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The two frontiers of  particle physics

1 Energy frontier

Probing new physics at high energy particle colliders
Example: production of the Higgs boson 𝑚𝐻 = 125 GeV

2 Intensity frontier

Probing new physics by looking at very rare processes or testing 
the Standard Model with high precision. 

Examples:

• 𝜇 → 𝑒 𝛾 𝐵𝑅 < 6 × 10−13

• Proton lifetime > 2 × 1029 yr

• Neutron –antineutron oscillation time > 108 s

• Neutron electric dipole < 3 × 10−26 cm

Neutron particle physics is a subset of the intensity frontier program
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Neutron spectrum
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1 MeV

1 keV

1 eV

1 meV

1 μeV

1 neV

Resonant capture ~ 10 eV

Thermal neutrons:
kT = 25 meV @ T =300 K
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Fermi potentials ~ 100 neV

Fission ~ 2 MeV
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“WAVE”

𝜆 =
2𝜋 ℏ

2 𝑚 𝐸

De Broglie 
wavelength

𝜆 > 0.1 nm

“PARTICLE”

𝜆 < 0.1 nm



Mirror effect (absent)
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Mirror effect (present)
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Particles and waves
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Neutron interaction with a single nucleus
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Potential scattering described by 
non-relativistic quantum 
scattering theory. 
For nonrelativistic neutrons, nuclei 
look point-like ( 𝑘𝑅nucl ≪ 1 ):

• Isotropic scattering
• Energy-independent

Neutron wave function 
corresponding to the 
scattering process

A

𝜓 𝑟 = 𝑒𝑖 𝑘 𝑥 − 𝑏
𝑒𝑖 𝑘 𝑟

𝑟

Scattering  X-section

𝜎 = 4𝜋 𝑏2



Measured neutron scattering lengths
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For a catalog, see http://www.ncnr.nist.gov/resources/n-lengths

Surprisingly, almost all nuclei have 𝑏 > 0.

http://www.ncnr.nist.gov/resources/n-lengths/


Neutron interaction with a collection of  nuclei
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𝜓  𝑟 = 𝑒𝑖 𝑘 𝑥 − 

𝑗

𝜓 𝑅𝑗 𝑏
𝑒𝑖𝑘  𝑟−𝑅𝑗

 𝑟 − 𝑅𝑗
Self consistency of the wave function

Using the relation Δ + 𝑘2
𝑒𝑖𝑘  𝑟−𝑅𝑗

 𝑟 − 𝑅𝑗
= −4𝜋 𝛿  𝑟 − 𝑅𝑗

We find the wave equation

Nucleus number 𝑗

at position 𝑅𝑗

Δ + 𝑘2 𝜓  𝑟 = 4𝜋 𝑏 

𝑗

𝛿  𝑟 − 𝑅𝑗 𝜓  𝑟

≈ 4𝜋 𝑏 𝑛 𝜓  𝑟

𝑛 is the nuclear density of the medium

Incident neutron with 
energy E = ℏ𝑘 2/2𝑚



Defining the Fermi potential 
of a medium

𝑉𝐹 =
2𝜋ℏ2

𝑚
𝑏 𝑛

Fermi potential
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The wave equation is a Schrodinger 
equation with the potential V

−
ℏ2

2𝑚
Δ + 𝑉𝐹 𝜓  𝑟 = 𝐸 𝜓  𝑟

For cold neutrons, bulk matter is characterized by its Fermi potential. 
We expect wave phenomena (refraction, reflection, tunnel 
transmission..). 

Examples

Material b [fm] n [cm-3] VF

Aluminum 3.45 6.02 x 1022 54 neV

Nickel (58Ni) 14.4 9.13 x 1022 340 neV

Natural Nickel 9.13 x 1022 245 neV

For heterogeneous materials (atomically like water, or 
isotopically like natural nickel), one sums the Fermi 
potentials of each nuclear specie: 𝑉𝐹 =  2𝜋ℏ2 𝑚  

𝑖
𝑏𝑖𝑛𝑖



Total reflection of  neutrons
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Solid matter characterized 
by the Fermi potential VF

Condition for total reflection 
of neutrons

Fermi, Zinn (1946)

𝐸 sin2 𝜃 < 𝑉𝐹

Example: thermal neutrons (E=25 meV) are 
guided through a Nickel guide (V=245 neV) 
provided

𝜃 < 0.2°



Application: transporting neutrons 100 m…
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Institut Laue Langevin, 
Grenoble High Flux Reactor

Guide Hall



Neutron distribution channels at ILL
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Ultracold neutrons (UCN)
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Neutrons with energy < 100 neV, 
or velocity <  5 m/s   

are reflected by material walls

Thermal neutrons

Cold neutrons

Ultracold neutrons

We can store 
them in bottles!



UCN plumbing
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UCNs are guided through evacuated 
stainless steel pipes (about 10 cm 
diameter) and bends. 

Losses are generally percents/meter



UCNs and gravity
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UCNs feel gravity

𝑉 𝑧 = 𝑚𝑔 𝑧

𝑉 𝑧 = 1 m = 102 neV

Very important for UCN techniques

• We accelerate UCNs to detect them (otherwise they would 
bounce off the detector window).

• Some UCN traps do not need a roof.

• Lifting an experiment by 50 cm can modify significantly 
the outcome!



UCNs and gravity
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The U device

If you want to remove UCNs 
with energy E<80 neV, 

Just set h = 80 cm



UCNs and magnetic fields
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𝜇𝑛 × 1 T = 60 neV

Neutron magnetic moment
Magnetic fields act on the 

spin ½ neutron

𝑉 = −  𝜇𝑛 𝐵

Magnetized foil

−𝜇𝑛𝐵

+𝜇𝑛𝐵

Input: unpolarized

UCNs
Output: polarized 

UCNs



Summary
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UCNs can be manipulated using

• The nuclear force (Fermi potentials ~ 100 neV)

• The gravitational force (1 m = 100 neV)

• Magnetic fields (1T = 60 neV)

They are used to study the fundamental interactions 
and symmetries

• Weak interaction (beta decay period 10 min)

• Electromagnetic properties of the neutron (EDM)

• Gravitational effects



Outline
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The neutron beta decay lifetime, why bother?
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𝑛 → 𝑝 + 𝑒− +  𝜈𝑒 + 782 keV

• Particle physics:

extracting CKM matrix element 

• Astrophysics and Neutrinos 

Calculating weak semi-leptonic
processes like

• Cosmology

Predicting the 

yields of the 

BigBang

Nucleosynthesis

Free neutron lifetime

𝑉𝑢𝑑

𝑝 + 𝑝 → 𝑑 + 𝑒+ + 𝜈𝑒
 𝜈𝜇 + 𝑝 → 𝜇+ + 𝑛

𝜏𝑛 = 880.0 9 s
[PDG 2013]



Two complementary experimental methods
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Counting the dead neutrons: BEAM METHOD

A detector records the decay products in a well 
defined part of a neutron beam. A neutron beam is 
indeed radioactive due to beta decay. 

Counting the surviving neutrons: BOTTLE METHOD

UCNs are stored in a bottle, the number of 
neutrons remaining in the bottle after a certain 
storage time t is measured.

𝑁(𝑡) = 𝑁 0 𝑒−𝑡/𝜏𝑛

−
𝑑𝑁

𝑑𝑡
=

𝑁

𝜏𝑛



Early beam method: counting the beta electrons
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Christensen et al (1972)



Modern beam method: counting the protons
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Nico et al (2005)

Protons produced almost at rest 
(endpoint energy = 800 eV) 
are accumulated in a Penning trap.



Principle of  a bottle UCN measurement
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UCN

SWITCH

STORAGE 

VOLUME

VALVE

DETECTOR

Typical sequence

1. Switch moved to FILL position, 
Valve OPEN for 20 s

2. Close Valve, 
Switch moved to EMPTY position

3. Wait period t

4. OPEN Valve, count neutrons

Repeat the sequence with different t



Principle of  a bottle UCN measurement
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1

𝜏𝑠𝑡
=

1

𝜏𝑛
+

1

𝜏𝑤𝑎𝑙𝑙

Example: measured 
storage curve in the 20 L 
chamber of the EDM 
experiment

Problem: UCN losses 
at wall reflection are 
not negligible.



Estimating the wall losses
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The probability for a UCN to be lost at a 
wall collision can be of the order of 

The mean free path between collisions 
is of the order of 

The frequency of wall collisions for a 
velocity of 3 m/s is of the order of

The partial lifetime due to wall losses is 
thus of the order of

𝑓 =
𝑣

𝜆
≈ 10 Hz

𝜇 ≈ 10−4

𝜆 ≈ 30 cm

𝜏𝑤𝑎𝑙𝑙 =
1

𝑓𝜇
≈ 1000 s



Good to know: the Clausius law

30

When mechanical equilibrium is 
achieved (isotropic velocity 
distribution) the mean free path 
between wall collisions is 

𝜆 =
4 𝑉

𝑆
Consider a bottle with arbitrary 
shape, of volume V and surface S. 

𝜆 =
2𝑑

3
𝜆 =

𝑑ℎ

 𝑑 2 + ℎ
𝜆 =

2𝑎𝑏ℎ

𝑎𝑏 + 𝑎ℎ + 𝑏ℎ

Results valid 
without gravity!



More on wall losses (a complicated topic)
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• The wall loss probability is 

energy-dependent

• It depends on temperature 

(the colder the better)

• Losses can be calculated 

from absorption and 

inelastic scattering cross 

section data. But measured 

losses are generally higher,  

due to surface impurities 

(hydrogen, in particular)

𝜇 𝐸 = 2𝜂
𝑉

𝐸
asin

𝐸

𝑉
−

𝑉

𝐸
− 1



Example: MAMBO I (ILL, 1989)
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The trap geometry is varied, one 
extrapolates the storage time to 
infinite mean free path



Current status on the neutron lifetime
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The current situation

There is a 3.8 σ
discrepancy 

between the bottle 
method combination
and the beam 
method combination. 

To be continued…
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Neutron electric dipole moment (nEDM)
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A non-zero EDM violates T reversal 

(thus violates CP symmetry)

 𝐻 = −𝜇𝑛 𝐵  𝜎𝑧 − 𝑑𝑛 𝐸  𝜎𝑧

𝑓𝐿 ↑↑ − 𝑓𝐿 ↑↓ = −
2

𝜋ℏ
𝑑𝑛 𝐸

> PLAY >

< REWIND <

Motivation: 

• search for CP violation beyond 
the standard model

• Address the baryogenesis 
question



Explaining the baryogenesis
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Sakharov conditions 
To explain the matter-antimatter 
asymmetry in the Universe

1 Departure from thermal equilibrium
It happens during a phase transition 
in the early universe... Electroweak phase transition?

2 Violation of B conservation
OK in the Standard Model

3 CP violation
The Standard Model (KM) CP violation does not generate 

enough asymmetry. One needs CP violation beyond the SM. This 
new physics would also generate a non zero neutron EDM. 
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→  𝐻 = 𝑑  𝝈𝑬

CP symmetry and electric dipoles

𝑑𝑛 < 300 × 10−28 𝑒 cm (Grenoble, 2006)

𝑑𝑝 < 2000 × 10−28 𝑒 cm (Seattle, 2016)

𝑑𝑒 < 0.9 × 10−28 𝑒 cm (Harvard, 2014)

EDMs: indirect probe of new physics at distance 10−26 cm

LHC: direct probe of new physics at distance 10−17 cm

EDMs: fermion-photon coupling -
imaginary part of the diagram –

generated by radiative corrections.

ℒ = −
𝑖𝑑

2
 𝑓𝜎𝜇𝜈𝛾5𝑓 𝐹

𝜇𝜈



The Ramsey method
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Free 
precession...

Apply /2 spin-flip 
pulse...

“Spin up” 
neutron...

Second /2 spin-
flip pulse

Applied pulse frequency [Hz]

polarization

electric field

precession time

counts

T = 180 s

Statistical sensitivity 

𝜎𝑑𝑛 =
ℏ/2

𝛼 𝐸 𝑇 𝑁



The EDM apparatus
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SWITCH

Iron analyser

5T polarizer
(SC magnet)

UCN source

Mercury lamp

photomultiplier

High voltage,  E = ±  132 kV 12 cm

Spin flipper

4 layers mu-metal shield



The EDM apparatus
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Apparatus installed at ILL PF2 (1986-2009), then moved to PSI

Best limit: 𝑑𝑛 < 3 × 10−26 𝑒 cm obtained with 1998 − 2002 data

[Baker et al, PRL (2006) ; Pendlebury et al, PRD (2015)]



Dealing with B-field fluctuations
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+ + + + + +- - - - --

The mercury co-magnetometer compensates 
for the magnetic field fluctuations…

Uncorrected 
neutron frequency

Mercury-corrected
neutron frequency

𝑓n =
𝛾𝑛
2𝜋

𝐵

𝑓Hg =
𝛾Hg

2𝜋
𝐵

𝑓n
corr ∝

𝑓𝑛
𝑓Hg
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Bouncing neutrons: quantum states
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Neutrons with energy < 100 neV 

can bounce above a glass mirror.  
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Height (µm)

The vertical motion is a simple 
quantum well problem

−
ℏ2

2𝑚

𝑑2𝜓

𝑑𝑧2
+𝑚𝑔𝑧 𝜓 = 𝐸 𝜓



Discovery of  the quantum states at ILL Grenoble
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Nesvizhevsky et al  
Nature 415 (2002)
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Beyond the use in the very specialized UCN physics…

Importance of  neutron detection

• Monitoring in nuclear reactors

• Radiation safety

• Detection of special nuclear materials (233U and 239Pu)

• Cosmic ray detection, monitoring the flux

• Neutrino detectors 𝜈 + 𝑝 → 𝑒+ + 𝑛

• Most serious background in WIMP direct searches

WIMP-induced nuclear recoil 𝜒 + 𝑁 → 𝜒 + 𝑁

similar to fast neutron – induced recoil n + 𝑁 → 𝑛 + 𝑁

Remember: You can’t directly “detect” neutrons…



THE 1/v LAW

𝜎(𝑣) = 𝜎 𝑣0
𝑣0
𝑣

Neutron inelastic reactions
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𝑛 + 𝐴X → 𝑝 + 𝐴Y a. k. a. X 𝑛, 𝑝 Y

• Neutron capture

• Charged reactions

• Fission

𝑛 + 𝐴X → 𝐴+1X∗ + 𝛾 a. k. a. X 𝑛, 𝛾

𝑛 + 𝐴X → 𝛼 + 𝐴−3Y a. k. a. X 𝑛, 𝛼 Y

𝑛 + 235U → 𝑃𝐹1 + 𝑃𝐹2 + 𝜈 𝑛 a. k. a. U 𝑛, 𝑓

One finds in tabulated 
neutron data the 
thermal cross sections

𝜎th = 𝜎 2200 m/s



(n,γ) capture
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𝑛 + 𝑍
𝐴X → 𝛾 + 𝑍

𝐴+1X

𝑄 = 𝑚𝑋 +𝑚𝑛 −𝑚𝑊 𝑐2

a.k.a. the neutron separation 
energy of the nucleus W. 

All stable nuclei have Q>0  EXCEPT for 𝟒𝐇𝐞. 

Thus, 𝟒𝐇𝐞 is the only stable element with 
zero capture cross section for slow neutrons. 

Energy release



(n,p) reaction
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𝑛 + 𝑍
𝐴X → 𝑝 + 𝑍−1

𝐴Y

𝑄 = 𝑚𝑋 +𝑚𝑛 −𝑚𝑝 −𝑚𝑌 𝑐2

Slow neutrons undergo (n,p) reaction 
only if 𝑄 > 𝐵𝑐

Only one possibility

𝑛 + 3He → 𝑝 + 𝑡

𝐵𝑐 = 𝛼
ℏ𝑐

𝑅0

𝑍 − 1

1 + 𝐴1/3

Coulomb barrier 

Energy release



(n,α) reaction
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𝑛 + 𝑍
𝐴X → 𝛼 + 𝑍−2

𝐴−3Y

𝑄 = 𝑚𝑋 +𝑚𝑛 −𝑚𝛼 −𝑚𝑍 𝑐2

Coulomb barrier 𝐵𝑐 = 𝛼
ℏ𝑐

𝑅0

2 (𝑍 − 2)

41/3 + (𝐴 − 3)1/3

Slow neutrons undergo (n,α) 
reaction only if 𝑄 > 𝐵𝑐

Energy release Only two possibilities

𝑛 + 6Li → 𝛼 + 𝑡

𝑛 + 10B → 𝛼 + 7Li



Three neutron convertors
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𝟑𝐇𝐞(𝒏, 𝒑) 𝟔𝐋𝐢(𝒏, 𝜶) 𝟏𝟎𝐁(𝒏, 𝜶)

Abundance 0.014 % 7.6 % 19.9 %

𝜎th 5330 barn 937 barn 3837 barn

Kinetic energy 
of products

𝒑 : 0.57 MeV 𝜶 : 2.05 MeV 𝜶 : 1.47 MeV

𝒕 : 0.19 MeV 𝒕 : 2.73 MeV 𝐋𝐢 : 0.84 MeV

𝜸 : 0.48 MeV

Gaseous detectors: 

proportional counters filled with 𝟑𝐇𝐞 or 𝐁𝐅𝟑

Solid detectors:

scintillators 𝐋𝐢𝐅
silicon detectors with Boron solid conversion layer



Validity of  the 1/v law
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Capture on 

Cadmium

THE 1/v LAW

𝜎(𝑣) = 𝜎 𝑣0
𝑣0
𝑣
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Big Neutron Sources
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FISSION

• steady chain reaction

• ~ 2 neutron/fission

• Energy ~ 2 MeV

SPALLATION

• Accelerator driven

• Pulsed or steady

• ~ 20 neutrons/proton

• Energy ~ 20 MeV



Compare the neutron flux
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PWR power reactor

Thermal neutron flux

~ 1014 n/cm2/s

ILL high flux reactor

Thermal neutron flux

~ 1.5 x 1015 n/cm2/s

SNS pulsed source

Thermal neutron flux

Peak ~ 3x1016 n/cm2/s

Average ~ 4x1013 n/cm2/s



About 20 Big Neutron Sources worldwide
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High flux reactors with cold neutron source 

available for users (there are 246 operational 

research reactors worldwide) High intensity spallation sources available for users
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S
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ILL instrument suite
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The ILL high flux reactor
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Thermal power: 58 MW

Heavy water moderator and reflector

Fuel: HEU (93.3% 235)

Cold source: 20 L of  Liquid D2 at 20K
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Source UCN PF2@ILL, since 1985 

30 UCN / cm3



Superthermal production of  UCNs in superfluid 4He
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Input: intense beam of  cold neutrons with 

a wavelength of  8.9 A

The superfluid Helium needs to be cooled 

down to 0.7 K



UCN source at the 
Paul Scherrer Institute
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600 MeV, 2.2 mA

pulsed UCN source 
One kick per 5 min
online since 2011



Finally a worldwide comparison of UCN sources
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Diter Ries (PhD) stainless steel bottle


