


Disclaimer

• Data acquisition is not an exact science. 

• It is an alchemy of 

– Electronics

– Computer science

– Networking

– Physics

– Hacking and experience 

money and manpower matter as well 
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Once upon a time…
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Event readout
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Reading out a complex detector

Beam pipe

Tracking (in solenoid field)

Muon chambers

Electromagnetic Calorimetry

Hadronic Calorimetry
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Detector readout at the LHC

– Large number of channels (~ 107)
– Large “event” rate

• Bunch crossing every 25 ns
• F. Pastore on March 3rd will explain implications on trigger
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Overview

• Aim of this lecture is

– Give an overview of a medium-size DAQ

– Analyze its components 

– Introduce the main concepts of DAQ software

• As “bricks” to build larger system

• … with the help of some pseudo-code …

– Give more technical basis

• For the implementation of very large systems
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A multi-crate system
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Software components

• Trigger management

• Data read-out

• Event framing and buffering

• Data transmission

• Event building and data storage

• System control and monitoring

• Data sampling and monitoring

Feb. 28, 2017 9E. Pasqualucci, ESIPAP 2017



Basic DAQ with a real trigger

• Measure b decay properties

• Events are asynchronous and 
unpredictable

• Need a physics trigger

• Delay compensates for the 
trigger latency
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Dead time and trigger
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Busy logic

• Busy logic avoids triggers 
while processing

• Which (average) DAQ rate 
can we achieve now?

• t=1 ms is sufficient to run at 
1kHz with a clock trigger
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Data readout (a simple example)

• Data digitized by VME modules (ADC and TDC)
• Trigger signal received by a trigger module

– I/O register or interrupt generator

• Data read-out by a Single Board Computer (SBC)
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Trigger management

• How to know that new data is available?
– Interrupt

• An interrupt is sent by an hardware device
• The interrupt is 

– Transformed into a software signal
– Caught by a data acquisition program

» Undetermined latency is a potential problem!
» Data readout starts

– Polling
• Some register in a module is continuously read out
• Data readout happens when register “signals” new data

• In a synchronous system (the simplest one…)
– Trigger must also set a busy
– The reader must reset the busy after read-out completion
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Managing interrupts

irq_list.list_of_items[i].vector = 0x77;

irq_list.list_of_items[i].level  = 5;

irq_list.list_of_items[i].type   = VME_INT_ROAK;

signum = 42;

ret = VME_InterruptLink(&irq_list, &int_handle);

ret = VME_InterruptWait(int_handle, timeout, &ir_info);

ret = VME_InterruptRegisterSignal(int_handle, signum);

ret = VME_InterruptUnlink(int_handle);
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Real time programming

• Has to meet operational deadlines from events to 
system response
– Implies taking control of typical OS tasks

• For instance, task scheduling

– Real time OS offer that features

• Most important feature is predictability
– Performance is less important than predictability!

• It typically applies when requirements are
– Reaction time to an interrupt within a certain time interval

– Complete control of the interplay between applications
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Is real-time needed?
• Can be essential in some case

– It is critical for accelerator control or plasma control
• Wherever event reaction times are critical
• And possibly complex calculation is needed

• Not commonly used for data acquisition now
– Large systems are normally asynchronous

• Either events are buffered or de-randomized in the HW
– Performance is usually improved by DMA readout 
– Or the main dataflow does not pass through the bus

– In a small system dead time is normally small

• Drawbacks
– We loose complete dead time control

• Event reaction time and process scheduling are left to the OS

– Increase of latency due to event buffering
• Affects the buffer size at event building level

– Normally not a problem in modern DAQ systems
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Polling modules

• Loop reading a register containing the latched trigger

while (end_loop == 0)

{

uint16_t *pointer;

volatile uint16_t trigger;

pointer = (uint16_t *) (base + 0x80);

trigger = *pointer;

if (trigger & 0x200) // look for a bit in the trigger mask

{

... Read event ...

... Remove busy ...

}

else

sched_yield (); // if in a multi-process/thread environment

}
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Polling or interrupt?

• Which method is convenient?
• It depends on the event rate

– Interrupt
• Is expensive in terms of response time 

– Typically (O (1 ms))

• Convenient for events at low rate
– Avoid continuous checks
– A board can signal internal errors via interrupts

– Polling
• Convenient for events at high rate

– When the probability of finding an event ready is high

• Does not affect others if scheduler is properly released
• Can be “calibrated” dynamically with event rate

– If the input is de-randomized…
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The simplest DAQ

• Synchronous readout:
– The trigger is 

• Auto-vetoed (a busy is asserted by trigger itself)
• Explicitly re-enabled after data readout

• Additional dead time is generated by the output

// VME interrupt is mapped to SYSUSR1

static int event = FALSE;

const int event_available = SIGUSR1;

// Signal Handler

void sig_handler (int s)

{

if (s == event_available)

event = TRUE;

}

event_loop ()

{

while (end_loop == 0) {

if (event) {

size += read_data (*p);

write (fd, ptr, size);

busy_reset ();

event = FALSE;

}

}

}
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DAQ dead time and efficiency

• Due to the fluctuations introduced by the stochastic process the efficiency 
will always be less 100%

• Define DAQ deadtime (d) as the ratio between the time the system is busy 
and the total time. In our example d=0.1%/Hz

• In our specific example, d=0.1%/Hz, f=1kHz → n=500Hz, e=50%

If n is the average DAQ rate, nt is the busy time
f (1 - nt) = n

n= f / (1 + ft) < f
Define e as the system efficiency:

e = 1 / (1 + ft) < 1

Feb. 28, 2017 21E. Pasqualucci, ESIPAP 2017



DAQ dead time and efficiency

• If we want to obtain n~f (e~100%) → ft<<1 → t<<1/f

• f=1 kHz, e=99% → t<0.1ms → 1/t>10kHz

• In order to cope with the input signal fluctuations, we have to over-design 
our DAQ system by a factor 10. This is very inconvenient!
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De-randomization

• First-In First-Out

– Buffer area organized as a queue

– Depth: number of cells

– Implemented in HW and SW

– Introduces an additional latency 
on the data path

– Provides a ~steady output path
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Efficiency

• We can attain very high efficiency 
(~1) with t ~ 1/f

– With moderate buffer size
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Fragment buffering

• Why buffering?
– Triggers are uncorrelated
– Further de-randomization at software level
– Create internal de-randomizers

• Minimize dead time
• Optimize the usage of output channels

– Disk
– Network

• Avoid back-pressure due to peaks in data rate

– Warning!
• Avoid copies as much as possible

– Copying memory chunks is an expensive operation
– Only move pointers!
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A simple example…

• Ring buffers emulate FIFO
– A buffer is created in memory

• Shared memory can be requested to the operating system

• A “master” creates/destroys the memory and a semaphore

• A “slave” attaches/detaches the memory

– Packets (“events”) are 
• Written to the buffer by a writer

• Read-out  by a reader

– Works in multi-process and multi-thread environment

– Essential point
• Avoid multiple copies!

• If possible, build events directly in buffer memory
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• The two processes/threads can run concurrently
– Header protection is enough to insure event protection
– A library can take care of buffer management

• A simple API is important

– We introduced
• Shared memories provided by OS
• Buffer protection (semaphores or mutexes)
• Buffer and packed headers (managed by the library)

Writer:
Reserve a chunk of memory:

Build event frame and calculate (max) size
Protect pointers
Move the head
Write the packet header
Set the packet as FILLING
Unprotect pointers

Writer:
Validate the event:

Protect the buffer
Set the packet as READY
(Move the head to correct value)
Unprotect the buffer

Reader:
Release

Protect pointers
Move tail
Unprotect pointers

Reader:
Locate next available buffer:

Protect pointers
Get oldest event (if any)
Set event status to EMPTYING
Unprotect pointers

Writer:
Build the event fragment in memory:

Prepare event header
Write data to the buffer
Complete the event frame

Ring buffer

struct header

{

int head;

int tail;

int ceiling;

…

}

tail head ceilingheadhead head headhead ceiling

Reader:
Work on data

tail
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Release the scheduler
Write to the output and release the buffer

Find next event

Read data and put them directly into the bufferPrepare the headerReserve the buffer (maximum event size)Set TRUE by a signal handler upon trigger arrivalOpen the buffer in master mode

Event buffering example
• Data collector • Data writer

int cid = CircOpen (NULL, Circ_key, size));

while (end_loop == 0) {

if (event) {

int maxsize = 512;

char *ptr; uint32_t *p; uint32_t *words;

int number = 0, size = 0;

while ((ptr = CircReserve (cid, number, 

maxsize)) == (char *) -1)

sched_yield ();

p = (int *) ptr;

*p++ = crate_number; ++size;

*p++; words = p; ++size;

size += read_data (*p);

*words = size;

CircValidate (cid, number, ptr, 

size * sizeof (uint32_t));

++number;

busy_reset ();

event = FALSE;

}

sched_yield ();

}

CircClose (cid);

int fd, cid;

fd = open (pathname, O_WRONLY | O_CREAT);

cid = CircOpen (NULL, key, 0));

while (end_loop == 0)

{

char *ptr;

if ((ptr = CircLocate (cid, &number,                    

&evtsize)) > (char *) 0)

{

write (fd, ptr, evtsize);

CircRelease (cid);

}

sched_yield ();

}

CircClose (cid);

close (fd);

Validate the buffer
Reset the busyRelease the schedulerClose the buffer
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By the way…
• In these examples we were

– Polling for events in a buffer
– Polling for buffer descriptor pointers in a queue
– We could have used

• Signals to communicate that events were available
• Handlers to catch signals and start buffer readout

• If a buffer gets full
– Because:

• The output link throughput is too small
• There is a large peak in data rate

The buffer gets “busy” and generates back-pressure
Thresholds must be set to accommodate events generated during 

busy transmission when redirecting data flow

• These concepts are very general…
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Event framing
• Fragment header/trailer 

• Identify fragments and characteristics
– Useful for subsequent DAQ processes

• Event builder and online monitoring tasks

– Fragment origin is easily identified
• Can help in identifying sources of problems

– Can (should) contain a trigger ID for event building

– Can (should) contain a status word

• Global event frame
– Give global information on the event

• Very important in networking
• Though you do not see that
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Framing example

typedef struct
{

u_int startOfHeaderMarker;
u_int totalFragmentsize;
u_int headerSize;
u_int formatVersionNumber;
u_int sourceIdentifier;
u_int numberOfStatusElements;

}  GenericHeader; 
Event

Payload

Header

Status words
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What can we do now….

• We are now able to

– Build a readout (set of) application(s) with

• An input thread (process)

• An output thread (process)

• A de-randomizing buffer

– Let’s elaborate a bit…
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A more general buffer manager

• Same basic idea
– Use a pre-allocated memory pool to pass “events”

• Paged memory
– Can be used to minimize pointer arithmetic

– Convenient if event sizes are comparable

• At the price of some memory

• Buffer descriptors
– Built in an on-purpose pre-allocate memory

– Pointers to descriptors are queued

• Allows any number of input and output threads
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A paged memory pool

Writer Reader

Reserve memory

Queue (or vector)
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Generic readout application

Input Handler 

Module
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Configurable applications
• Ambitious idea

– Support all the systems with a single application
• Through plug-in mechanism
• Requires a configuration mechanism
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Some basic components

• We introduced basic elements of IPC…
– Signals and signal catching

– Shared memories

– Semaphores (or mutexes)

– Message queues

• …and some standard DAQ concepts
– Trigger management, busy, back-pressure

– Synchronous vs asynchronous systems

– Polling vs interrupts

– Real time programming

– Event framing

– Memory management
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Scaling up…
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Readout topology

• Many components are required to
– Read out many channels

• Readout modules/crates

– Build events at large rate

• Event building nodes

• How to organize interconnections?

• Two main classes
– Bus

– Network
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Buses
• Examples: VME, PCI, SCSI, Parallel ATA, …

• Devices are connected via a shared bus

– Bus → group of electrical lines

– Sharing implies arbitration

• Devices can be master or slave

• Device can be addresses (uniquely identified) on the bus
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Modular electronics

• A good example are VME modules

• ADCs/TDCs are commercially available

• Modules can be configured/read out
– Typically by a processor on a Single Board Computer

– “Events” are built for the crate

• Can be either directly stored or sent to another building level

Feb. 28, 2017 41E. Pasqualucci, ESIPAP 2017



Bus facts

• Simple ✓
– Fixed number of lines (bus-width)

– Devices have to follow well defined interfaces

– Mechanical, electrical, communication, ...

• Scalability issues ✗
– Bus bandwidth is shared among all the devices

– Maximum bus width is limited

– Maximum bus frequency is inversely proportional to the bus length

– Maximum number of devices depends on the bus length
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Scalability issues…

On the long term, other issues can 
affect the scalability of your system…
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Networks

• Examples: Ethernet, Telephone, Infiniband, …

• All devices are equal
– Devices communicate directly with each other

– No arbitration, simultaneous communications

• Device communicate by sending messages

• In switched network, switches move messages between 
sources and destinations
– Find the right path

– Handle “congestion” (two messages with the same destination at 
the same time)

• Would you be surprised to learn that buffering is the key? 
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Mixing up…
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Event building

Readout

Systems

Filter

Systems

Event

Manager

Detector Frontend

Level 1

Trigger

Controls

Computing Services

Builder Networks

• Large detectors
– Sub-detectors data are collected 

independently
• Readout network
• Fast data links

– Events assembled by event builders
• From corresponding fragments

– Custom devices used
• In FEE
• In low-level triggers

– COTS used
• In high-level triggers
• In event builder network

• DAQ system
– data flow & control
– distributed & asynchronous
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Data networks and protocols
• Data transmission

– Fragments need to be sent to the event builders
• One or more…

– Usually done via switched networks

• User-level protocols

– Provide an abstract layer for data transmission
• … so you can ignore the hardware you are using …

• … and the optimizations made in the OS (well, that’s not always true) …

• Most commonly used

– TCP/IP suite
• UDP (User Datagram Protocol)

– Connection-less

• TCP (Transmission Control Protocol)

– Connection-based protocol

– Implements acknowledgment and re-transmission
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TCP client/server example
struct sockaddr_in sinhim;

sinhim.sin_family = AF_INET;

sinhim.sin_addr.s_addr = inet_addr (this_host);

sinhim.sin_port = htons (port);

if (fd = socket (AF_INET, SOCK_STREAM, 0) < 0)

{ ; // Error ! }

if (connect (fd, (struct sockaddr *)&sinhim,

sizeof (sinhim)) < 0)

{ ; // Error ! }

while (running) {

memcpy ((char *) &wait, (char *) &timeout,

sizeof (struct timeval));

if ((nsel = select (nfds, 0, &wfds,                  

0, &wait)) < 0)

{ ; // Error ! }

else if (nsel) {

if ((BIT_ISSET (destination, wfds))) {

count = write (destination, buf, buflen);

// test count…

// > 0 (has everything been sent ?)

// == 0 (error)

// < 0 we had an interrupt or 

// peer closed connection

}

}

}

close (fd);

struct sockaddr_in sinme;

sinme.sin_family = AF_INET;

sinme.sin_addr.s_addr = INADDR_ANY;

sinme.sin_port = htons(ask_var->port);

fd = socket (AF_INET, SOCK_STREAM, 0);

bind (fd0, (struct sockaddr *) &sinme,    

sizeof(sinme));

listen (fd0, 5);

while (n < ns) { // we expect ns connections

int val = sizeof(this->sinhim);

if ((fd = accept (fd0, 

(struct sockaddr *) &sinhim, &val)) >0) {

FD_SET (fd, &fds);

++ns;

}

}

while (running) {

if ((nsel = select( nfds, (fd_set *) &fds,

0, 0, &wait)) [

count = read (fd, buf_ptr, buflen);

if (count == 0) {

close (fd);

// set FD bit to 0

}

}

}

close (fd0);
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Data transmission optimization

• When you “send” data it is copied to a system buffer
– Data is sent in fixed-size chunks

• At system level
– Each endpoint has a buffer to store data that is transmitted over the 

network

– TCP stops to send data when available buffer size is 0

• Back-pressure

– With UDP we get data loss

– If buffer space is too small:

• Increase system buffer (in general possible up to 8 MB)

– Too large buffers can lead to performance problems
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Controlling the data flow

• Throughput optimization
• Avoid dead-time due to back-pressure

– By avoiding fixed sequences of data destinations
– Requires knowledge of the EB input buffer state

• EB architectures
– Push

• Events are sent as soon as data are available to the sender
– The sender knows where to send data
– The simplest algorithm for distribution is the round-robin

– Pull
• Events are required by a given destination processes

– Needs an event manager
» Though in principle we could build a pull system without manager
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Pull example

Event 
Manager Builder network

Sender Sender SenderTrigger
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Push example

Event 
Manager Builder network

Sender Sender SenderTrigger
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System monitoring

• Two main aspects

– System operational monitoring

• Sharing variables through the system

– Data monitoring

• Sampling data for monitoring processes

• Sharing histogram through the system

• Histogram browsing
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Event sampling examples

• Spying from buffers • Sampling on input or output

Writer Spy

Reader

To monitoring
process

Writer

Reader

To monitoring
process

Sampling is always on the “best effort” basis and cannot affect data taking
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Histogram and variable distribution

Sampler

DAQ 
process

Monitoring 
process

Histo
Service

Info 
Service
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Histogram browser
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Controlling the system

• Each DAQ component must have
– A set of well defined states
– A set of rules to pass from one state to another
Finite State Machine

• A central process controls the system
– Run control

• Implements the state machine
• Triggers state changes and takes track of components’ states

– Trees of controllers can be used to improve scalability 

• A GUI interfaces the user to the Run control
– …and various system services…
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GUI example
• From Atlas
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Finite State Machines

• Models of the behaviors of a system or a complex object, with a 
limited number of defined conditions or modes

• Finite state machines consist of 4 main elements:
– States which define behavior and may produce actions 
– State transitions which are movements from one state to another 
– Rules or conditions which must be met to allow a state transition 
– Input events which are either externally or internally generated, which 

may possibly trigger rules and lead to state transitions 

BOOTED

CONFIGURED

RUNNING

NONE ERROR
Recover

Boot

Configure

Start Stop

Unconfigure

Reset
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Propagating transitions

• Each component or sub-system is modeled as a FSM
– The state transition of a component is completed only if all 

its sub-components completed their own transition

– State transitions are triggered by commands sent through 
a message system

Subsystem 
Control

Final 
Process

BOOTED

CONFIGURED

RUNNING

NONE ERROR

Run 
Control

BOOTED

CONFIGURED

RUNNING

NONE ERROR

BOOTED

CONFIGURED

RUNNING

NONE ERRORBOOTED

BOOTED BOOTED

CONFIGUREDCONFIGURED

CONFIGURED
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FSM implementation

• State concept maps on object state concept
– OO programming is convenient to implement FSM
– Though you can leave without OO…

• State transition
– Usually implemented as callbacks

• In response to messages

• Remember:
– Each state MUST be well-defined
– Variables defining the state must have the same values

• Independently of the state transition
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Message system

• Networked IPC

• I will not describe it

• Many possible implementations
– From simple TCP packets…

– … through (rather exotic) SNMP …
• (that’s the way many printers are configured…)

• Very convenient for “economic” implementation
– Used in the KLOE experiment

– … to Object Request Browsers (ORB)
• Used f.i. by ATLAS
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A final remark

• There is no absolute truth
– Different systems require different optimizations
– Different requirements imply different design

• System parameters must drive the DAQ design
– Examples:

• An EB may use dynamic buffering
– Though it is expensive
– If bandwidth is limited by network throughput

• React to signals or poll
– Depends on expected event rate

• Event framing is important
– But must no be exaggerated
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Thanks for your attention!
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