
f) EXPERIMENTAL ERROR ,. , ..,:'';,: .: ' ' 
,.'. .', :

Aim of experiments:

1) to measure the numerical value of some physical quantity, e.g. c, a

"parameter determination" \

2) . to test a particular theory is consistent wjth data

'"hypothesis testing"

reality is mixed, of course

a measurement of c; parameter measurement

and

test of c being constant with time

Why errors? .

currently known value of c = 2.gg7g2458x101 m

a new exPeriment gives c =2.9900 + o
1) if o= 0.01x108 m

new result is consistent with the previous results

2) if o=0.001x108 m

new restrlt is inconsistent with the previous results;

-new discovery (c changes with time)

-either the new value or error is wrong

. 3) 7f o= 1{x108 m

new result is irrelevant

so, depending on the experimental error, our reaction could be,

"the conventional theory is in good shape" or
,'we have made a great discovery" or "we should find a better way to do an experiment".

Random and sYstematic errors

Random error: inability of any measuring device to give infinitely accurate answer

Systematic error: in the nature of mistake

Example: determination of the decay constant X,of. aradioactive source

- bounting number of decays within a given time interval -+ -dnldt

weighting the sample -> number of nuclei present n

^#/L=____i_
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randomerors aredue to counting ofdecays (randomprocess)

timing of the interval

weight measurement

systematic errors are due to the counter used is not fully efficient

and/or not sulrounding the sample

completely -+ lower counting than the

tnre value

existence of other radioactive source,

e.g. cosmic ray

-+ higher counting than the

true value

radioactive source is not Pure

-) number of nuclei is less

than the true number

random er[or can be estimated by repeating the measurement several times and

comparing the results

J]
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2) DISTRIBUTION AND PROBABILITY

Distributions z(x): describing how often a value of the variablex occurs in a definite sample

Discrete Distribution

4

range

0to7

ltooo

-13.6 to OeV

range

0 to 24 hours

0to""

x variable

number of days

integerx

energy of ground and

excited states of hydrogen

atom

n(x)

number of sunny days in a

week

number of working

prograrnme you produced

after x compilations

number of atoms with

electrons in state of energY x

in atomic hydrogen at 10oK

Continuous Distribution

x variable n(x)

hours of sleep each night number of person sleeping

for time x

hours to understand

statistics

4) the mode = xm

the value which haPPens the most

number of person who

understood statistics after x

hours

: l,
, i'\bt.vt.,jt

:ft. !& ,

3) the median =xo.s

the value where the population for above that value and the population

for below that value are identical
rbs 4n-

i.". j.n,;=irtt o, [:' &tu)= l]"*lr'l
rmin t.s 

J4nln J&s
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symmetric distribution: E(x) = r0.5 = rm

probabilities p(x): with a sample of Nmeasurements, the value r is obtained n' times. Then the

probability is defined to be

p(x)="ttg- #
This is equivalent to the normalised distribution, i.e'

Pft) = ,* f(x)

drl!r)1-a -. ft*)./ft)or I.Lt" . . l_
fmin " 4min

Note: I >p(x) >'0

Expectation value and variance and can be written as

r.-
E(x)-f xp6lor l!" **rO,

4nil 
" nrnin

and

t*

o'e, =E ('-u{'t ' ot't"' I}.J 
a'(' - 4)z nat

mrn

= 4{' - E(r) )t) = 44 + Ezb) - 2 E k E(')

=E(xz)+Eu-2 E2@)

=E(xz\ - P\r)

<x>=x^-=xuJm



3) SAMPLE OF EVENTS

.,]'.,.:..:-.:]...:.-;l'].':i]:.:1.;ll...:'.1...

FolasetofNseparate easuf€ments of x,{xyx2t;..tx1.r},howcan.we;stimatethe,"IryF.r", vahre'.::,-::;'r:,i,,

andvariance ? '

Estimation of expectation value:
;-
l+- I \' ..1r- N L*il
l. t=l 'l

Note; since the expectation value of f is E(x), f defined.as above is unbiased.;e'
. lL r)ol* dag'"t 6* 1a'*a f '-

E(t)=+,.4 E@)=E(x) Lttt{tteslti*Y

How good is this estimate? -> the variance of .i

and we obtain

o\,)=#{i {',-qd}')=#,i {t--t }1 =+ o\*)

i.e"

r?r,;';r'n

J@) = 4{, - qn\') = #{li',-"qd}] = + {ti o 
"}') 

-:.li','f

=#4Ik-"D1 .#4 i k-qd)k q4)
Iv- 

\i= r 
' 

) 
rY 

. 
\r,j= t' i"i

if all x; are independent (uncorrelated)

4h-4dli',-Adl)=o ro"a

.+i
.1

'1i.- 1J{[ ".ii/-: 1 ')' 4

,(i)=* o\*)

+ the accuracy of the estimated mean value increases with increasing N

Estimation of variance:

One may think a reasonable choice could be

n') t $,'' ^r26,"=f ztri-f).\
However, Grz isbiased. This can be seen by evaluating the expectation value;

:,



- tN ' \ lN \.
4o')=+{,4 @,-l')=+"tE tt ,-r(,)l+[E(.r) -Af)

. a tN- N N \
= + ,E 1,,- n@)l' + ) trk) - *f' +z frlrt- E("r)l W@ - ,l)

- r (N 
^\= N ,t}, l*,-n(41'+N[E(;) -i]'-2NfE(x)-rf)

= + {t[A k - u('n') - x r[n1*1-tr1] = + lN o{,)' - N o@)21

= 
N-1 ' 'c
fr- q4"

l.e.

E(6':)= i?l o{*)'

the estimation value depends on the number of events N+ biased!

The unbiased estimation for the variance must be defined as

j:=#T! t', -i)'

u(4)=*{it",-o)']

=# (N-1) oz\)

= o2(x)



4) IMPORTANT DISTRIBUTIONS

i) Binomial distribution

example: Tossing 4 coins. Probabilities for having'

0head I head

0.54 4x0.5q

2 heads

6x0.54

3 heads

4x0.5a

4 heads

0.54

generalisation:

=, pf
tn= 1

probabiliw to have m successes

-

I pn(m)--rc^/" q^-" I

where the combination nC. = ffi:dl
Expectation value and variance:

E(m)= 2o*Pn(m)= Zr#dP"n qn-m

p*-t qn-^-' o\or#+qpd qn-rr-l

Note the sum = 16x0.54 =1

p= probability for success

q= probability for failure p+q=l

n= number of trial

(n - l)!
(m- r)t(n - m)l

and

g n|l ---' -,=n o)-oafr:WP^' qn'-d =" o ZoPn'(m)
'-n p

m2 Po(m)-- pr#ldpm qn-m

$ m(n-l\t _F (^',-t)@:_l)_nn{nn-m,-l
=' oLrffidq^-t Qn-^=" o Aoffi ,,i -t1t''r

z,E(m21=

-,, froffipd qr-'n--, olfomP;(m)+ E"rr*l=n p(n' p+r)

=np(np+q)

expectation value: E(m) = n P

variance z d(m) : n({m-nq) }2) = E@\-f(m) = n! Q

a) forp fixed, various n b) n fixed, variorrgP c) pn fixed, various n

a) transition to the Gauss distribution

c) transition to the Poisson distribution
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ii) Poisson distribution

The ransition from the binomial to the Poisson distribution is done by

n-l'.o, pl} keeping n p = 7t(constant), i.e. the distribution for events

with small probability.

=#(t-+)

by taking the limit n-)*
t u\n

"l!LU 
-A =e-F and

4*) = 2o* f1r(*)=,,E, #fi ,

and

'(r-+Xr-+) (r--+)
('-#)^

l* =t

thus. the Poisson distribution is defined as

frgyP,(m)=# "-u= |o(m

Note that fp(m) is properly normalised, i.e.

€ -..= "-oL+=,-u(r.+.+pofulm)-- #omt 
=l

Expectation value and variance:

.' )-s-trstt

@ ,,lfl-l 6

-F= tt )=rft=fi e-F= p >ofp?")
-p

n(^,)=>,6ft e-p = tr 2"@' 
*;)f' 

"-r

=r{), *'v,fr,)* },tlr\=u(r. t)

Thus

expectation value:

variance:

E(m) = 11

&(m) - n({^-n@)12) = B11nz7-* (m) = tt

Examples of the Poisson distribution: .

-Consider the very large numler oiradioactive atomic nuclei n. The probability

that one of the nuclei degays within the time interval At, P(At)toltoryg the

Poisson distribution if Al<<1t.
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-Number of interactions in a given time interval &produced by a high intensity

beam cotliding on a thin target follows the Poisson distribution-

If the rate of the basic process changes during the measurement or events are

correlated, the Poisson distribution cannot be applied-

-Number of interactions produced by a low intensity beam colliding on a thick

target. The rate of the basic process decreases since the initial number of particles

is limited.

-Number of particles detected in one second by a detector which has a dead time of

lmsec and with a particle flux of more than 103/sec. In this case, no particle can be

detected for lmsec once a particle is detected by the detector. If the flux is high, the

detection of a particle is conelated to the previously detected particle.

Interesting example.

Nparticles are detected and n*of them are positive and n- of them are negative, i.e.

nq*n-=N. The probability to obtain such an event is the product of the probability

to observe N events (Poisson distribution) and the probability that n* in N events

are positive (binomial distribution)

a#Lx *6p'i p{. (t - p*)N - n*

where iu is the expectation value for the total number of events andp.' is the

probability to obtain a positive particle. The above expression can be rewritten as

e- tt UN--Ti- " Affiy Pt.0 - P*)* -^ = ## P* P!'

_ e-ltp+(pp*)n+ u
n,l

e - H p_ 
{t, p_)*

n_l

where p-=1-p1 The last expression can be interpreted as the product of two

independdnt Poisson distributions. The two Poisson distributions describe the

probabilities for positive and negative particles respectively.

iii) Gauss distribution

Transition from the binomial to Gauss distributions can be obtained by taking the limit

n+@for a finite p so that np-+*.-Inthis case, n, m arrd (n-m) are all considered to be large,

i.e. the Stirling's approximation can be used for their factorials:
:

' :".:: .'
,tti"

t0

'.,;'u.
':'...J.'.,
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nt= ^lTTi (+)" (t . #.7j;r * 1")

m!=,/z nm (+)^ (, * i, * -J-= *')
@ - m)t=

then,

\t ;Gd("i^)l.-sfrA. r"fry. l

='WX' 
;.,1,. L, ::r! - :,?=yro"lnl\ z'\ n I \

The binomial distribution is now approximated as

p,(*)= r[# (+)-(^.+)(i* )-(^-^*i) pm qn-m

By introducinsm--np+t:n7" ,U;:*r., *" oo?n 
t ( € 1zt"# = rn [r * *)=tn p +;; _ Z\io)

^#=m(q_+)=tn4 +_+&y
Keeping the dominant term irn (, Pr(m)becomes

where &=npQ.In general, one formulates

4=#;"*nL- (* - o)'
2oz

which is often called a Gauss distribution. (As seen from the formula, x can be a

continuous variable.

Note: By increasing lt,thePoisson distribution approaches to the Gauss distribution.
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f+-Ic=l xzexpl-x2)d-r-- lim.p f+- r '\
" Jo ' s"-+r d n Jo exp[- axz)dx

= - lim. += -L f*- "*n F it) ar: = lirn. --e:- - ^t/cci'Jt da ,la n d'->'t 4a,{a 4

2) Expectation value

E(x) =1.:' e,) d, = *;.|_:' *n (- E#)*
= #TlJ o'* a) exp( #)dx' = a

3) Variance

E(*?)= J_-:,' 4i d* = #;ll O'. a)z exp(- ;3)*'

Variance(o) = E(x')- n'(r)= oz

expectation value:

variance:

a

&

4) The Gauss distribution has the following properties

ta+o 1a+2o 1a+3o
f 
" qr) dx=O.682, I G(r)dr =0.954, | ^ (r)d*=0.998

Ja-o Ja-Zo Ja-3o

i.e. if 1000 trials are mader 998 of thex values should in average be

between a-3o and a+3o.

In a real experiment, neither the expectation value nor the variance are known.

' -) estimation of E(x), and o(x) are required!!

Example

72 counts of radioactive decays were observed in a time interval of At

1) estimation of the expectation value by the measured count

E(m)=a

2) decay of radioactive nuclei + the Poisson distribution

&=E(m)=m :

3) it mis "sufficiently" (see ubungen tr 3) large, Poisson-+Gaussian

4) experimental value is givenbY

: l.i 1i:.,.;
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0.682 (0.954, 0.998) probability that the true expectation value E(m) is

between m*'Jm, (mxT''lm, ml3'lm)

Note Experimental errors have always a tail -r the probability to bb (for example)

23ois larger than 0.002.
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4) MULTr-VARTABLES DTSTRTBUTION

Expectation value of x' is given by
f+- f+* f+-

E(x )=J__ * t J__ 
dx2.-. 

J__ 
* ,x , \x 1, x2, "', x,)

f+-t\=J-- MrxrElxr)

A distribution is described by

Variance: o;2 = E(lxi - E(x)lz)
Covariance: cov(|7)=f( lxi - E(x)lfxi - E(x)l)

i.e. cov(i, i)= oi2

Note: cov(ii)= cov(7,i)

If there is no conelation between the variables x; sndr;,

cov(i'7)= Q

i) Gaussian dhtribution with multi-variables
General formula is G(r - a) =k exp [ - (x - a)t W (x - a) I 2]

a: n component constant column vector

.r: n component column vector

t4

l: transport

IV: nxn matrix
( t**

k: norrnalisation factor | |
\"--

dx G{x-t)= ,)

Expectation value
f+- . \^r \ , r*o I (r-o)tW(r-a) 1

E(,_4:J_*d'('-4)C4x_a)=oJ_*d'('_a)expL_--_]=o_o=0

lrt us consider a case one measurement x consists of n variables, r=(x1, x2, "' , xr)l

Probability distribution forx: P(x)=p1tt, xz, "' , xn)

marginal distribution S(rr) is given by

= probability distribution for a single variablex'.

. )= I:-*' l: dx2"'f* *,-r ,[: &,+ r f- d, 
^4r 1, )c 1, "' , x )
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The second term is nothing but the covariance, i.e.

( "? cov(1,2) \
v=w-t-E((t-") (*-")t)=l cov(l 2) o] 

|

\' )
The matrix Vis called the covariance matrix. (fhe matrix Wis often called the weight matrix.)

Example: two variables

Inverting V, we obtain

w= 1=(ry
;To?-@Art \-con1t,z1 ol )

If the two variables are uncorrelated, i.e. cov(1'2) =0

t+o\
w=loi . I"-\ o *l

and 
I t-. r2t I r -or)rlc=7;!*r".ol b*{l*4- 2"; I

i.e. a product of two Gaussians as expected.

[ , ,--t:--1: '-W ]{ ,n" g"n"ral normalization facton 16 = -V391
\ 

) general norTnallzillrwrr rcvrvr. * _ 
(, 

");lT 
)

When a correlation is present, by introducing the conelation coefficient p defined as

cov(1,2)p= 6roz

the matrix B can be written as

I r -p \
w=I:prl+"'";)

Probability contour:

A probability contour on which the probability is down by Il^le compared with the

pointx< is given bY

(r - o)'w (" - a)=1

i.e.

@ r- 2r)' * (*r- 2r)' - z(xr a:)(:z- az) p 
=r - pz

- ol o] ' ot62

(note lp 31) which can be illustrated as
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a2*62

az-oz
at-61 a1*O1

For a given value of x = ir, the value of y giving the higest probability is

given by
0G(\, xz) _o

dx2
/ \ (Lr-ar) ^\xz-=az) .,p 

= Ll

4 610z

i.e.

oo- (
,r= p6*r*lot G.t )

- P-at Ior)

lf no correlation:

xr(xz), which maximises the probability, is independent of x2(x), r.e. az(a).

Positive correlation:

xr(xz),which maximises the probability, increases with iz@)'

Negative correlation:

xr(xz),which maximises the probability, decreases with xz@).
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,5) TRANSFORMING VARIABLES

'I ,

AND ERROR

Transformation of variables :

x-+ywithy=y,(-x) -+ dy=l d11 I atl a*

['0, a, = [ re'tl#ll#ld*= t *> a*

i.e. they are properly normalised.

Many variables:

xlxt'z, .-- xr) -> Y=1Yb!2, .,.In)

where

g(v) = J(x/y)flx)

,(i)=

is called Jacobian.

Example

1 ) Linear transformation

! =T x + a (Yi =Tij xi * a; ) a: constants

Expectation value is given bY

E(Y)=TE(x)+a
Covariance matrix is given bY

vy = n{ 1y'-ngt ty-E(y)l' }

= n{'fr t + a - r F@) + ai IT x + a - T E(x)+ d]t ]

=r E{ [r - E(-r)] [r - r'tr)]t ] zt

=TVrt'
Transformation of the covariance matrix is given by

PROPAGATION

17

dxr dxz
dvr dyr
0r,
dyr

:

dishibutibns transform as

Vy=TVtT )
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or more generally

with

(
Ir=l
I
\\

Evr br ...
dx1 0x2

ayr..
dtr

:

If there is no correlation between -& andr;' we obtain

whichis usually referred as '!€rror propagation"
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An example of error propagation

A detector measures the x and y coordinates of a point with errors o, and o,

independently 
.

) polar coordinate
p= *+f , tan9=ylx

Using

' drldx=xlr','drldY=Ylr
dlldx--ylfl , dt}ldy= xlfl

variances become

6,2 = (drl dx)z o,z + (d rl dy)z of = 1* o,4f ofV P

ofi=g\o,a*orflr'
On the other hand

x=rcos9,y=rsinO
l.e.

dxldr - cos4 dxld9 = -r sinO

and

^z -(d x\2 ^z -( d x\2 c? + 2(Ar'l lgll'l Cov(r. 0)";=far/ '. *\aoi uoa/' \F7/laal
= +(rzcos2g + y2 sin2e) o? * _Lr(sP cos2e + x2 sin20\ fi-z r sinO cosg cov(r, g)

rL'

which gives

, ^\ x2 co*0 + vz sin20 - r2 ' 't . y2 co*o + x2 sin20 ^- cov(r,o)=ffi",'*tffffi"i
=###@?-o'l)=r#k@i-o?)

This should be compared with

=$ ("?-o])

( o? cov(r,r)\:r# #j{"t r )|,3i#)
[cou1,,e1 o] J=[##,lt '*/l*#)

=( + + lf";')f ; ;+'l[+;,ll'";l[i ])
l*+S 7v;_",11

1; (ol-o?) *"ir*"3 
)
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The central limit theorem is:

If the r=(x1 ; x2,-.,rn)are a set of z independent variables all followrng an arbitray distribution

with mean a and variance o2; then in the limit z-+"" their arithmetic mean

*=*L,,
t=1.

follows a Gauss distribution with meanc and Yariance dln.
If r=(xr, x2, ..rn) are from z distributions with different mean c; and variance &i, t still follows a

Gauss distribution of mean (lln\hiand variance (ltn)Zd;.The distribution of each.4 is irrelevant.

If r; are already Gaussian, i is a Gaussian for 221, elqe for some !'large" z.

(how large? see tlbungen V)

\,{
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7) CHI SQUARE DISTRIBUTION

Assume.r follows a Gauss distribution with a mean 0 and a variance I (the standard Gaussian);

Draw a sample xb xz, x3, ... xn. A sum of squares

f--xr4x*+42 "'*xn2

follows the probability function

f Wr)=;--L- (u2\"tr-t r-rzIz
tpl2)2nt2w t

which is referred as chi square distribution and n is the number of degrees of freedom.

Note:

E (*)=n, n {t t)z | =rr2+2n,

2n

and

f(i4) = oo n=l

0.5 n=2

0.0 n>3

The probabilify that the random variable f does not exceed X& is given by

4x&)=ft6;^ [:r "n'|2'1 "-utz 
6, .

1.0

0.8

0.6

0.4

0.2

flxz)

1.0

0.8

0.6

0.4

0.2

F(*)

n=l
n=3 -n=5

n=2

n=10

4*

n=l
\
.\
n=2

n =3 ->n-=

10
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General definition of /
^,2 -txt - 

o)z + (rr- o)'+ "' + {*n- o}'

T
where x; follows a Gauss distribution with an expectation value c and variance o2.

Recall previous estimation for the variance (Chapter 3)
-N

6: = o+ L @,- r)'rr ^ i=l

where x; is drawn from a normal distribution with varian ce d.Then, (N-D6? e follows

the fdistribution with (N-l) degrees of freedom.

Proof: if we define

lr', lt.^\1,yt = -+ (x, - xrl, y., = -+: (x1 + x2 - 2*t), lz = -# (x, + xt + x-a - 3xa)Jr ,/lxzr-, --/r'JL 
.^/2x3.' . J'' Jr ,l3x4r' . J

':
!n-r = -#=- (x1 + x2* xt - - - * xn-r- ("-tV)

{ln-Llxn
y,= # (x1+ x2*r: -.- + xr)= 1v i

y; follows a normal distribution with variance d and expectation value E(y)==0.

ThenLyt2=2*'2.

It follows that

(n - \6: = i tt,- i)' = i *,' - n i2 =ir,' - y] = i,j= r ,?t ' E" i=r

i.e.

@- \o: _ I F' ,,,---7---7 h','
follows Z2 distribution with (n-L) degrees of freedom.

Why n-l degrees of freedom ?

due to the constraint

txi=n*i=l

the degrees offreedom is reduced from n to n-\-
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OF MAXIMUM

A) Likelihood function

Functionfir;l ) describes the probability of the random variablex=(xr, x2, "'-ru) with a

,;: .'.. l

THE METHOD

,, -]. :

LIKELIHOOD
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8)

A

specific set of parameters I =(ht, h, ": 4). When Nmeasurements are made with

y(l), y(2), ....r(iv), the probability to have such Nevertts is given by

=g f ('0;L)

which is a function of L. which is called likelihood function.

Note:flx;.if, ) must be properly normalised, t.". f*'- dx f(x;L)= t
J{rin

Example:

We have an asymmetric coin and want to decide whether this belong to class A or B.

heads Il3 213

tails 213 ll3
After 5 tosses, one heads and four tails were obtained. Likelihood functions are

A: L= (Il3)x(213)4 = 0-0658

B: L= (213)x(LB1n = 0.00823

i.e. class A is the likely solution-

b)Maximum likelihood

general extension of the examPle

+ a set of parameters ,1. which gives the highest value of the likelihood function have the

uniquely defined, symhetric uniquely defined, asymmetric 'l'l')'l'l'l'l'l'l'l'l

For computational reasons, it is easy 
l"r;t" 

a "log likelihood function" defined as

l=lnln1fto;,t)l
\i=1 l

maximising L = maximising I

Single parameter case

At I maximum, dil db};

confidence as the estimation.



and obtain the likelihood equation

7 ${i; L)

weighted aYerage

25

#=h,#^'vt";'u=,i fir@o;x) $ /'1tt't' 1;
= f=ri(al)

Example: Repeated measurements with different accuracy's.

Assume that the accuracy of each experiment can be expressedby a

normal distribution with variance o;2. The likelihood function is given as

"= fi 1g,,.L)= 11 + - "*n[- 
&(t)-?)')

ii - ' r*Jl ^lZtt 
o1 "^'l Z"? I

'and the log likelihood function is

\ffi=,

I =- I$ k[')--'t)2 +constantzf- of

From the likelihood equation

dt -$ kt,t-^) - $ 'ord'L 'l'r=r 
-4-=l'7-^ $ -L=oFt of

we obtain
N /;.1s -rt"

" iaoT
L=__N 

-sI
F"?

B) Information inequalitY

A good estimation of a parameter 1., S must be "unbiased" and its variance d (S) must be

as small as possible.

l_ --there exist an optimised relation between these two requirements--

" information inequalitY

E('s) = | s1(rtr); h) 7 @Q\; h) "' f(x(N);,1) 65(t) 65(z) "' 1v?'t)

and

E(S)=B(L)+1"
B (L): Possible bias

4d. L= [sy('(r)' lr('d) r) {"to; .a)0"(t) a,(z) "' a't"l

By differentiating respectto )"; we obtain



t
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Since clearlY E(I') = o' we can derive

B'(hJ+ tr =E(s t)-E(s)E(l )=n{ts-E(s)l/}
and using {E(*y)l'<n(p) E@),it follows that

[s' (L) + Lfz< r fts - E ($]'] t (t'')
We can also derive

n Q'2) =" t[,i +ffi#J } = 
" {; l+##l J.' Et##l t#d, l}

l( r,(-.(i).r't \2.l - | f '(xU):1) lo[;'1rtl'rtt lf r'@;7)\]
=>Ellif,ffi ) f E,'hma t- | r @Tl= 

N Ell.ffiJ 
]

where the second term vanishes using Elf'(x{i); Dlf $<;l; L)l = !f '{"'r'1) dr(') =0'

By introducing

where (,t) is called "information", we have

which is referred as the "information trequalitY". tn the case of vanishing bias,

lot(s' I I

| ''' I(D 
I

C) Enor on the estimated parameter value

1) Single parameter

a) AsYmPtotic case:

For the limitrof N-+oo , i.e. a large number of measurements;

Likelihood function L becomes a Gauss distribution respect to the parameter '1'

. N I (z -\'-l
r= f[ y;(i;r)-+r-(il=+-"*J- V- u'l

f;t '- ^m o -^tt 
';T-lwhere _ ,.:- ::

t= 4t)
o=va{!

,, \ lt -., ^r r-l i (#)'
Q) = n(r'') = *"il fff,} I 

=" 
l " 

*?-
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The log likelihood funqtion becomes

P [], = ],+o]
=Jral,=0.683

P[], = XtZo,)
=[raL=0.955

I+o ?"+Zo

t (L) 
= 

rn \rj = -5:+ + constant

The ocantle obtained as

O=

Ihg 68 (96)70 confidence interval for the estimated parameter .1, is given by between

A-o(2o) ay.d A'+o(2o), or L= 1*o(Zo); i.e.

P I L-o(2o) < L < h+o(Zo) I = 0.683 (0.955)'

Note: at ))c:o(2o), log likelihood function is reduced by 0.5 (2) from its

maximum

t(A=Llro)= l,nu*-0.5, I(A=fuZo) = I^u*-2 with /,nu* = t(l)

t(r.)

Ln"

/ = ln L(I)

Thus, procedure for the maximum tikelihood method is;

D buildthe log likelihood function l(lv) =ln U))
ii) find the parameter value .X' which maximises I' i'e' lnu,*= I(L)

iii) determine the onq!42
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b) General case:

Assume that the log likelihood function l=ln/{x,L) is a continuous function of .1. and

has its maximum l^u* at )=),.The expectation value of .2, is the estimated to be ,tr - At

around l=I^u*,there exists a transformation g=g(x,,t) which transform / into a

parabolic form;

/e = ln Urd=- k -qll' +constant

where the estimated expectation value of g, G(r) is given by G(x)=g( x,1').It can be

shown that G does not depend on x for a large number of measurements N' As shown

previously, the 687o andg6To confidence intervals in the g parameter space are given

by G-os<g<G+o, and G-26rcg<G+2or respectively and we have

tAG ! os\= te(G)- i
and

t/1G !2o)= Is(G) -z
Transformations of the confidence intervals into the original .1, parameter space'

L<A*^* and L_<A*^. .*" 
fi;1, =ol,r_, = r^*_ *

and
I(L**)=I(L--)= lmil(-2

So, we do not need know the actual transformation g=g(r,,tr'.) in order to obtain the

confidence interval on .tr. The procedure for the maximum likelihood method is

identical to the asymptotic case up to the second step. The error determination is done

by the method b)-

Note: in the most general case

)L-L- + ?,"+* L, i.e- errors are asymmetric

28 1

a2rn4L)-- alr..
at 2"= )".

or

b) calculating two points where

I(L) = l(L) = /*"1-{'5: L4*
Then o= h-L-= An+1^ . '

The probability that the true E(L)isbenpeen L+o and

between L+Zo and A.-2ois96Vo.

L-ois68Vo ar:,d



i,'..r '- , ,

'.
: lqd' --': '.: ' " i .

:

L| *-L * 2(7t,,-h) , i.e. etfoconfidence interyal is

not related to96%o confidence interval

Ia,

/*o
lmar. - 0.5

I^u*- 2

ulah2

a2t
aLtaL2

azt
-"a

AL;

\
1

I

) 
^=i

I'(G)
ts(G) --0.5

ll(G) -2

G-2orG-a, G GFoz G+2ot

2) Multi-parameters

The log likelihood function withp parameters ), =(L1, Irt, ... L) can be expanded around the

expectation values as

r (L) = r (1) + Z,eh) 
^ 

__ r(1 
o - tr ) - +zz,ffiA 

^ 
= J^, - 

t ) (t,, - I ^) 
*'''

since E/(.1 ) lAk={ at 4=7,,we obtain

r(^)=t(I)- t0- 1)' n (n- 1)+ "'

where

{

"=l

The higher order terms can be neglected in the region where .1, is very close to thetr

expectation values. The likelihood function is then given by

L= k expl + (t- 1)' n (t'- I)f

where k is the normalisation constant. As discussed in section +-i, H-r can be identified as

the covariant matrix given bY
{
I q? cou(t'z) \

C=H-r=l "ou(t,z) 
o| 

I1'f\: l
a)Confidence r-egion for two parameter case

A simple demonstration for the confidence region can be given for a case with

a2I
:-dLt

a2t
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uncorefated two naramlters having the qape standard.{eviation o. Thg likelihood ,

functionisgivenby , :, , .,:,' . i,r i.. t, :.

L (ht, t,Y ;:F".p [- ry] *r 
[- ry].\ r' Lr 2n< 

:
The probability to haye 1,1 between Lro and .1,1+oand )u2betwenn -"o and +"o is

given by

p (Lr- 6 < Lr. Ir+o, - oo < 1z<+ *)= f:':: o^r,f:: dLzL(lu Lr)
J Lr-6 Jie

=d;l:::d^,'"*{Wl=ou"

Ih" probability to have 1,1 between l,r-o and'L,*o afi )r2between t"z-o ^a
Lz+ois given by

41r- 6 < Lr. Lr+ 6, 7z- 6 < Lz< trz+o)= [1'*o o^r[:*" dAzL(Lu 1r)=0.466
JA.t-o JL7-6

Finally, the probability to have ),1and22 within the one standard deviation contour is

obtained by

pftLr, rr).(Ar+ o, Lrt o)] = |;^ ; t2 r n ; r2 .d.LtdlzL(Lr, A2)
r\A-Lil +1 -^21 <O'

= *r t" o, [", a,"-{- *)=0.3e3

This means that when the maximum likelihood method yields estimations for the

expectation values for 4,1 Md )"2 and their variance o, the probability that the true

expectation value for .1"1 lies within +o while /'i. cadrrbe anywhere is 687o. The

probability that the true expectation values for both parameters lie within to is only

47Vo and that the true expectation values for both parameters lie within the circle with

a radius ois 39Vo.

-+ Ir

Note that the one standard deviation (h, fuz) contour is identical to the contorr for



3l

ln{Il\, h)l =ln(z)** - 0.5. 
i

General Case: I ' . "" .. "
+ As in the case of the'single parameter, when the likelihood function is

no longer Gaussian, the confidence regions is given by the equal

likelihood (h, hlcontour with ln{(,tr h)l = ln(L),"u* - 0.5,

where the probability that the true expectation value of ,tr 1 lies between

,1,1- and 1.1.' is 68Vo andthat the true expectation values of 't,1 and 2'2

lie inside of the contour is 39fto.The region given by )"1-<A.6 211 and

Lz-<Arz< h2a (re*tangle shape) is usually not used since its statistical

meaning is unclear'

b)Confidence region for many parameters

-single parameter confidence intervals are identical to the two parameter case

and .1,1- and ,?.1* are given bY

ln{I'()'1a, Lz"' k) }=ln(L*uJ-0'5
where L(Lrc, Aa"' D is maximised respect all.tr.s except 21' Then the

probability that the true expectation value of .1,1 lies between )a- {nd )'p

irrespective of all the other parameters is 687o.

-The probability that all n parameters are within the equal likelihood contour

drawn by tn{1,(,11 , )"2...Lr)l=ln(L^u)-down is given by F(2down) where

FQ.down)is the integral of chi squale distribution with z degrees of freedom

from 0 to2xdown:

F(zxdown)= *fip f"oo*" 
untl-t 

"-ut2 
6u

For example,

)"2*

l,r- It*

ln(l,,nJ - 0.5

No. of parameters down probability down probability

2
a
J

4

0.5

0.5

0.5

0.393

0.199

0.090

1.0

1.0

1.0

o.632

0.428

0.264
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9) THE METHOD OF LEAST SQUARES

A) Simple example: direct measurement

A set of n measurements

ai=E(a) + Ei i E expectation value, i=l to N, €; error distributed normally around 0

E(e;) = 0, E(e;z) = 62

The probability distribution for a; is eivln ,tro,_ 
E(o))2

ernl -,[zo o, ""'| 2 o?

The log likelihood function is then given by- N '-s1pl-@t-n(:))ztnL=rnfl do, .L 2oi
maximising ln L i

minimising ^, . _, ,, ?

nr_ t lai-Ela))-
rvt - ,L c/i2

The method of least squares:

6: the best estimate for the expectation value of a gives minimum M

l4l =-2, @' -d) -o
L da la=a 7=t of

N-N
t-g+=at.+
,4_t 6it Ft oi'

i.e.

o/
N__1s

', ,/-rL ;_l

(a;- E(a))z
+ constant

and the variance of d is given bY

Note that the newly estimated enot ei=a;-d follows a normal distribution with

the mean 0 and the variance q2. Then the minimised M

^it _$ (o,-a)2
,'rrninimum-,4= 

1 O?

istrihution with N-l
E(M*inimum) = N-1

-) Xz test (see the next chaPter)
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example: two experiments E731 at FNAL and NA3l at CERN measured

a CP violation parameter Re(e'le) to be
/r ^/ \ t*{+) =(t.+t s.e)x 10-4 @731), (zr.o t o.s)x l0-4 (NA31)

The method of least squares gives

-{+) = (r+.+!4.4)x ro-o

and

I{1n1*u*= 3' 16 (expectation value = 1)

B) Indirect Measurement

In general, a measured quantity is a function of unknown parameters. A set of n observations

lor\o=l : 
I\a"l

is obtained from a distribution with expectations

/r' trtrlt\
E@)=l : I

\;trtrlU
whereJ is a function of p unknown parameters

The method of least squares is to estimate the expectation values of the unknown parameters

.1. by minimising
M=la-f(1)l'wlo-f(1)l

with W'=V-l where Vis the covariant matrix of a,i.e.

i) Linear case

The functionJ' depends linearly on 2 , i.e.
P

E(a,)=Er,n' or 6=C I
The best estimate for the expectation values of ,1, can be obtained by minimising

M=(a-C L)'w{o-C 1)

At its minimum, we have

6M =-(" - c 7)' w c 6.t= -(o'* c - n' c'w c)Dl= 0

By noting W'--W, it follows that

i--(c'w c)-t c'w o
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and using the error propagation shown in Chapter 5, it follows that

r4il =l(c' w c)- t c' wlv1"1l!' w c)- t c' w]' = (c' v - t1"1 c)- t

where we used W=Vr (Q,f=V and,W=W.The improved measurements and their elrors

are given bv 
a -- c i ana v@)= c 141) c'

Simple example: The case of direct measurement can be obtained by

In this case, we obtain

i=(c,w c)-t
$o'

ct w o =(f-* 4 * ... +) -' (+ * !4- .. g+'l ='nJ "?\oi of o;l \oi oi oftl t t

i-_1 o?

and
I \-r _ Ia -3r-

==t 
o,2

'I
If A o is close to its expectation value, the higher orders in 6'1" can be neglected (linear

approximation). At M--Mminimu*, we have

ttri)=(c'w c)-' =(*. *.

which agrees with the case of a direct measurement'

ii) Non linear case

Even if the functionJ no longer depends linearly on h , it can be expanded as

L ,, iil" ,+ "'
i=tY o't i )1,=1" " t=t

where 2 9 is a starting value for estimating the expectation value of ), . The function M is then

given by

M =(a-c 51- f0 - "')'w ("-c 6L- f 0- "')

where

ral, (1.)\ ran (r)\

\-Tf )ra\ at.- )u,"
(af,(L)\ r.%l4))
\ a,t, /L a\ aL, tra

: ...

\
\

I uno

I

)

/ri'\
ro=l ro 

I

\'/
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C 6L=

w cfauo

and it follows that

i=(c'w c)-t c'w (" - f o)

and the estimation of E(A ) is given by

A r= Lo+ 6i
Then we use .1, 1 as a starting value and repeat the process again with newly calculated C andf.

When the change in ,1, becomes "sufficiently" small after m iteration, the process is

considered to be converged and L * rs taken as the best estimate. A rapid convergence is

obtained if the starting value is close to the true value and the linear approximation is valid.

The covariance matrix of 1" ^ 
is given by

and "improved" measurements and their elTors are

and

C) Measurements with constraints and no unknown parameter

Lagrangian multipliers are a commonly used mathematical tool for the minimisation of a

function with constraints. Suppose we want ti minimise a function/(x, y) under the constraint

sr=+- c61-fo)'*

-[t"- fo)'wc-6A'c'

8(x,y)=constant. It follows that

df (*,y)= {*+{ay =g, and ds(",y)=0x ay'
which can be satisfied by having

af
dx

which is equivalent to minimising

where p is the Lagrangian multiplier.

af af

4:1=,dJ dg

A, dy

***$0, = odx dy

{-u$=od)' dy

This leads to

- u#= r' and

v-r c 7=^^-,)-'V(L^)=(C\=t^_,

d = Cr= t ^-,V(h ^) 
C A= 1 ^-,

lt must be noted that M*1n1-u. follows the chi-square distribution with

N - p degrees of freedom

E(Mminin'u.)=N-p
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We consider a case where the estimated expectation

at = (at, az, ... an) must fulfil q constraints,

/s ' 
(a)\ /r' \

lsz@l=lot II j lljl
\s,tar/ [", /

The estimates d are obtained by minimising

I-(a-A)'W (a-d)+ pt s(6)

values of N measurements

i.e.

6L = - (a - 6)'WM + pt 69 (d) = 0

where Ft = (lU, llz, ..- llq) arethe ql-agrangian multipliers.

i) When the constraints are linear functions of a, r.e.

S@)+d=Ba+d,
it follows that

L= (a - A)' W @ - A) + pt (n a + a)

and where L is minimum at a= d,\.e.

5L-- (a-d)'wM+ ptB &=o
This requires that

@-A1tW=1trB
i.e.

6=a-w-tB'p
The constraints are now

Ba-d=B(o-w-tBr p)-d=o
which gives us the estimation of p to be

fi= (n Y-t 3t1-t (B a - d).

Thus the estimation d is given

Example: measurements of three angles of a triangle, a1 * 6t, a2* c2, a3+ o: which

should satisfy e1*a2n3=l8O'. The improved measurements which fulfil this constraint

can be obtained using the method of least squares shown above with

The covariance matrix for d is obtained
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0 0\
Yc o 

l

o y"t)

Io,\ ,oTorl,B{l
\ot )

11),

6L= - (a - ao- 6, )tW 6a + p' BEa

ii)When constrains become non-linear, we need to expand S @kV introducing

si[j)=si@o). $ l,9gsll.A lfr )"=^(u 
- oo) i+ "' :tP * A'' i tui + "'

where ao are initial values for d (measured values of a for example). It follows that

where

I
I

B=l

\

\
Using 6Z= 0

with

we obtain

( as'@) \ f asr (d) l
\-do;-1, =^\ M )o=^

I dsr@) \ f as2 (a) I
f-a;,/" =^\ a", )"=^

: ...

/s9 \
Lql

and 96=l ",' 
I

\'?/

(A-")'W =- lt'B

6=ao+6a

fu=(a-ail-W-rBt p

and from the constraint equation

go+BM-d=g0+ Bl(a-ad-w-tBt pf -d=0
a estimate for the multiplier is given as

fi= (n ry-t Bt}-t [go + n @ - as) - d ]

By replacing c0 with d and recalculating d and B, we repeat n times this procedure till 6a

where B is calculated d obtained from the m-l-th iteration.

thus improved measurements give

a = a0+ 6a = a - w-t Bt (B w-rBt)-l [g0 +tr (a - as) - d ].

becomes sufficientlv small. Once this

It must be noted that M-;n1*r, follows the chi-square distribution with

q degrees of freedom.

E(Mrnini*uJ = 4

D) Measurements with constraints and unknown parameters
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Finally, we consider a system with N me

constraints, g, which are the functions of

/''\ (
I a. | |o=l :'l''=l
\"t/ \

me

Yr

asure

a and

nJ
I

Vo I",' lt'l
Yr)

and

{ s r{oo' ro) \
so=l8'(oo'ro) |

\"('o ''ol)
As before, as andls *" *";::"::"*"'fi'flt;ir";

nts, c, and r unknowns, y, and q

An example is given in Ubungen XI. The best estimate fory, i , and the improved

measurements d are obtained by minimising

L= (a - A)' W (a - d) + p' g (d, I )

i.e.

6L=- (a-d)tWM+ pt69(d,-f )=0

under the constraints

g(6,9)=d
Linearization of g gives

g(A,i)=go+Aby+B6a
with

(tu#),=*

(*#),=* :

'/ 1 / \ \

I o4qlQ,l) ||----:-|
\ danr la=ao\ r! ,y=Jb

and

l, dst (o,v) \
I 
-- av, ,, =,.

' 'y=Jb

( asr@, v) \\ ay, J"r==?

/ ds, (c. v) \l-::+---- I

\ d}5 la=(h'J=Jb

I Dg, (o,v) \
\ En i'=q'v=Jb

:

/ 1 / \\

I o8,\4, J) \I----_--|
\ d),, lo = oo

'v=Jb

y)

y)

v)

(4,

(a,

:

(a,
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Thus, the problem is reduced to solve

(o-oo-&)w'-1t'B=o
tA=o

go +A6y+B&=d

for 6a and 6

lt must be noted that M,n1nipu. follows the chi-square distribution with

q - r degrees of freedom.

E(Mmini-um)=q-r
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10) HYPOTHESIS TESTING

kt us define:

x: sample of variables, .1, : parameters

and
Ft(x,A): null hypothesis' hypothesis to be tested

H, (x )"r) : alternative hYPothesis

When 1", arecompletely fixed parameters, H, is called "simple" and else "composite". The critical

region S. is the region of r for the null hypothesis where we reject the FIo. The probability distribution

of r for Ho and H, are given by Po(r,A) and P, (r,Lr) respectively. The following figure illustrate the

situation for the single variable case:

P6

The area cr is the probability forx to fall inside S" unaer the null hypothesis: Po(re .t", 4).The area B

is the probability for x to fall outside of S" under the alternative hypothesis: P, (xe S", 2, ).

Type-I error: Rejecting the null hypothesis although it is the correct one, since observed x is

in s.. The probability for Type-I error to occur is u, which is called

"significance"

Type-II error: Accepting the null hypothesis although the correct one is the alternative

hypothesis since observed r is outside of S.. The probability for Type-I

error to occur is B, where 1-B is called "power"'

The critical region S" has to be choose so that

cr: as small as possible

1-p: as large as

for an optimal hypothesis testing.
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11) CHI-SQUARE TEST

The minimum value of the least square, often called "chi-square", is expected to follow the f
probability distribution with n degrees of freedom,fn(*), if the measurements are described by the

Gauss distribution. The degrees of freedom n is given by

N(number of measurements)

N - p(number of parameters)

4(number of constraints) - r(number of unknowns)

1.0

0.8

0.6

0.4

0.2

J\X')
x.224

direct measurement

indirect measurement

with constraint.

value and variance are given by n and2n.

be described by a Gauss distribution with

0.06

x2 
-1,

'/\ , Gauss

For very large

an expectation

10

values of n,the y2

value n andoL-2n.
The expectation

distribution can

I.et

probability

0.05

0.04

0.03

0.02

0.01

0
605040302010

us denote s to be a value of chi-square obtained from the method of least squares. The

that a value of chi-square will exceed s.lrs Siven UV

F,(s)=l- l- f^(x\ax'ln

The value of &(s) tndicatesffithe probability that the hypothesis applied is consistent with the data'

when 4,(s) is too small, we may conclude that the hypothesis applied to fit the data is not the right

one. How small is too small? This is, unfortunately, up to you"'

InthepteviousexampleofthetwomeasurementsofRe(e'le),itgives

n=
\

n=

n=3::n-=S n=10
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11) CHI-SQUARE TEST

The minimum value of the least square, often called "chi-square", is expected to follow the f
probability distribution with n degrees of freedom,fn(f), if the measurements are described by the

Gauss distribution. The degrees of freedom z is given by

N(number of measurements)

N - p(number of parameters)

q(number of constraints) - r(number of unknowns)

direct measurement

indirect measurement

with constraint.

0.4

0.2

xx" )

x2246810

The expectation value and variance are given by n and Zn.For very large values of n, the y2

distribution can be described by a Gauss distribution with an expectation value n and oL-Zn.

0.06

0.05

0.04

0.03

0.02

0.01

0

Let us denote s to be a value of chi-square obtained from the method of least squares. The

probability that a value of chi-square will exceed t tj gt""L Ot

r,(')= t -Jo f^(x1ax'

The value of F"(s) indicates@the probability that the hypothesis applied is consistent with the data'

When F,,(s) is too small, we may conclude that the hypothesis applied to fit the data is not the right

one. How small is too small? This is, unfortunately, up to you"'

In the previous example of the two measurements of Re(e' / e), it gives

1.0

0.8

0.6

605040302010

n=
\

n=

n=3::n-= n=10
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, - f''u f =,W) dxz =o.076
Jo

i.e. the probability that the two measurments are compatible is7.6Vo.

It must be noted that a too small value of chi-square is also suspicious. As seen from the X2

distribution for various n, not only too large values but also too small values of f , i.e. much smaller

that n, are improbable for n>3. A too mall value of f is often due to the overestimation of the

experimental errors.

For the case where the fits are repeated many times, such as fitting track parameters seen by a

spectrometer, the distribution of the obtained values of chi-square must be examined whether they

indeed follow tne f distribution with the corresponding number of degrees of freedom. An easy way

is ro plor rhe distriburion of probabilities/,(chi-square). If the values of chi-square indeed follow the

y' distribution, this probability distribution should be flat between 0 and 1.

Another useful application of the chi-square test is to choose the right hypothesis by selecting

one which gives the largest F"(s). This does not avoid, of course, selecting a wrong hypothesis

because the right one was not tested!!!!
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12) RUN TEST

Consider the data and errors shown in the following figure:

The straight line obtained by theyz test is also shown. The visual inspection indicates a systematic

deviation of the data from the straight line hypothesis. However, the obtained vale of 12 is reasonably

small, which could be due to overcstimated errors. In this case, "the run test" provide an extra

information.

There are six points above (A) and below (B) the straight line in a sequence, AAABBBBBBAAA.'

i.e. a run of A, a run of B then a run of B giving a total of three runs. What is the probability for

having a particular number of runs, r, for a given number of A, No and B, Nr. The number of ways

to have No and N" for a given N, N= 
"^*1" 

tt tt:"n OtiU,

C(N'NA)= nrrn*,.{vA llYB.

Next, suppose r is even and the sequence starts with A, for example

AA BBB AAAA BB AAA B

i.e. A's are divided in to

AAIAAAAIAAA
and there are rl2-l division. There are No-l places to put the first division, N o-2 places for the

second division erc. giving C(NA-1, r/2-l) possibilities for the sequences. A similar possibilities are

valid for B's. The probability to have r (even) run is given by

n ^ 
c(No -l,rl2- l)* c(tt" -t,rlz-t) ,. ar,6nPr: t r: even

where 2 takes the cases starting with B into account. For r odd, we have

D_tr -
c(No - t,r -z1z)x c(Nu -t,r - tlz)+ c(N o - t,r - tlz)x c(l.t, - t,r -lz) r: odd

From these, we obtain

c(N, NA)

E(r)=t*?#
r7, \ 2NANB(2NANB-N)
Vlfl=-

N',(N - l)

When No and \ are sufficiently large, >10 to 15, one can use a Gaussian approximation'

The example shown in the figure, we have N = 12 and No = 6' It follows E(r) = 7 and v(r)--2'73'To

have r = 3 has a significan ce of -rvo which is rather low. Therefore, the straight line hypothesis can

be rejected although X2 test accepts the hypothesis'



46

13) KOLMOGOROV TEST

We take the values of the measured variable and arrange them in increasing order. Then we plot

the cumulative distributron cum(x), divided by the number of measurements N. We also plot the

cumulative distribution cumfP(x)l for a probability distribution of x with the considered hypothesis.

By defining

D: absolute difference between the two plots,

d.= D x Ntt2

d provides the hypothesis test. For large N, we have

S.: d>1.63 d>I-36 d>1.22 d>l'07

Significance: lVo 5Vo IUVo 2OVo

cum(P)

The broken line is for data and the other line corresponds to the cumulative distribution for the

probability distribution with a hypothesis that variables are distributed evenly.
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14) MONTE CARLO METHOD

I ) Uniform distribution

The probability is constant in the interval a I x 1b and 0 outside of this region:
I

f(x\: .-:-'.a1 x1b, f(*)=0:x< a, x> b
D-A

where f(x) is properly normalised, i-e.

IIf o)a' = t'

The distribution function F(x) is given by

l: x>b

'-/ \ tx f(x\dx=r-o: a1xlbf\x1= J*". b_a
O: x<a

and the expectation value and variance are given by

E(x)=+ v( x\ --tal 
af ''t2

Computers can generate "random numbers", a chain of values of randomly and evenly distributed

between 0 and 1.

2) Generation of any distribution by transformation of the uniform distribution

Let us consider that x is described by a uniform distribution of the type

f(*)=1:0< x/-l, f(*)=0:x<0, x>1

and y is a random variable described by the probability distribution s0). The variable transformation

gives, s0)dy = d-x' By integration both side' we obtain

" = IY sQ)dz = G(Y).

From this equation, we conclude the following:

i) draw x, ii)invert x=G(y), i-e. y=Gt (x)'

The random variable y is distributed following the probability distribution g(y).

Even G(y) is not known, random numbers distributed as g(y) in the interval a 1y 1b can be obtained

in the following waY:

i) Find then maximufl, g.o*, of S0) in the interval a < y < b'

ii) Draw a random number, y., from a uniform distribution of the tige a < y S b'

iii) Draw a random number, S., from a uniform distribution of the rage 0 ( 8, 3 8*o^'

iv) Keep g, onlY if 8, < 80,).
Repeating this, the distribution of y. kept follow g(y)'

3) Monte Carlo integration method

An integration of
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r = ilgrx)dx
where the integrand S(x) varies in the region 0 < S(r) < 1. The integral I is identical to the surface of

the area co shown in the figure.

v

1

01
Now we generate N pairs of random numbers (.r, y) where x and y are evenly distributed between 0

and 1. If we find n pairs in the alea 0), i.e. fx,y < 8(x)1, the integral l is given by

r= hm{
N-+- IV

The integral can be generalised easily to any rale with many variables.
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