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Tomographic acquisition

* More than a single projection is required in
order to obtain the radiotracer distribution.

— Many possibilities for the solution

4

* Increasing the number of projections
— Reduce the number of possibilities

Uniqueness of the solution for an infinity of projections




2D projection
Several angles

Reconstruction

3D Volume







Positionning the problem

— Injection of a radiopharmaceutical
— Marker/tracer coupling

— Distribution of y emitters in the field of view of the
camera.

— f(x,y) : Estimation of the number of photons emitted at

(X.3).

— f(x,y) is proportional to the concentration of the injected
product.



Principle of acquisition

Photomultiplier tube

Crystal

Collimator

Image space
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Projection space
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Projection operation
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Tllustration 2D

‘v-.

Image F{i,j)

" Projection Pc

i
TN




Radon Transform

g(S,H)= ff(scosﬁ—tsinH,ssin6’+tcosH)dt
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Matrix representation
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Definitions

Projection operator

Weight factor representing the
contribution of pixel j to the number of
counts detected in bin .

probability that a photon
emitted from pixel j is detected in bin I.



Problem inversion

In theory, direct methods exist to solve the equation:

g=Af

These methods, called direct inversion consist in finding A'l

f=A¢g

/
e Inversion of A

Many dlfflCLlH'lCS <+ 471 does not exist

« A1 is not unique
—




In practice: inverse problem are badly
conceived

« Solution is not unique and A is unstable:
— Data contamination by noise
— Finite number of projections

* Approached solution

Problem:

Knowing the sinogramm,
What is the radioactive distribution f(x,y)?



Image reconstruction

o

Analytical

FBP
BPF
“Gridding”

Lterative
Algebraic Statistical
Least squares Poisson
CG EM
CD OSEM
ISRA SAGE

CG



Analytic algorithms

Backprojection operation

Central slice theorem
Backprojection + filtering
Backprojection of filtered projections
Fourier domain (space)



Operator: Back Projection

Inverse operrator

JT

b(x,y)=fg(s,6’)d6’

0

P

p: number of projections
b (X, y) = E g(SkDHk)Aﬁ AB: Sampling (nt/p)
=1



Back projection: Artifacts
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Central slice theorem

g<s,e>=fff<x,y>dt

TF (g)
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Graphical illustration
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Low frequencies
upsampling

Raising high

: frequencies

Polar -> Cartesien




Proof
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Filtering

» Exact inversion is not possible for two
reasons:

— Discrete sampling -> Limited space

« Shannon: frequency max. reconstructed :
Nyquist=1/2As

— Presence of statistical noise
« Utilization of « ramp » filter -> Noise amplification

——> |Utilisation of an apodisation window




Apodisation window

« Cut-off frequency influence:

— The resolution of the reconstructed image
— Noise properties

Hann Filter
JTU
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Cut-off frequency: Resolution




Cut-off frequency: Noise




Back projection + Filtering

projection matrix b(x,y)
— Otherwise, tuncation artifacts

fx,y)=blx,y)® psf(x,y)

« Drawback: requires an entire huge back

fxy)

b(x.y)
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Fourier space: Gridding




Drawback of fourier methods

« Sensitivity to noise
 |nterpolation kernel In

Fourier

%

O

> Multiplication in real space

Flv,.v, Joml,,v, )= f(x ) wlx,y)




Iterative algorithms

Find the f'vector, solution of the equation

g =Af

lterative algorithms are based on the principle of
finding a solution by successive estimations.

The projection corresponding to the current
estimation is compared to the acquired projections.

The comparison result is used to modify the
estimation and create a new one.



Principle
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Algebraic methods: ART

* ART: « Algebraic Reconstruction Technique »
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Example ART-2

11

fi(3)=3’5+ ; =3

i 7-8
8 (3| 35 | 45 flma5e =
____---————E- ------ (3) - 65 E =77

s | 65 | 15 Sy =65+ —

______________________




Why using statistical methods?

Advantages:
« Constraints on the object: non negativity, support...

Incorporation of physics models
— Photons transportation / geometrical efficiency...

Appropriated statistical model (Noise reducing).
Flexibility regarding geometry.
Incorporation of anatomical information.

Drawbackss:

« Computation time.

* Complex model.

* Tedious implementation.



Investigating the object

« Realize the image of the radiotracer distribution

t=0 Q

Radionucleide Ow X,(t): position of the atom @ time ¢

(N metastable atoms)

Imaging system: provide X, () ?

First hypothesis: X,(z) Independent random variables distributed according to
the same probability density function £, (%)

Imaging system:provide f;((t)()?) I

Secone hypothesis: Atoms distribution follows a Poisson law




Radioactive decay

An atom can only be observed when it deexcitates and emits photons.
The deexcitation time af an atom kth is a random variable 7, .

Third hypothesis: The T} are independent random variables

Fourth hypothesis: Each T, has an exponential distribution whose mean
is wr = ty,,/In2

The photon emission is a statistical processus that follows a Poisson law



Statistics of an ideal counter

K(t,V): number of atomes @ time ¢, located in a volume
K(t,V): counting process following a Poisson law with a mean

with




Detection element

For example: one element of the sinogram (bin)

@ does not correspond necessarily to a physical element of the detector

Fifth hypothesis: Each desintegration produce a detected event in one
bin at least.

If a fraction of the event is attributed to 1 bin
= Counting statistics follows a law different than Poisson.



Detection efficiency

S,- (X) Probability of detecting in bin i, an event coming from position x

PSF: Impulse response of the detection system
« Point Spread Function »
/’l(S—TZ.)

(%)= hlf -¥-1

l l

h(s)= 5(S)

Ideal detector

v




Detection efficiency

S (55)

Including:

* The geometry / solid angle of detection
The collimation

The scatter

The attenuation

Detector response

Detection efficiency of the detector
Positon range, acolinearity, etc...



Examples

Detection efficiency for an Anger gamma camera

v



Acquisition

* Register events
— for ¢t between ¢, and ¢,

« Y: number of events registered by the ith detector
element

« [Y.i=1,...,n,} represents the sinogram data.

In summary,
Y, ~ Poisson \[s,(£)A(%)d¥ |

With MF,1)= u,




Poisson Statistical Model

Measurements = real events + noise

Sources of noise:
e COSMIC rays
« ambient (surrounding) noise

» All counts not taken into account in §,(x)

Y, ~ Poisson {fsi()_c’)ﬂ,()_c’)d)_éﬂg }, i=1,..,n,

/

Mean number of events originated from a noise source in bin i




Problem posed by reconstruction

Estimate the emission density A using:
Y, ~ Poisson {fsl. (%)A(x)dx + 7 }, i=1,...,n,

_ ny . ..
{Yl =y, }l_=1 Events collected in bin i
S, ()_c') Detection efficiency in bin i

I”l. Noise source in bin i



In summary: five multiple choice

parts
-1- Object description A¥)
-2- Physical model of the system s,(%)

-3- Statistical model of the measurement Y,
-4- Optimization criteria
-5- Used algorithm



-1- Object description

/1(_)) IS a continuous function

&> Replacedby A = (/11 ,---aﬂnp )

p
With A()‘C’) ~ E Aj bj ()_(,:) basis function
j=I
* Fourier series * Rectangular pixels
» Wavelette » Basis on the organes

» Kaiser-Bessel
» B-splines



Examples

Continuous object

; L (li 1‘0 1'2 1.4 IIG 18

Approximation by pixels '

4 6 1] 10 12 1 16 18
Approximation by B-spline |,

4 6 L] 1I0 12 1 16 18

Continuous object

Approximation by pixels




-1- Projection algorithm

g(s,e){f(x,y)dt gl.=aﬂ,q+a,.2,g+...+a,.mfm=j’"21a,.jfj
g(S,9)=fSi(f)ﬂ(f)df =fSi(5é) E/ljbj(f) dx
_j=1 |



-1- Discrete Reconstruction

Y, ~ Poisson {fsi()?)/l(?c)dfc+i; }, i=1,..,n,




-2- Physical model of the Systeme

+ The geometry / solid angle of detection

* The collimation
- - — « The scatter
a o S . x . x « The attenuation
l] l ] » Detector response

» Detection efficiency of the detector
« Positon range, acolinearity, etc...

Improving the physical model enables:

Better quantification results
Better spatial resolution

Model measuring:
No approximation in the analytical calculation
Long time acquisition
Storage



-2- Integration line
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-2- Examples...

Uniforme Sinogram Uniform object
[ 1 [ 1
Back projection Projection

Interpolation

line Area

rea



object

-2- Matched/Mismatched
Projector/BackProjector operators

Matched
operators

Mis-Matched
operators

1.2

0.8F

0.6f

0.4f

0.2f

—— Matched
—&— Mismatched

10

20 30 40

50

60

70



-3- Statistical mode of measurement

Yz%ﬁ+r

Statistical model

* Good model:
— Variance reduction in image
— Increasing computing time
— Algorithm complexity

* Incorrect model
— Statistics (dead time)
— Model (transmission log)



o

o

-3- Choice of the Statistical

No model:

model

Y—r=A4A Resolve algebraically in order to

find A.

Uniform gaussian noise: Least squares method, minimize

[ - 42

Not uniform gaussian noise: Weighted least squares method, minimize

p

v - a2 =S w (v, -[42]P, [42] =S a,4,
i=1

Poisson Model:

j=1

Y, ~ Poisson{[Aﬂlf + ’”z}



-4 & 5- Optimized criteria and used
algorithm

Example:

Most used method: ML-EM

« Maximum Likelihood — Expectation Maximisation »

- o\ )
e I

Optimization criteria Algorithm



Two steps per iteration

« 15t Step: E (« Expectation »)
— Calculate the likelihood expectation

« 2nd Step: M (« Maximisation »)
— Maximise the expectation.



Mathematics derivation

Definition:
Aj Mean number of desintegration in pixel ;
a.. Probability that a photon emitted in pixel j is
Z detected in bin i

a ﬂ. Mean number of photons emitted from pixel j and
IJ]° ] detected in bin i

m
§,. = E anJ Mean number of photons detected in bin i
j=1



Mathematics derivation

We have proved that g is a variable which statistics follows
the Poisson law

:> The probability of detecting g; photons is:

-8 =&
P(gi)= - g'i
8i

Example: Probability of detecting 5 with 3 as mean number of events

-3~95
P(5)=" 5'3 ~0.101




Mathematics derivation

* Hypothesis on acquired data
— The variables i are independents

Probability of observing the vector g
P(g‘ﬂ.) when the emission vectoris A

n

];[P

L(/l) Likelihood function

=

gi) Product of the individual probabilities



Mathematics derivation

 Find the maximum value = L(,l)
 Calculate its derivative

* |n order to maximize the likelihood,
we use the following algorithm ( )

A)=1In(Z(A))




Mathematics derivation

n

()= (-2, + &, In(g )-In(g,)) s g -

i=1

a.i.

J

|
7
<

z(a)=Z -;a,.j/lj+ g In ;a,.jxj ~In(g,!)

=> Probability to observe a projection from a mean image.

We want the image with the maximum probability of having g

In other words, the vector A for which /(A ) is maximum and
considered as the best estimation of the solution.



Mathematics derivation

» It was proved that /(1) has a unique
maximum.

aKA)_O
* 9A. — maximum

J
n n
g
--Sa,+ S Ea,-
= = Eal/l
7=




Mathematics derivation

8;;/1) = —2% +2 - Ei a; =0
J = = Zlaijﬂj,




lterative form

A = &

J

n
8 a
n m ij
=
= j =1

=




Description

Measured Projection

A1) 7 i [ &/] a.
Jj n m y
i= (k
e, ‘ 2%,/11,‘
= =1
Normalization factor Estimated projection




ML-EM Algorithm

Multiplicative method

Positive or null solution
— Initial values at 0 remain O
— Positive initial value remain positive

Conservation of the global activity in the image
Slow convergence
For a low number of iterations

— Cold zones: excellent reconstruction
— Hot zones: reconstruction < FBP

For a high number of iterations
— Cold zones: excellent reconstruction
— Hot zones: Noisy images (bias near to 0)



Noise at Convergence

* At convergence,

— « Perfect » reconstruction of the counts number in
each pixel

* However,
— No correlation between neighbouring pixels.
— High Poisson noise level = Chessboard effect

« Corrections
— Stop the iterations (need to define a stop criteria...)
— Penalization function



Research domains

« Convergence acceleration

* Problem regularization

—Penality function

— Introduction of an A PRIORI
knowledge



Convergence acceleration

 Algorithm OS-EM

OS-EM = ML-EM applied
on a subset S
S=1 = ML-EM

Convergence has not been

proved but seems to be
similar to that of ML-EM.

Acceleration factor ~ S

Adequate choice of subsets



Regularization

 Criteria:
— Estimate projection ~ measured projection.

* Replaced by:
— (a) Estimated projection ~ measured projection.
— (b) Low noise obtained image.

* The introduction of an a priori knowledge on the
Image = regularization
— Promote convergence!

@ Find A to maximize (a) and (b)



Mathematics derivation

Bayes theorem:

Probability of observing the vector g
when the emission vectoris f

A priori knowledge on the image

\

/

Plg|A)P(4)

P(/l/‘g)= P(g)

AN

A posteriori probability A priori knowledge on the projections




Algorithm MAP: Maximum a Posteriori

Consider the logarithm:

P(Ag)- (gp() )( ):> lnP(ﬂ.‘g) lnP(g‘/l)+lnP(),)—lnP(g)

Kyjkyj\ﬁ/—jk J

A posteriori - .
orobability Likelihood a pﬁorl Constant
« prior »

MAP = ML if no a priori information = ML = special case of MAP

MAP = ML penalized, the penality being the a priori knowledge.



A priori example

Gibbs a priori = local image smoothing

U : Energy function of A
B : A priori weighting
C : Normalization constant

K=InC - lnP(g) : Constant independent of A



Maximize likelihood

 Derive the likelihood in order to maximize A




Example of function U

« A quadratic a priori:

UG- S, - 2)

N, : set of points neighbouring pixel j

Si b ~j = the term is zero = A**!) same to ML-EM
Sij > b = the term >0 = A**) < g ML-EM

Sij < b = the term is <0 = A**) > g ML-EM



Examples

object

quadratic a priori

Hubert a priori




Some remarks

Possibility of negativity

—> Keep a low value of 8 so that values remain positive

The a priori smoothes also the edges =) Loss of resolution

4

Modify the a priori
Introduce anatomical information




lllustrations

lterative + regularisation




lllustrations

’ ” . . . . phantom

Grey
Central
kernels

(rat)

OSEM Median Root prior

A. Sohlberg et al, Eur J Nucl Med (2004) 31:986-994
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Type of tomographic studies

Heart

— Myocarde (thallium, MIBI...)
— Ventricular cavities

— Gated SPECT

Brain

Lungs

Bone

Others (peptides, antibodies...)



Slices plans in myocardiac imaging

(M

Small axis

Big axis

Horizontal




Representation of 3D contours




Cerebral tomography

Maladie d’Alzheimer



Endocrine tumor in the liver




