

Disclaimer

• Data acquisition is not an exact science.

• It is an alchemy of

– Electronics

– Computer science

– Networking

– Physics

– Hacking and experience

money and manpower matter as well

Feb. 28, 2017 2E. Pasqualucci, ESIPAP 2017

Once upon a time…

Feb. 28, 2017 3E. Pasqualucci, ESIPAP 2017

Event readout

Feb. 28, 2017 4E. Pasqualucci, ESIPAP 2017

Reading out a complex detector

Beam pipe

Tracking (in solenoid field)

Muon chambers

Electromagnetic Calorimetry

Hadronic Calorimetry

Feb. 28, 2017 5E. Pasqualucci, ESIPAP 2017

Detector readout at the LHC

– Large number of channels (~ 107)
– Large “event” rate

• Bunch crossing every 25 ns
• F. Pastore on March 3rd will explain implications on trigger

Feb. 28, 2017 6E. Pasqualucci, ESIPAP 2017

Overview

• Aim of this lecture is

– Give an overview of a medium-size DAQ

– Analyze its components

– Introduce the main concepts of DAQ software

• As “bricks” to build larger system

• … with the help of some pseudo-code …

– Give more technical basis

• For the implementation of very large systems

Feb. 28, 2017 E. Pasqualucci, ESIPAP 2017 7

A multi-crate system

C
P
U

A
D
C

A
D
C

T
D
C

T
D
C

T
r
i
g
g
e
r

Configuration

Trigger

Readout

Trigger Detector 1

C
P
U

A
D
C

A
D
C

T
D
C

T
D
C

T
r
i
g
g
e
r

Configuration

Trigger

Readout

Trigger Detector N

E
B
(1)

E
B
(M)

. . .

. . .
Online monitoring

Run Control
Event Flow Manager

Feb. 28, 2017 8E. Pasqualucci, ESIPAP 2017

Software components

• Trigger management

• Data read-out

• Event framing and buffering

• Data transmission

• Event building and data storage

• System control and monitoring

• Data sampling and monitoring

Feb. 28, 2017 9E. Pasqualucci, ESIPAP 2017

Basic DAQ with a real trigger

• Measure b decay properties

• Events are asynchronous and
unpredictable

• Need a physics trigger

• Delay compensates for the
trigger latency

Feb. 28, 2017 10E. Pasqualucci, ESIPAP 2017

Dead time and trigger

Feb. 28, 2017 11E. Pasqualucci, ESIPAP 2017

Busy logic

• Busy logic avoids triggers
while processing

• Which (average) DAQ rate
can we achieve now?

• t=1 ms is sufficient to run at
1kHz with a clock trigger

Feb. 28, 2017 12E. Pasqualucci, ESIPAP 2017

Data readout (a simple example)

• Data digitized by VME modules (ADC and TDC)
• Trigger signal received by a trigger module

– I/O register or interrupt generator

• Data read-out by a Single Board Computer (SBC)

C
P
U

A
D
C

A
D
C

T
D
C

T
D
C

T
r
i
g
g
e
r

Configuration

Trigger

Readout

Trigger Detector

Feb. 28, 2017 13E. Pasqualucci, ESIPAP 2017

Trigger management

• How to know that new data is available?
– Interrupt

• An interrupt is sent by an hardware device
• The interrupt is

– Transformed into a software signal
– Caught by a data acquisition program

» Undetermined latency is a potential problem!
» Data readout starts

– Polling
• Some register in a module is continuously read out
• Data readout happens when register “signals” new data

• In a synchronous system (the simplest one…)
– Trigger must also set a busy
– The reader must reset the busy after read-out completion

Feb. 28, 2017 14E. Pasqualucci, ESIPAP 2017

Managing interrupts

irq_list.list_of_items[i].vector = 0x77;

irq_list.list_of_items[i].level = 5;

irq_list.list_of_items[i].type = VME_INT_ROAK;

signum = 42;

ret = VME_InterruptLink(&irq_list, &int_handle);

ret = VME_InterruptWait(int_handle, timeout, &ir_info);

ret = VME_InterruptRegisterSignal(int_handle, signum);

ret = VME_InterruptUnlink(int_handle);

Feb. 28, 2017 15E. Pasqualucci, ESIPAP 2017

Real time programming

• Has to meet operational deadlines from events to
system response
– Implies taking control of typical OS tasks

• For instance, task scheduling

– Real time OS offer that features

• Most important feature is predictability
– Performance is less important than predictability!

• It typically applies when requirements are
– Reaction time to an interrupt within a certain time interval

– Complete control of the interplay between applications

Feb. 28, 2017 16E. Pasqualucci, ESIPAP 2017

Is real-time needed?
• Can be essential in some case

– It is critical for accelerator control or plasma control
• Wherever event reaction times are critical
• And possibly complex calculation is needed

• Not commonly used for data acquisition now
– Large systems are normally asynchronous

• Either events are buffered or de-randomized in the HW
– Performance is usually improved by DMA readout
– Or the main dataflow does not pass through the bus

– In a small system dead time is normally small

• Drawbacks
– We loose complete dead time control

• Event reaction time and process scheduling are left to the OS

– Increase of latency due to event buffering
• Affects the buffer size at event building level

– Normally not a problem in modern DAQ systems

Feb. 28, 2017 17E. Pasqualucci, ESIPAP 2017

Polling modules

• Loop reading a register containing the latched trigger

while (end_loop == 0)

{

uint16_t *pointer;

volatile uint16_t trigger;

pointer = (uint16_t *) (base + 0x80);

trigger = *pointer;

if (trigger & 0x200) // look for a bit in the trigger mask

{

... Read event ...

... Remove busy ...

}

else

sched_yield (); // if in a multi-process/thread environment

}

Feb. 28, 2017 18E. Pasqualucci, ESIPAP 2017

Polling or interrupt?

• Which method is convenient?
• It depends on the event rate

– Interrupt
• Is expensive in terms of response time

– Typically (O (1 ms))

• Convenient for events at low rate
– Avoid continuous checks
– A board can signal internal errors via interrupts

– Polling
• Convenient for events at high rate

– When the probability of finding an event ready is high

• Does not affect others if scheduler is properly released
• Can be “calibrated” dynamically with event rate

– If the input is de-randomized…

Feb. 28, 2017 19E. Pasqualucci, ESIPAP 2017

The simplest DAQ

• Synchronous readout:
– The trigger is

• Auto-vetoed (a busy is asserted by trigger itself)
• Explicitly re-enabled after data readout

• Additional dead time is generated by the output

// VME interrupt is mapped to SYSUSR1

static int event = FALSE;

const int event_available = SIGUSR1;

// Signal Handler

void sig_handler (int s)

{

if (s == event_available)

event = TRUE;

}

event_loop ()

{

while (end_loop == 0) {

if (event) {

size += read_data (*p);

write (fd, ptr, size);

busy_reset ();

event = FALSE;

}

}

}

Feb. 28, 2017 20E. Pasqualucci, ESIPAP 2017

DAQ dead time and efficiency

• Due to the fluctuations introduced by the stochastic process the efficiency
will always be less 100%

• Define DAQ deadtime (d) as the ratio between the time the system is busy
and the total time. In our example d=0.1%/Hz

• In our specific example, d=0.1%/Hz, f=1kHz → n=500Hz, e=50%

If n is the average DAQ rate, nt is the busy time
f (1 - nt) = n

n= f / (1 + ft) < f
Define e as the system efficiency:

e = 1 / (1 + ft) < 1

Feb. 28, 2017 21E. Pasqualucci, ESIPAP 2017

DAQ dead time and efficiency

• If we want to obtain n~f (e~100%) → ft<<1 → t<<1/f

• f=1 kHz, e=99% → t<0.1ms → 1/t>10kHz

• In order to cope with the input signal fluctuations, we have to over-design
our DAQ system by a factor 10. This is very inconvenient!

Feb. 28, 2017 22E. Pasqualucci, ESIPAP 2017

De-randomization

• First-In First-Out

– Buffer area organized as a queue

– Depth: number of cells

– Implemented in HW and SW

– Introduces an additional latency
on the data path

– Provides a ~steady output path

Feb. 28, 2017 23E. Pasqualucci, ESIPAP 2017

Efficiency

• We can attain very high efficiency
(~1) with t ~ 1/f

– With moderate buffer size

Feb. 28, 2017 24E. Pasqualucci, ESIPAP 2017

Fragment buffering

• Why buffering?
– Triggers are uncorrelated
– Further de-randomization at software level
– Create internal de-randomizers

• Minimize dead time
• Optimize the usage of output channels

– Disk
– Network

• Avoid back-pressure due to peaks in data rate

– Warning!
• Avoid copies as much as possible

– Copying memory chunks is an expensive operation
– Only move pointers!

Feb. 28, 2017 25E. Pasqualucci, ESIPAP 2017

A simple example…

• Ring buffers emulate FIFO
– A buffer is created in memory

• Shared memory can be requested to the operating system

• A “master” creates/destroys the memory and a semaphore

• A “slave” attaches/detaches the memory

– Packets (“events”) are
• Written to the buffer by a writer

• Read-out by a reader

– Works in multi-process and multi-thread environment

– Essential point
• Avoid multiple copies!

• If possible, build events directly in buffer memory

Feb. 28, 2017 26E. Pasqualucci, ESIPAP 2017

• The two processes/threads can run concurrently
– Header protection is enough to insure event protection
– A library can take care of buffer management

• A simple API is important

– We introduced
• Shared memories provided by OS
• Buffer protection (semaphores or mutexes)
• Buffer and packed headers (managed by the library)

Writer:
Reserve a chunk of memory:

Build event frame and calculate (max) size
Protect pointers
Move the head
Write the packet header
Set the packet as FILLING
Unprotect pointers

Writer:
Validate the event:

Protect the buffer
Set the packet as READY
(Move the head to correct value)
Unprotect the buffer

Reader:
Release

Protect pointers
Move tail
Unprotect pointers

Reader:
Locate next available buffer:

Protect pointers
Get oldest event (if any)
Set event status to EMPTYING
Unprotect pointers

Writer:
Build the event fragment in memory:

Prepare event header
Write data to the buffer
Complete the event frame

Ring buffer

struct header

{

int head;

int tail;

int ceiling;

…

}

tail head ceilingheadhead head headhead ceiling

Reader:
Work on data

tail

Feb. 28, 2017 27E. Pasqualucci, ESIPAP 2017

Release the scheduler
Write to the output and release the buffer

Find next event

Read data and put them directly into the bufferPrepare the headerReserve the buffer (maximum event size)Set TRUE by a signal handler upon trigger arrivalOpen the buffer in master mode

Event buffering example
• Data collector • Data writer

int cid = CircOpen (NULL, Circ_key, size));

while (end_loop == 0) {

if (event) {

int maxsize = 512;

char *ptr; uint32_t *p; uint32_t *words;

int number = 0, size = 0;

while ((ptr = CircReserve (cid, number,

maxsize)) == (char *) -1)

sched_yield ();

p = (int *) ptr;

*p++ = crate_number; ++size;

*p++; words = p; ++size;

size += read_data (*p);

*words = size;

CircValidate (cid, number, ptr,

size * sizeof (uint32_t));

++number;

busy_reset ();

event = FALSE;

}

sched_yield ();

}

CircClose (cid);

int fd, cid;

fd = open (pathname, O_WRONLY | O_CREAT);

cid = CircOpen (NULL, key, 0));

while (end_loop == 0)

{

char *ptr;

if ((ptr = CircLocate (cid, &number,

&evtsize)) > (char *) 0)

{

write (fd, ptr, evtsize);

CircRelease (cid);

}

sched_yield ();

}

CircClose (cid);

close (fd);

Validate the buffer
Reset the busyRelease the schedulerClose the buffer

Feb. 28, 2017 28E. Pasqualucci, ESIPAP 2017

By the way…
• In these examples we were

– Polling for events in a buffer
– Polling for buffer descriptor pointers in a queue
– We could have used

• Signals to communicate that events were available
• Handlers to catch signals and start buffer readout

• If a buffer gets full
– Because:

• The output link throughput is too small
• There is a large peak in data rate

The buffer gets “busy” and generates back-pressure
Thresholds must be set to accommodate events generated during

busy transmission when redirecting data flow

• These concepts are very general…

Feb. 28, 2017 29E. Pasqualucci, ESIPAP 2017

Event framing
• Fragment header/trailer

• Identify fragments and characteristics
– Useful for subsequent DAQ processes

• Event builder and online monitoring tasks

– Fragment origin is easily identified
• Can help in identifying sources of problems

– Can (should) contain a trigger ID for event building

– Can (should) contain a status word

• Global event frame
– Give global information on the event

• Very important in networking
• Though you do not see that

Feb. 28, 2017 30E. Pasqualucci, ESIPAP 2017

Framing example

typedef struct
{

u_int startOfHeaderMarker;
u_int totalFragmentsize;
u_int headerSize;
u_int formatVersionNumber;
u_int sourceIdentifier;
u_int numberOfStatusElements;

} GenericHeader;
Event

Payload

Header

Status words

Feb. 28, 2017 31E. Pasqualucci, ESIPAP 2017

What can we do now….

• We are now able to

– Build a readout (set of) application(s) with

• An input thread (process)

• An output thread (process)

• A de-randomizing buffer

– Let’s elaborate a bit…

Feb. 28, 2017 32E. Pasqualucci, ESIPAP 2017

A more general buffer manager

• Same basic idea
– Use a pre-allocated memory pool to pass “events”

• Paged memory
– Can be used to minimize pointer arithmetic

– Convenient if event sizes are comparable

• At the price of some memory

• Buffer descriptors
– Built in an on-purpose pre-allocate memory

– Pointers to descriptors are queued

• Allows any number of input and output threads

Feb. 28, 2017 33E. Pasqualucci, ESIPAP 2017

A paged memory pool

Writer Reader

Reserve memory

Queue (or vector)

Feb. 28, 2017 34E. Pasqualucci, ESIPAP 2017

Generic readout application

Input Handler

Module

Feb. 28, 2017 35E. Pasqualucci, ESIPAP 2017

Configurable applications
• Ambitious idea

– Support all the systems with a single application
• Through plug-in mechanism
• Requires a configuration mechanism

Feb. 28, 2017 36E. Pasqualucci, ESIPAP 2017

Some basic components

• We introduced basic elements of IPC…
– Signals and signal catching

– Shared memories

– Semaphores (or mutexes)

– Message queues

• …and some standard DAQ concepts
– Trigger management, busy, back-pressure

– Synchronous vs asynchronous systems

– Polling vs interrupts

– Real time programming

– Event framing

– Memory management

Feb. 28, 2017 37E. Pasqualucci, ESIPAP 2017

Scaling up…

Feb. 28, 2017 38E. Pasqualucci, ESIPAP 2017

Readout topology

• Many components are required to
– Read out many channels

• Readout modules/crates

– Build events at large rate

• Event building nodes

• How to organize interconnections?

• Two main classes
– Bus

– Network

Feb. 28, 2017 39E. Pasqualucci, ESIPAP 2017

Buses
• Examples: VME, PCI, SCSI, Parallel ATA, …

• Devices are connected via a shared bus

– Bus → group of electrical lines

– Sharing implies arbitration

• Devices can be master or slave

• Device can be addresses (uniquely identified) on the bus

Feb. 28, 2017 40E. Pasqualucci, ESIPAP 2017

Modular electronics

• A good example are VME modules

• ADCs/TDCs are commercially available

• Modules can be configured/read out
– Typically by a processor on a Single Board Computer

– “Events” are built for the crate

• Can be either directly stored or sent to another building level

Feb. 28, 2017 41E. Pasqualucci, ESIPAP 2017

Bus facts

• Simple ✓
– Fixed number of lines (bus-width)

– Devices have to follow well defined interfaces

– Mechanical, electrical, communication, ...

• Scalability issues ✗
– Bus bandwidth is shared among all the devices

– Maximum bus width is limited

– Maximum bus frequency is inversely proportional to the bus length

– Maximum number of devices depends on the bus length

Feb. 28, 2017 42E. Pasqualucci, ESIPAP 2017

Scalability issues…

On the long term, other issues can
affect the scalability of your system…

Feb. 28, 2017 43E. Pasqualucci, ESIPAP 2017

Networks

• Examples: Ethernet, Telephone, Infiniband, …

• All devices are equal
– Devices communicate directly with each other

– No arbitration, simultaneous communications

• Device communicate by sending messages

• In switched network, switches move messages between
sources and destinations
– Find the right path

– Handle “congestion” (two messages with the same destination at
the same time)

• Would you be surprised to learn that buffering is the key?

Feb. 28, 2017 44E. Pasqualucci, ESIPAP 2017

Mixing up…

C
P
U

A
D
C

A
D
C

T
D
C

T
D
C

T
r
i
g
g
e
r

Configuration

Trigger

Readout

Trigger Detector 1

C
P
U

A
D
C

A
D
C

T
D
C

T
D
C

T
r
i
g
g
e
r

Configuration

Trigger

Readout

Trigger Detector N

E
B
(1)

E
B
(M)

. . .

. . .
Online monitoring

Run Control
Event Flow Manager

Feb. 28, 2017 45E. Pasqualucci, ESIPAP 2017

Event building

Readout

Systems

Filter

Systems

Event

Manager

Detector Frontend

Level 1

Trigger

Controls

Computing Services

Builder Networks

• Large detectors
– Sub-detectors data are collected

independently
• Readout network
• Fast data links

– Events assembled by event builders
• From corresponding fragments

– Custom devices used
• In FEE
• In low-level triggers

– COTS used
• In high-level triggers
• In event builder network

• DAQ system
– data flow & control
– distributed & asynchronous

Feb. 28, 2017 46E. Pasqualucci, ESIPAP 2017

Data networks and protocols
• Data transmission

– Fragments need to be sent to the event builders
• One or more…

– Usually done via switched networks

• User-level protocols

– Provide an abstract layer for data transmission
• … so you can ignore the hardware you are using …

• … and the optimizations made in the OS (well, that’s not always true) …

• Most commonly used

– TCP/IP suite
• UDP (User Datagram Protocol)

– Connection-less

• TCP (Transmission Control Protocol)

– Connection-based protocol

– Implements acknowledgment and re-transmission

Feb. 28, 2017 47E. Pasqualucci, ESIPAP 2017

TCP client/server example
struct sockaddr_in sinhim;

sinhim.sin_family = AF_INET;

sinhim.sin_addr.s_addr = inet_addr (this_host);

sinhim.sin_port = htons (port);

if (fd = socket (AF_INET, SOCK_STREAM, 0) < 0)

{ ; // Error ! }

if (connect (fd, (struct sockaddr *)&sinhim,

sizeof (sinhim)) < 0)

{ ; // Error ! }

while (running) {

memcpy ((char *) &wait, (char *) &timeout,

sizeof (struct timeval));

if ((nsel = select (nfds, 0, &wfds,

0, &wait)) < 0)

{ ; // Error ! }

else if (nsel) {

if ((BIT_ISSET (destination, wfds))) {

count = write (destination, buf, buflen);

// test count…

// > 0 (has everything been sent ?)

// == 0 (error)

// < 0 we had an interrupt or

// peer closed connection

}

}

}

close (fd);

struct sockaddr_in sinme;

sinme.sin_family = AF_INET;

sinme.sin_addr.s_addr = INADDR_ANY;

sinme.sin_port = htons(ask_var->port);

fd = socket (AF_INET, SOCK_STREAM, 0);

bind (fd0, (struct sockaddr *) &sinme,

sizeof(sinme));

listen (fd0, 5);

while (n < ns) { // we expect ns connections

int val = sizeof(this->sinhim);

if ((fd = accept (fd0,

(struct sockaddr *) &sinhim, &val)) >0) {

FD_SET (fd, &fds);

++ns;

}

}

while (running) {

if ((nsel = select(nfds, (fd_set *) &fds,

0, 0, &wait)) [

count = read (fd, buf_ptr, buflen);

if (count == 0) {

close (fd);

// set FD bit to 0

}

}

}

close (fd0);

Feb. 28, 2017 48E. Pasqualucci, ESIPAP 2017

Data transmission optimization

• When you “send” data it is copied to a system buffer
– Data is sent in fixed-size chunks

• At system level
– Each endpoint has a buffer to store data that is transmitted over the

network

– TCP stops to send data when available buffer size is 0

• Back-pressure

– With UDP we get data loss

– If buffer space is too small:

• Increase system buffer (in general possible up to 8 MB)

– Too large buffers can lead to performance problems

Feb. 28, 2017 49E. Pasqualucci, ESIPAP 2017

Controlling the data flow

• Throughput optimization
• Avoid dead-time due to back-pressure

– By avoiding fixed sequences of data destinations
– Requires knowledge of the EB input buffer state

• EB architectures
– Push

• Events are sent as soon as data are available to the sender
– The sender knows where to send data
– The simplest algorithm for distribution is the round-robin

– Pull
• Events are required by a given destination processes

– Needs an event manager
» Though in principle we could build a pull system without manager

Feb. 28, 2017 50E. Pasqualucci, ESIPAP 2017

Pull example

Event
Manager Builder network

Sender Sender SenderTrigger

Feb. 28, 2017 51E. Pasqualucci, ESIPAP 2017

Push example

Event
Manager Builder network

Sender Sender SenderTrigger

Feb. 28, 2017 52E. Pasqualucci, ESIPAP 2017

System monitoring

• Two main aspects

– System operational monitoring

• Sharing variables through the system

– Data monitoring

• Sampling data for monitoring processes

• Sharing histogram through the system

• Histogram browsing

Feb. 28, 2017 53E. Pasqualucci, ESIPAP 2017

Event sampling examples

• Spying from buffers • Sampling on input or output

Writer Spy

Reader

To monitoring
process

Writer

Reader

To monitoring
process

Sampling is always on the “best effort” basis and cannot affect data taking

Feb. 28, 2017 54E. Pasqualucci, ESIPAP 2017

Histogram and variable distribution

Sampler

DAQ
process

Monitoring
process

Histo
Service

Info
Service

Feb. 28, 2017 55E. Pasqualucci, ESIPAP 2017

Histogram browser

Feb. 28, 2017 56E. Pasqualucci, ESIPAP 2017

Controlling the system

• Each DAQ component must have
– A set of well defined states
– A set of rules to pass from one state to another
Finite State Machine

• A central process controls the system
– Run control

• Implements the state machine
• Triggers state changes and takes track of components’ states

– Trees of controllers can be used to improve scalability

• A GUI interfaces the user to the Run control
– …and various system services…

Feb. 28, 2017 57E. Pasqualucci, ESIPAP 2017

GUI example
• From Atlas

Feb. 28, 2017 58E. Pasqualucci, ESIPAP 2017

Finite State Machines

• Models of the behaviors of a system or a complex object, with a
limited number of defined conditions or modes

• Finite state machines consist of 4 main elements:
– States which define behavior and may produce actions
– State transitions which are movements from one state to another
– Rules or conditions which must be met to allow a state transition
– Input events which are either externally or internally generated, which

may possibly trigger rules and lead to state transitions

BOOTED

CONFIGURED

RUNNING

NONE ERROR
Recover

Boot

Configure

Start Stop

Unconfigure

Reset

Feb. 28, 2017 59E. Pasqualucci, ESIPAP 2017

Propagating transitions

• Each component or sub-system is modeled as a FSM
– The state transition of a component is completed only if all

its sub-components completed their own transition

– State transitions are triggered by commands sent through
a message system

Subsystem
Control

Final
Process

BOOTED

CONFIGURED

RUNNING

NONE ERROR

Run
Control

BOOTED

CONFIGURED

RUNNING

NONE ERROR

BOOTED

CONFIGURED

RUNNING

NONE ERRORBOOTED

BOOTED BOOTED

CONFIGUREDCONFIGURED

CONFIGURED

Feb. 28, 2017 60E. Pasqualucci, ESIPAP 2017

FSM implementation

• State concept maps on object state concept
– OO programming is convenient to implement FSM
– Though you can leave without OO…

• State transition
– Usually implemented as callbacks

• In response to messages

• Remember:
– Each state MUST be well-defined
– Variables defining the state must have the same values

• Independently of the state transition

Feb. 28, 2017 61E. Pasqualucci, ESIPAP 2017

Message system

• Networked IPC

• I will not describe it

• Many possible implementations
– From simple TCP packets…

– … through (rather exotic) SNMP …
• (that’s the way many printers are configured…)

• Very convenient for “economic” implementation
– Used in the KLOE experiment

– … to Object Request Browsers (ORB)
• Used f.i. by ATLAS

Feb. 28, 2017 62E. Pasqualucci, ESIPAP 2017

A final remark

• There is no absolute truth
– Different systems require different optimizations
– Different requirements imply different design

• System parameters must drive the DAQ design
– Examples:

• An EB may use dynamic buffering
– Though it is expensive
– If bandwidth is limited by network throughput

• React to signals or poll
– Depends on expected event rate

• Event framing is important
– But must no be exaggerated

Feb. 28, 2017 63E. Pasqualucci, ESIPAP 2017

Thanks for your attention!

Feb. 28, 2017 64E. Pasqualucci, ESIPAP 2017

