

Ultracold neutrons production and detection

Guillaume Pignol ESIPAP lecture 2017

The two frontiers of particle physics

1 Energy frontier

Probing new physics at high energy particle colliders Example: production of the Higgs boson $m_H = 125$ GeV

2 Intensity frontier

Probing new physics by looking at very rare processes or testing the Standard Model with high precision.

Examples:

- $\mu \rightarrow e \gamma$ BR < 6 × 10⁻¹³
- Proton lifetime $> 2 \times 10^{29}$ yr
- Neutron –antineutron oscillation time $> 10^8$ s
- Neutron electric dipole $< 3 \times 10^{-26}$ cm

Neutron particle physics is a subset of the intensity frontier program

Large neutron factories

Multi-disciplinary facilities

Biology Chemistry Material sciences Magnetism Nuclear physics Particle physics

Outline

1 Neutron optics, ultracold neutrons 2 Fundamental physics with UCNs Neutron lifetime Electric dipole moment Gravity with neutrons **3 Neutron detection** 4 UCN sources

Mirror effect (absent)

Mirror effect (present)

Particles and waves

Neutron interaction with a single nucleus

Potential scattering described by non-relativistic quantum scattering theory. For nonrelativistic neutrons, nuclei look point-like ($kR_{nucl} \ll 1$):

- Isotropic scattering
- Energy-independent

Neutron wave function corresponding to the scattering process

$$\psi(r) = e^{ikx} - b\frac{e^{ikr}}{r}$$

Scattering X-section $\sigma = 4\pi \ b^2$

Measured neutron scattering lengths

For a catalog, see <u>http://www.ncnr.nist.gov/resources/n-lengths</u> Surprisingly, almost all nuclei have b > 0.

Neutron interaction with a collection of nuclei

Self consistency of the wave function

$$\psi(\vec{r}) = e^{i\,k\,x} - \sum_{j} \psi(\overrightarrow{R_{j}}) \,b \,\frac{e^{ik|\vec{r} - \overrightarrow{R_{j}}|}}{|\vec{r} - \overrightarrow{R_{j}}|}$$

Using the relation

$$(\Delta + k^2) \frac{e^{ik|\vec{r} - R_j|}}{|\vec{r} - \overrightarrow{R_j}|} = -4\pi \,\delta(\vec{r} - \overrightarrow{R_j})$$

We find the wave equation

$$(\Delta + k^2)\psi(\vec{r}) = 4\pi b \sum_{j} \delta(\vec{r} - \vec{R_j})\psi(\vec{r})$$

$$\approx 4\pi b n \psi(\vec{r})$$

n is the nuclear density of the medium

Fermi potential

Defining the Fermi potential of a medium

$$V_F = \frac{2\pi\hbar^2}{m} b n$$

The wave equation is a Schrodinger equation with the potential V

$$\left(-\frac{\hbar^2}{2m}\Delta + V_F\right)\psi(\vec{r}) = E\,\psi(\vec{r})$$

For cold neutrons, bulk matter is characterized by its Fermi potential. We expect wave phenomena (refraction, reflection, tunnel transmission..).

	Material	b [fm]	n [cm ⁻³]	V _F
Examples	Aluminum	3.45	6.02 x 10 ²²	54 neV
	Nickel (⁵⁸ Ni)	14.4	9.13 x 10 ²²	340 neV
	Natural Nickel		9.13 x 10 ²²	245 neV

For heterogeneous materials (atomically like water, or isotopically like natural nickel), one sums the Fermi potentials of each nuclear specie: $V_F = (2\pi\hbar^2)/m \sum b_i n_i$

12

Total reflection of neutrons

Condition for total reflection of neutrons Fermi, Zinn (1946)

 $E \sin^2 \theta < V_F$

Solid matter characterized by the Fermi potential V_F

Example: thermal neutrons (E=25 meV) are guided through a Nickel guide (V=245 neV) provided

 $\theta < 0.2^{\circ}$

Application: transporting neutrons 100 m...

Institut Laue Langevin, Grenoble High Flux Reactor

Neutron distribution channels at ILL

Ultracold neutrons (UCN)

are reflected by material walls

16

UCN plumbing

UCNs are guided through evacuated stainless steel pipes (about 10 cm diameter) and bends.

Losses are generally percents/meter

UCNs and gravity

UCNs feel gravity V(z) = mg zV(z = 1 m) = 102 neV

Very important for UCN techniques

- We accelerate UCNs to detect them (otherwise they would bounce off the detector window).
- Some UCN traps do not need a roof.
- Lifting an experiment by 50 cm can modify significantly the outcome!

UCNs and gravity

The U device

If you want to remove UCNs with energy E<80 neV, Just set h = 80 cm

UCNs and magnetic fields

Neutron magnetic moment

$$\mu_n \times (1 \text{ T}) = 60 \text{ neV}$$

Magnetic fields act on the spin ½ neutron

$$V = -\vec{\mu}_n \, \vec{B}$$

Summary

UCNs can be manipulated using

- The nuclear force (Fermi potentials ~ 100 neV)
- The gravitational force (1 m = 100 neV)
- Magnetic fields (1T = 60 neV)

They are used to study the fundamental interactions and symmetries

- Weak interaction (beta decay period 10 min)
- Electromagnetic properties of the neutron (EDM)
- Gravitational effects

Outline

1 Neutron optics, ultracold neutrons 2 Fundamental physics with UCNs Neutron lifetime Electric dipole moment Gravity with neutrons **3 Neutron detection** 4 UCN sources

The neutron beta decay lifetime, why bother?

 $n \rightarrow p + e^- + \bar{\nu}_e + 782 \text{ keV}$

Free neutron lifetime $\tau_n = 880.0(9) \text{ s}$ [PDG 2013] • *Particle physics:* extracting CKM matrix element V_{ud}

 Astrophysics and Neutrinos
Calculating weak semi-leptonic processes like

$$p + p \rightarrow d + e^+ + \nu_e$$

 $\bar{\nu}_{\mu} + p \rightarrow \mu^+ + n$

Cosmology
Predicting the
yields of the
BigBang
Nucleosynthesis

Two complementary experimental methods

Counting the dead neutrons: BEAM METHOD

A detector records the decay products in a well defined part of a neutron beam. A neutron beam is indeed radioactive due to beta decay.

$$-\frac{dN}{dt} = \frac{N}{\tau_n}$$

Counting the surviving neutrons: BOTTLE METHOD

UCNs are stored in a bottle, the number of neutrons remaining in the bottle after a certain storage time t is measured.

$$N(t) = N(0)e^{-t/\tau_n}$$

Early beam method: counting the beta electrons

Modern beam method: counting the protons

Nico *et al* (2005)

Protons produced almost at rest (endpoint energy = 800 eV) are accumulated in a Penning trap.

Principle of a bottle UCN measurement

Typical sequence

- 1. Switch moved to FILL position, Valve OPEN for 20 s
- 2. Close Valve, Switch moved to EMPTY position
- 3. Wait period t
- 4. OPEN Valve, count neutrons

Repeat the sequence with different t

Principle of a bottle UCN measurement

Estimating the wall losses

The probability for a UCN to be lost at a wall collision can be of the order of

The mean free path between collisions is of the order of

The frequency of wall collisions for a velocity of 3 m/s is of the order of

The partial lifetime due to wall losses is thus of the order of

$$\mu \approx 10^{-4}$$

 $\lambda \approx 30 \text{ cm}$

$$f = \frac{v}{\lambda} \approx 10 \text{ Hz}$$

$$\tau_{wall} = \frac{1}{f\mu} \approx 1000 \text{ s}$$

Good to know: the Clausius law

Consider a bottle with arbitrary shape, of volume V and surface S.

When mechanical equilibrium is achieved (isotropic velocity distribution) the mean free path between wall collisions is

$$\lambda = \frac{4 V}{S}$$

More on wall losses (a complicated topic)

 The wall loss probability is energy-dependent

$$\mu(E) = 2\eta \left(\frac{V}{E} \operatorname{asin} \sqrt{\frac{E}{V}} - \sqrt{\frac{V}{E}} - 1 \right)$$

- It depends on temperature (the colder the better)
- Losses can be calculated from absorption and inelastic scattering cross section data. But measured losses are generally higher, due to surface impurities (hydrogen, in particular)

Example: MAMBO I (ILL, 1989)

The trap geometry is varied, one extrapolates the storage time to infinite mean free path

Current status on the neutron lifetime

The current situation There is a 3.8 σ discrepancy between the bottle method combination and the beam method combination.

To be continued...

Outline

1 Neutron optics, ultracold neutrons 2 Fundamental physics with UCNs Neutron lifetime Electric dipole moment Gravity with neutrons **3 Neutron detection** 4 UCN sources

Neutron electric dipole moment (nEDM)

$$\widehat{H} = -\mu_n B \,\widehat{\sigma}_z - \frac{d_n}{d_n} E \,\widehat{\sigma}_z$$

$$f_L(\uparrow\uparrow) - f_L(\uparrow\downarrow) = -\frac{2}{\pi\hbar} d_n E$$

A non-zero EDM violates T reversal (thus violates CP symmetry)

Motivation:

- search for CP violation beyond the standard model
- Address the baryogenesis question

Explaining the baryogenesis

Sakharov conditions To explain the matter-antimatter asymmetry in the Universe

1 Departure from thermal equilibrium It happens during a phase transition in the early universe... Electroweak phase transition?

2 *Violation of B conservation* OK in the Standard Model

3 CP violation

The Standard Model (KM) CP violation does not generate enough asymmetry. One needs CP violation beyond the SM. This new physics would also generate a non zero neutron EDM.

CP symmetry and electric dipoles

EDMs: fermion-photon coupling imaginary part of the diagram generated by radiative corrections.

$$\mathcal{L} = -\frac{id}{2}\bar{f}\sigma_{\mu\nu}\gamma_5 f F^{\mu\nu}$$
$$\rightarrow \hat{H} = d \hat{\sigma} E$$

$$d_n < 300 \times 10^{-28} e \text{ cm}$$
 (Grenoble, 2006)
 $d_p < 2000 \times 10^{-28} e \text{ cm}$ (Seattle, 2016)
 $d_e < 0.9 \times 10^{-28} e \text{ cm}$ (Harvard, 2014)

EDMs: indirect probe of new physics at distance 10^{-26} cm LHC: direct probe of new physics at distance 10^{-17} cm

The EDM apparatus

The EDM apparatus

Apparatus installed at ILL PF2 (1986-2009), then moved to PSI

Best limit: $d_n < 3 \times 10^{-26} e$ cm obtained with 1998 – 2002 data [Baker *et al*, PRL (2006) ; Pendlebury *et al*, PRD (2015)]

Dealing with B-field fluctuations

for the magnetic field fluctuations...

Outline

1 Neutron optics, ultracold neutrons 2 Fundamental physics with UCNs Neutron lifetime Electric dipole moment Gravity with neutrons **3 Neutron detection** 4 UCN sources

Bouncing neutrons: quantum states

Neutrons with energy < 100 neV can bounce above a glass mirror.

The vertical motion is a simple quantum well problem

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dz^2} + mgz\,\psi = E\,\psi$$

Vertical energy (peV)

Discovery of the quantum states at ILL Grenoble

Outline

1 Neutron optics, ultracold neutrons 2 Fundamental physics with UCNs Neutron lifetime Electric dipole moment Gravity with neutrons 3 Neutron detection 4 UCN sources

Importance of neutron detection

Beyond the use in the very specialized UCN physics...

- Monitoring in nuclear reactors
- Radiation safety
- Detection of special nuclear materials (233U and 239Pu)
- Cosmic ray detection, monitoring the flux
- Neutrino detectors $v + p \rightarrow e^+ + n$
- Most serious background in WIMP direct searches WIMP-induced nuclear recoil $\chi + N \rightarrow \chi + N$ similar to fast neutron - induced recoil $n + N \rightarrow n + N$

Remember: You can't directly "detect" neutrons...

Neutron inelastic reactions

- Neutron capture $n + {}^{A}X \rightarrow {}^{A+1}X^* + \gamma$ a.k.a. $X(n, \gamma)$
- Charged reactions $n + {}^{A}X \rightarrow p + {}^{A}Y$ a.k.a. X(n,p)Y $n + {}^{A}X \rightarrow \alpha + {}^{A-3}Y$ a.k.a. $X(n,\alpha)Y$
- Fission $n + {}^{235}\text{U} \rightarrow PF_1 + PF_2 + \nu n$ a.k.a. U(n, f)

$$\left(\begin{array}{c} \text{THE 1/v LAW} \\ \sigma(v) = \sigma(v_0) \frac{v_0}{v} \end{array}\right)$$

One finds in tabulated neutron data the thermal cross sections

 $\sigma^{\rm th} = \sigma(2200 \text{ m/s})$

(n,y) capture

 $n + {}^{A}_{Z}X \rightarrow \gamma + {}^{A+1}_{Z}X$

Energy release

$$Q = (m_X + m_n - m_W)c^2$$

a.k.a. the neutron separation energy of the nucleus W.

All stable nuclei have Q>0 EXCEPT for ⁴He. Thus, ⁴He is the only stable element with zero capture cross section for slow neutrons.

(n,p) reaction

$$n + {}^{A}_{Z} \mathbf{X} \to p + {}^{A}_{Z-1} \mathbf{Y}$$

Energy release

$$Q = \left(m_X + m_n - m_p - m_Y\right)c^2$$

Slow neutrons undergo (n,p) reaction only if $Q > B_c$ Only one possibility

$$n + {}^{3}\text{He} \rightarrow p + t$$

(n,α) reaction

$$n + {}^{A}_{Z}X \rightarrow \alpha + {}^{A-3}_{Z-2}Y$$

Energy release

$$Q = (m_X + m_n - m_\alpha - m_Z)c^2$$

Slow neutrons undergo (n,α) reaction only if $Q > B_c$ Only two possibilities

$$n + {}^{6}\text{Li} \rightarrow \alpha + t$$

 $n + {}^{10}\text{B} \rightarrow \alpha + {}^{7}\text{Li}$

Three neutron convertors

	³ He (n, p)	⁶ Li(n, α)	$^{10}\mathrm{B}(n,lpha)$
Abundance	0.014 %	7.6 %	19.9 %
$\sigma^{ ext{th}}$	5330 barn	937 barn	3837 barn
	p : 0.57 MeV	α : 2.05 MeV	α : 1.47 MeV
Kinetic energy	t : 0.19 MeV	t : 2.73 MeV	Li : 0.84 MeV
			γ : 0.48 MeV

Gaseous detectors:

proportional counters filled with 3 He or BF₃

Solid detectors:

scintillators **LiF** silicon detectors with Boron solid conversion layer

Validity of the 1/v law

Outline

1 Neutron optics, ultracold neutrons 2 Fundamental physics with UCNs Neutron lifetime Electric dipole moment Gravity with neutrons **3 Neutron detection** 4 UCN sources

Big Neutron Sources

FISSION

- steady chain reaction
- ~ 2 neutron/fission
- Energy ~ 2 MeV

thermal 235 (

SPALLATION

- Accelerator driven
- Pulsed or steady
- ~ 20 neutrons/proton
- Energy ~ 20 MeV

Compare the neutron flux

ILL high flux reactor Thermal neutron flux ~ 1.5 x 10¹⁵ n/cm²/s

PWR power reactor Thermal neutron flux ~ 10¹⁴ n/cm²/s

SNS pulsed source Thermal neutron flux Peak ~ 3x10¹⁶ n/cm²/s Average ~ 4x10¹³ n/cm²/s

research reactors worldwide)

High intensity spallation sources available for users56

The ILL high flux reactor

Thermal power: 58 MW

Heavy water moderator and reflector

Fuel: HEU (93.3% 235)

Cold source: 20 L of Liquid D2 at 20K

Source UCN PF2@ILL, since 1985

Superthermal production of UCNs in superfluid 4He

Input: intense beam of cold neutrons with a wavelength of 8.9 A

The superfluid Helium needs to be cooled down to 0.7 K

UCN source at the Paul Scherrer Institute

pulsed UCN source One kick per 5 min online since 2011

Finally a worldwide comparison of UCN sources

Diter Ries (PhD) stainless steel bottle