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Tomographic acquisition 

•  More than a single projection is required in 
order to obtain the radiotracer distribution. 
– Many possibilities for the solution 

•  Increasing the number of projections 
– Reduce the number of possibilities 

Uniqueness of the solution for an infinity of projections 
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Positionning the problem 

•  Emission imaging 
–  Injection of a radiopharmaceutical 
–  Marker/tracer coupling 

•  Observables 
–  Distribution of γ emitters in the field of view of the 

camera. 
–  f(x,y) : Estimation of the number of photons emitted at 

(x,y). 
•  Hypothesis: 

–  f(x,y) is proportional to the concentration of the injected 
product. 



Principle of acquisition 
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In mathematics, the projection operation is defined by the 
Radon transform 

Radon transform g(s,θ) =  
 Integral of f(x,y) along the line D’ 
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Continuous to discrete 
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Matrix representation 
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Definitions 

•  A: Projection operator 
•  aij: Weight factor representing the 

contribution of pixel j to the number of 
counts detected in bin i. 

•  In other words: probability that a photon 
emitted from pixel j is detected in bin i. 



Problem inversion 
In theory, direct methods exist to solve the equation: 

Afg =
These methods, called direct inversion consist in finding  A-1 

gAf 1−=

Many difficulties 
•  Inversion of A 
•  A-1 does not exist  

•  A-1 is not unique 



In practice: inverse problem are badly 
conceived 

•  Solution is not unique and A is unstable: 
– Data contamination by noise 
– Finite number of projections 

•  Approached solution 

Problem: 

Knowing the sinogramm, 
 What is the radioactive distribution f(x,y)? 



Image reconstruction 

Analytical Iterative 

Algebraic Statistical 
FBP 
BPF 

“Gridding” 
… Least squares Poisson 

CG 
CD 

ISRA 
… 

EM 
OSEM 
SAGE 

CG 
… 



Analytic algorithms 

•  Backprojection operation 
•  Central slice theorem 
•  Backprojection + filtering 
•  Backprojection of filtered projections 
•  Fourier domain (space) 



Operator: Back Projection 
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Back projection: Artifacts 
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Central slice theorem 
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Graphical illustration 
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Proof 
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Filtering 

•  Exact inversion is not possible for two 
reasons: 
– Discrete sampling -> Limited space 

•  Shannon: fréquency max. reconstructed : 
Nyquist=1/2Δs 

– Presence of statistical noise 
•  Utilization of « ramp » filter -> Noise amplification 

Utilisation of an apodisation window 



Apodisation window 
•  Cut-off frequency influence: 

–  The resolution of the reconstructed image 
–  Noise properties 
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Cut-off frequency: Resolution 

νc 



Cut-off frequency: Noise 
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Back projection + Filtering 

•  Drawback: requires an entire huge back 
projection matrix b(x,y)  
–    Otherwise, tuncation artifacts 

( ) ( ) ( )yxpsfyxbyxf ,,, ⊗=

f (x,y) b(x,y) 



Fourier space:    Gridding  
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Drawback of fourier methods 

•  Sensitivity to noise 
•  Interpolation kernel in 

Fourier 

Multiplication in real space 

( ) ( ) ( ) ( )yxwyxfWF yxyx ,,,,11 ⋅→⊗ υυυυ



Iterative algorithms 

•  Find the f vector, solution of the equation 

•  Iterative algorithms are based on the principle of 
finding a solution by successive estimations. 

•  The projection corresponding to the current 
estimation is compared to the acquired projections.  

•  The comparison result is used to modify the 
estimation and create a new one. 

Afg =
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Algebraic methods: ART 

•  ART: « Algebraic Reconstruction Technique » 
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Example ART-1 
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Example ART-2 ( ) ( )
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Why using statistical methods? 

•  Constraints on the object: non negativity, support… 
•  Incorporation of physics models 

–  Photons transportation / geometrical efficiency… 

•  Appropriated statistical model (Noise reducing). 
•  Flexibility regarding geometry.  
•  Incorporation of anatomical information. 

•  Computation time.  
•  Complex model. 
•  Tedious implementation. 

Advantages: 

Drawbackss: 



Investigating the object 
•  Realize the image of the radiotracer distribution 

t=0 

Radionucléide 
(N metastable atoms) Xk(t): position of the atom @ time t 

Imaging system: provide Xk(t) ?  

First hypothesis: Xk(t) Independent random variables distributed according to 
the same probability density function ( )( )xf tX

!
!

Imaging system:provide            !! ( )( )xf tX

!
!

Secone hypothesis: Atoms distribution follows a Poisson law 



Radioactive decay 

Third hypothesis: The Tk are independent random variables  

An atom can only be observed when it deexcitates and emits photons. 
The deexcitation time af an atom kth is a random variable Tk  . 

Fourth hypothesis: Each Tk has an exponential distribution whose mean 
is µT = t1/2/ln2 

t1/2 = « half-life » 

The photon emission is a statistical processus that follows a Poisson law 



Statistics of an ideal counter 
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Detection element 

For example: one element of the sinogram (bin) 

does not correspond necessarily to a physical element of the detector 

Fifth hypothesis: Each desintegration produce a detected event in one 
bin at least. 

If a fraction of the event is attributed to 1 bin  
⇒ Counting statistics follows a law different than Poisson. 



Detection efficiency 

( )xsi
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Probability of detecting in bin i, an event coming from position x 

PSF: Impulse response of the detection system 
« Point Spread Function » 
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Including: 
•   The geometry / solid angle of detection 
•   The collimation 
•   The scatter 
•   The attenuation 
•   Detector response 
•   Detection efficiency of the detector  
•   Positon range, acolinearity, etc… 

( )xsi
!

Detection efficiency 



Examples 
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Detection efficiency for an Anger gamma camera 



Acquisition 
•  Register events 

–  for t between t1 and t2 

•  Yi: number of events registered by the ith detector 
element  

•  {Yi:i=1,…,nd} represents the sinogram data. 
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Poisson Statistical Model 

Measurements = real events + noise 

Sources of noise: 
•  cosmic rays 
•  ambient (surrounding) noise 
•  All counts not taken into account in si(x)  
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Problem posed by reconstruction 

Estimate the emission density λ using: 
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In summary: five multiple choice 
parts 

•  -1- Object description 
•  -2- Physical model of the system 
•  -3- Statistical model of the measurement 
•  -4- Optimization criteria 
•  -5- Used algorithm 
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-1- Object description 

( )x!λ is a continuous function 

Replaced by ( )
pn

λλλ ,...,1=
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j
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λλWith basis function 

•  Fourier series 
•  Wavelette 
•  Kaiser-Bessel 
•  B-splines 

•  Rectangular pixels 
•  Basis on the organes 
• … 



Examples 

Continuous object 

Approximation by pixels 

Approximation by B-spline 

Continuous object Approximation by pixels 



-1- Projection algorithm 
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-1- Discrete Reconstruction 
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-2- Physical model of the Système 

( ) ( )∫= xxbxsa jiij
!!! d

Improving the physical model enables: 
Better quantification results 
Better spatial resolution 
… 

Model measuring: 
No approximation in the analytical calculation 
Long time acquisition 
Storage 
… 

•   The geometry / solid angle of detection 
•   The collimation 
•   The scatter 
•   The attenuation 
•   Detector response 
•   Detection efficiency of the detector  
•   Positon range, acolinearity, etc… 



-2- Integration line 

aij = intersection length 

( ) ( )iii xkxs τδ −⋅=
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aij = area of intersection 
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-2- Examples… 

line Area 

Uniforme Sinogram 

Back projection 

Uniform object 

Projection 

Area 

Interpolation 



-2- Matched/Mismatched  
Projector/BackProjector operators 

object Matched 
operators 

Mis-Matched 
operators 



-3- Statistical mode of measurement 

•  Good model: 
–  Variance reduction in image 
–  Increasing computing time 
–  Algorithm complexity 

•  Incorrect model 
–  Statistics (dead time) 
– Model (transmission log) 

rAY +≈ λ
Statistical model 



-3- Choice of the Statistical 
model 

No model: λArY =− Resolve algebraically in order to 
find λ. 

Uniform gaussian noise: Least squares method, minimize 
2

λAY −
Not uniform gaussian noise: Weighted least squares method, minimize
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-4 & 5- Optimized criteria and used 
algorithm    

Most used method: ML-EM 

« Maximum Likelihood – Expectation Maximisation » 

Algorithm Optimization criteria 

Example: 



Two steps per iteration 

•  1st Step: E (« Expectation ») 
– Calculate the likelihood expectation 

•  2nd Step: M (« Maximisation ») 
– Maximise the expectation. 



Mathematics derivation 

Definition: 

jλ Mean number of desintegration in pixel j 

ija Probability that a photon emitted in pixel j is 
detected in bin i 

jija λ Mean number of photons emitted from pixel j and 
detected in bin i 
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We have proved that      is a variable which statistics follows 
the Poisson law 

ig

The probability of detecting gi photons is: 
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•  Hypothesis on acquired data 
–  The variables i are independents 

)( λgP
λ

Probability of observing the vector g 
when the emission vector is  
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( )λL Likelihood function 

Mathematics derivation 



•  Find the maximum value ⇒  
•  Calculate its derivative 
•  In order to maximize the likelihood, 

we use the following algorithm 
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We want the image with the maximum probability of having g 
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considered as the best estimation of the solution. 
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•  It was proved that l(λ)  has a unique 
maximum. 

•                         ⇒ maximum 
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Mathematics derivation 



Iterative form 
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Description 
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Measured Projection 

Estimated projection Normalization factor 

Image(k+1)=Image(k) x back projection normalized with  
Measured projection 

Estimated projection 



ML-EM Algorithm 
•  Multiplicative method 
•  Positive or null solution 

–  Initial values at 0 remain 0 
–  Positive initial value remain positive 

•  Conservation of the global activity in the image 
•  Slow convergence 
•  For a low number of iterations 

–  Cold zones: excellent reconstruction 
–  Hot zones: reconstruction < FBP 

•  For a high number of iterations 
–  Cold zones: excellent reconstruction 
–  Hot zones: Noisy images (bias near to 0) 

 



Noise at Convergence 

•  At convergence,  
–  « Perfect » reconstruction of the counts number in 

each pixel 
•  However,  

–  No correlation between neighbouring pixels. 
–  High Poisson noise level ⇒ Chessboard effect 

•  Corrections 
–  Stop the iterations (need to define a stop criteria…) 
–  Penalization function 



Research domains 

•  Convergence acceleration 
•  Problem regularization 

– Penality function 
– Introduction of an A PRIORI 

knowledge 



Convergence acceleration 

•  Algorithm OS-EM 
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OS-EM = ML-EM applied 
on a subset S 
S=1 ⇒ ML-EM 

Convergence has not been  
proved but seems to be 
similar to that of ML-EM. 

Acceleration factor ~ S 

Adequate choice of subsets 



Regularization 

•  Criteria:  
–  Estimate projection ~ measured projection. 

•  Replaced by: 
–  (a) Estimated projection ~ measured projection. 
–  (b) Low noise obtained image. 

•  The introduction of an a priori knowledge on the 
image  = regularization 
–  Promote convergence! 

Find λ to maximize (a) and (b) 



Bayes theorem: 

( ) ( ) ( )
( )gP
PgP

gP
λλ

λ =

Probability of observing the vector g 
when the emission vector is  f A priori knowledge on the image 

A priori knowledge on the projections A posteriori probability 

Mathematics derivation 



Algorithm MAP: Maximum a Posteriori 

Consider the logarithm: 

( ) ( ) ( )
( )gP
PgP

gP
λλ

λ = ( ) ( ) ( ) ( )gPPgPgP lnlnlnln −+= λλλ

A posteriori 
probability Likelihood a priori Constant 

MAP = ML if no a priori information ⇒ ML = special case of MAP 

MAP = ML penalized, the penality being the a priori knowledge. 

« prior » 



A priori example 

( ) ( )λβλ UCP −= e

Gibbs a priori ⇒ local image smoothing 

U : Energy function of λ 
β  : A priori weighting 
C : Normalization constant 
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( )gPCK lnln −= : Constant independent of λ 



Maximize likelihood 

•  Derive the likelihood in order to maximize λ 
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Example of function U 
•  A quadratic a priori: 
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Nj : set of points neighbouring pixel j 

Si b ~ j ⇒ the term is zero ⇒ λ(k+1) same to ML-EM 

Si j > b ⇒ the term >0 ⇒ λ(k+1) < a ML-EM 

Si j < b ⇒ the term is <0 ⇒ λ(k+1) > a ML-EM 



Examples 

object quadratic a priori Hubert a priori 



Some remarks 
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Possibility of negativity 

Keep a low value of β so that values remain positive 

The a priori smoothes also the edges Loss of resolution 

Modify the a priori 
Introduce anatomical information 



Illustrations 

object FBP Iterative + regularisation 



Illustrations 

FDK OSEM Median Root prior 

phantom 

Grey 
Central 
kernels 

(rat) 

A. Sohlberg et al, Eur J Nucl Med (2004) 31:986-994 
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Type of tomographic studies 
•  Heart 

– Myocarde (thallium, MIBI…) 
– Ventricular cavities 
– Gated SPECT 

•  Brain 
•  Lungs 
•  Bone 
•  Others (peptides, antibodies…) 



Slices plans in myocardiac imaging 

Small axis 

Big axis 

Horizontal 



Representation of 3D contours 



Cerebral tomography 



Endocrine tumor in the liver 


