeV/c } p_T^{\mu} > 5 \text{ GeV/c}$
 - Relative isolation is defined from the sum of tracks / calorimeter

deposits in a R=0.3 cone built around the lepton thrust

$$R_{\rm iso} = (1/p_T^{\ell}) \times \left(\sum_i p_{T,{\rm track}}^i + \sum_j E_{T,{\rm ECAL}}^j + \sum_k E_{T,{\rm HCAL}}^k\right)$$

Selection efficiency is affected accentance, p_⊤ and mass requirements ▼

 $(AR_{iso}, i + R_{iso,j} < 0.35)$ $(AR_{iso,i} + R_{iso,i} < 0.35)$ (AR

Lepton efficiencies

- Usually determined with a tag and probe method
- Choose a dilepton candle: Z, $J/\psi \rightarrow II$
- Select tightly the first lepton (=tag) and loosely the second lepton (=probe) constrained by the resonance mass
- Efficiency is measured from:

Lepton efficiencies

- Tag and probe used to derive separately trigger, reconstruction, identification and isolation efficiencies (efficiency of other cuts can be evaluated the same way)
- The Data/MC ratio is used to correct the simulation (re-weighting)

Event selection

- After selection almost no background expected (besides SM ZZ)
 - Residual backgrounds from Z + heavy flavor production removed

with impact parameter significance cut |SIP_{3D}|<4

(reject displaced leptons from B hadron decays)

Number of selected events is consistent with

expectations \rightarrow look for resonance

Baseline	4 <i>e</i>	4μ	2e2µ
ZZ	12.27 ± 1.16	19.11 ± 1.75	30.25 ± 2.78
Z+X	1.67 ± 0.55	1.13 ± 0.55	2.71 ± 0.96
All background	13.94 ± 1.28	20.24 ± 1.83	32.96 ± 2.94
$m_{\rm H}=120{\rm GeV}/c^2$	0.25	0.62	0.68
$m_{\rm H} = 140 {\rm GeV}/c^2$	1.32	2.48	3.37
$m_{\rm H} = 350 {\rm GeV}/c^2$	1.95	2.61	4.64
Observed	12	23	37

25/46

4 lepton invariant mass

High mass selection

- We select 72 events
- Expect 67± 6 events from background
- Slight excess around 350 GeV

(similar to CDF observation)

26/46

4 lepton invariant mass

Baseline selection and zoom on low mass

- Observe 13 events between 100 and 160 GeV (expect 9.5 ± 1.3 events)
- Most significant clustering at 119.5 GeV/c²

Statistical interpretation

• With the full 2011 data the statistics is still low \rightarrow set limits on Higgs production

Statistical interpretation

- Interpret excesses as p-values (probability that the background fluctuates upward)
 - Compare the result taking into account or not the uncertainty on M(4I)

- Largest excess observed at 119.5 GeV with local significance 2.5σ
 - global significance 1.0σ in the full mass range, 1.6σ in the mass range 100-160 GeV

Next steps: angular discriminant analysis

• We have more handles on the signal

than just the invariant mass

- Expand the resonant decay in all possible angles
 - Build the expected distribution of the signal and the main backgrounds
 - Use the PDFs to construct a LLR

 $LR_S(x_{obs}) \equiv rac{P_S(x_{obs})}{P_S(x_{obs}) + \Sigma_i k_i P_i(x_{obs})},$

Result can be used in two ways: select
 events or find evidence for properties
 of the signal (e.g. spin or parity)

High mass search: $H \rightarrow ZZ \rightarrow 2l2v$

Channel signature

- A dilepton compatible with $Z \rightarrow II$ decay, recoiling against nothing
 - → BR($ZZ \rightarrow 2I2v$) / BR($ZZ \rightarrow 4I$) ≈ 6
 - Large branching ratio, but also large background contamination
- Need a robust handle against two main contaminations

Pileup contamination

Missing transverse energy

- Built from the flux of the reconstructed particle momenta
- The main background is $Z \rightarrow II$ production, similar to γ +jets production:
 - Use photon sample and re-weight to match the Z p_{τ} spectrum to derive E_{τ}^{miss} shape

 $\vec{p}_{T,i}$

particles

 $\vec{E}_{\rm T}^{\rm miss}$

Missing transverse energy

Built from the flux of the reconstructed particle candidates momenta

$$\vec{E}_{\mathrm{T}}^{\mathrm{miss}} = -\sum_{\mathrm{leptons}} \vec{p}_{T,i} - \sum_{\mathrm{jets}} \vec{p}_{T,i} - \sum_{\mathrm{unclustered}} \vec{p}_{T,i}$$

- Charged particles and jets with associated tracks can be constrained to the primary vertex
- Neutrals can't be easily associated
- <u>All must be taken into account</u>, otherwise
 additional imbalance is found in the event
- E_{τ}^{miss} measurement is furthermore affected by:
 - jet energy scale/resolution effects
 - noise in the calorimeters, dead cells,

E_{T}^{miss} resolution in minimum bias events

36/46

Key distribution: transverse mass

- Due to the presence of two neutrinos the mass the full kinematics can't be reconstructed (one degree of freedom left)
- Use the transverse mass of the dilepton

+ E_T^{miss} system:

$$M_{\rm T}^2 = \left(\sqrt{p_{\rm T}(\ell\ell)^2 + M(\ell\ell)^2} + \sqrt{E_{\rm T}^{\rm miss^2} + M(\ell\ell)^2}\right)^2 - (\vec{p}_T(\ell\ell) + \vec{E}_T^{\rm miss})^2$$

- assuming same mass for the two decay legs
- Lower bound for will be $M_T \sim 2 M_Z$

Transverse mass analysis

- The M_{τ} distribution can be analyzed in two ways:
 - Count the number of events in a given region: simple, robust analysis
 - Analyze the observed shape: fit components, use sidebands to constrain backgrounds

Final event selection from cut and count

• Optimize E_{τ}^{miss} and M_{τ} cuts for best limits \rightarrow run several pseudo-experiments

before looking at real data, then apply cuts to data

- Number of selected events is compatible with background expectations
 - Z+jets modeled directly from the γ+jets sample
 - Non-resonant background extracted from dilepton mass side-band in the eµ channel

m _H (GeV)	ZZ	WZ	Top/WW/ W+jets/Z $\rightarrow \tau \tau$	Z+Jets	Total Background	Expected Signal	Data
250	$36.0 \pm 0.2 \pm 2.6$	$24.0 \pm 0.3 \pm 2.0$	$65.0 \pm 3.8 \pm 5.8$	15.0 ± 15.0	$140.0 \pm 3.8 \pm 16.0$	22.0±2.2	142
300	$23.0 \pm 0.2 \pm 1.7$	$13.0 \pm 0.2 \pm 1.1$	$18.0 \pm 1.1 \pm 3.0$	6.3 ± 6.3	60.0 ± 1.1 ± 7.3	21.0 ± 2.1	64
350	$16.0 \pm 0.1 \pm 1.1$	$7.0 \pm 0.2 \pm 0.6$	$2.0 \pm 0.1 \pm 1.0$	4.1 ± 4.1	$29.0 \pm 0.3 \pm 4.4$	21.0 ± 2.5	26
400	$12.0 \pm 0.1 \pm 0.9$	$4.6 \pm 0.1 \pm 0.4$	< 1.1	2.7 ± 2.7	$19.0 \pm 0.2 \pm 2.9$	17.0 ± 2.0	18
500	$7.5 \pm 0.1 \pm 0.5$	$2.0 \pm 0.1 \pm 0.2$	< 1.1	1.4 ± 1.4	$11.0 \pm 0.1 \pm 1.5$	7.4 ± 1.3	14
600	$3.9 \pm 0.1 \pm 0.3$	$0.8 \pm 0.1 \pm 0.1$	< 1.1	0.6 ± 0.6	$5.3 \pm 0.1 \pm 0.7$	2.9 ± 0.7	5

Results

- Set limits on cross section for resonant ZZ → 2l2v production from Higgs
 - At low mass: Z+jets background overwhelms the signal, hard to probe
 - At high mass: dominated by theory uncertainties in particular in the Higgs mass shape

Results - 2

- Limits on R = σ/σ_{SM} at 95% CL
 - no particular excess in the mass range analyzed: all is compatible with background only
 - exclude 270-440 GeV/c² mass range

Conclusions

- Today I have focused on the ZZ process and the search for Higgs in its production
- ZZ s-channel production is highly suppressed deviations can be interpreted as

Observations are compatible with background only hypothesis

End of Lecture II on Higgs Physics

References

- ATLAS Collaboration, "Expected Performance of the ATLAS Experiment: Detector, Trigger and Physics", CERN-OPEN-2008-020
- CMS Collaboration, "Search for the standard model Higgs boson in the decay channel $H \rightarrow ZZ \rightarrow 4I$ in pp collisions at s^{1/2} = 7 TeV", arXiv:1202.1997
- CMS Collaboration, "Search for the standard model Higgs boson in the $H \rightarrow ZZ \rightarrow 2I2v$ channel in pp collisions at s^{1/2} = 7 TeV", arXiv:1202.3478
- CMS Collaboration, "Search for a Higgs boson in the decay channel $H \rightarrow ZZ^{(*)} \rightarrow qq II$ ", arXiv:1202.1416

Setting limits on Higgs production

45/46

- When no excess is observed the strategy is to set limits on σ(H)
 - Assess from data what is the allowed signal strength i.e. $\mu = \sigma / \sigma_{SM}$
 - We measure the compatibility of the data with the signal hypothesis using a test statistics

Likelihood and test statistics definition

The data vs S+B hypothesis is tested with a likelihood

Setting limits – CL_s method

- In data we **compute** the **observed value of the test statistics** and find the best values of all nuisance parameters to fit background and background only hypothesis $\hat{\theta}_0^{obs}$ and $\hat{\theta}_{\mu}^{obs}$
- From MC/data-driven expectations we generate pseudo-experiments for each hypothesis

