An introduction to VMEDbus

Markus Joos, CERN

Overview
« What you already should know
« VMEbus
* Introduction
 Addressing
« Single cycles
* Block transfers
* Interrupts
* VMEG64x
 System assembly

« Single Board Computers

« Software ? Q/O ‘

. Tools 0111111'00001

M. Joos — Introduction to VMEDbus

« C(++) programming
* use of pointers
* signals
« data types (char, short, int)
 (use of C++ methods)
 Linux
« Makefiles
gdb
Shared libraries
 Usually the environment variable LD _LIBRARY _PATH tells the
linker where to find shared libraries
Handling drivers (insmod, device nodes, files in /proc)
General operation (cd, Is, mkdir, etc.)

M. Joos — Introduction to VMEDbus

xS

e <
TJ{! WORLD'S BIGGEST '

P “SELLING AtBUM
IPwe = W OF ALLTIME
W lmmedn | East Falkland) .

S Commwray o
Pon Howard S TER- 3w C weg
.

STANLEY s
D - o
“J5o0ee Grepr
Jecaer
#ost
Faiiand
Agrere 0
Sty

Falklands War _ -
First implantation of an Michael Jackson - Thriller

artificial heart

VMEbus

Technology

™

IEEE 1014 - VMEDbus o cucn
First computer virus
M. Joos — Introduction to VMEbus

VMEDus In action

The VMEDbus crates of the ATLAS RPC detector

M. Joos — Introduction to VMEDbus

VMEDus In action

A single ROD crate

»

r - ——
. \ . > - . . Heat Exchang
» - = RS < — ! g g 21ERCERHXCO(
PN ' N 3 2 T T

- - T —— R : . 5 ;SN ;

o i I .; T A © o - . Py
- A v
L 1 —-

Processor board

TTC interface Detector interface

M. Joos — Introduction to VMEDbus

VMEDus In action

More examples of [IE
VMEDus systems I
In ATLAS

In total there are
about ~150 crates
In ATLAS and
they will stay for
another 5-10

M. Joos — Introduction to VMEDbus

« (Complex) DAQ systems usually require custom built electronics modules
which have to be:

— Housed
— Powered
— Configured
— Read out
« VMEDbus has traditionally been the technology of choice in many HEP

experiments and accelerator control systems because it offers features such
as:

— A well proven open standard that includes mechanical, electrical and protocol
sections

— Suitable card sizes
— A data transfer protocol that is relatively easy to implement

— An “ecosystem” of third party products (crates, processors, 1/0O modules, etc.)
which are supported by the manufacturers for long durations

« Currently there are more than 1000 VMEDbus systems at CERN (accelerator
& experiments)

M. Joos — Introduction to VMEDbus

Betftore we continue....

If you join an experiment / project where VMEDus is used right now:
« Learnto use it (you will become an indispensable expert)

« Make sure new versions of the OS (64bit, etc.) will not be incompatible with
your old H/W

« If your experiments will last for another ~5 years (or more): Devise a
migration strategy to e.g. MTCA or PCs

If you are starting a new experiment:

« Only use VMEDbus as the basis of your DAQ system if you know what you
are doing

« MTCA (see next lecture) or PCs may be a better choice

M. Joos — Introduction to VMEDbus

VMEDbus mechanics

VMEDbus cards exist in 3 standard heights: 3U, 6U and 9U (1U = 1.75 inch)
and 2 depths: 160 mm (3U, 6U) and 340 mm (9U)

1
- f A i s
o

- Eﬁgﬂ'&- ;
DY
iUl “:d?‘,;',"""l""““"l"”"l"lll-

e
U v —
00RO RO

All cards are 0.8 inch (20.3 mm) wide

M. Joos — Introduction to VMEDbus

Backplane

: E.gltmplane

P1a1 ||

-
(95}

lackpla

6U transition
module

D [{ 60U module ' T 1

9U transition module

P3| J3

9U module

\ 7

In 6U and 9U systems there can be transition modules installed on the rear side of the backplane.
Transition modules do not connect to VMEDbus but just to the VMEbus module on the opposite side

of the backplane via the user defined pins of the JO, J2 and J3 connectors
M. Joos — Introduction to VMEDbus 10

VMEDbus mechanics (3)

Example: 6U VMEG4x module

Alignment pin
Incompatible with certain old crates

5 row P1 connector
160 pins used for VMEDbus

Insertion force
(415 pins * 1 N)

PO connector

Used for PMC I/O
Incompatible with certain
crates (Jaux, VMEG64xP)

Injector / extractor handles
with Push button

5 row P2 connector
32 pins used for VMEDbus

Discharge strip for transition modules)

M. Joos — Introduction to VMEDbus

Other pins user defined (e.g.

flid

VMEDus crates

21 slot 9U crate e

A _ :
oz sarananmnsnnanns: (with 6U section)|

for 19” racks

21 slot 6U crate
for 19” racks

« There are different types of power supplies (5V, +/- 12V, 3.3V, 48V)
mounted locally or remotely

« The fan-tray unit allows to monitor parameters like voltages, currents, fan
speeds, temperatures

« (Some) crates can be remotely controlled eg. by a field bus (caN)
« ATTENTION: The EMC gasket to the left of slot 1 may damage your VMEDbus cards

M. Joos — Introduction to VMEDbus

12

VMEDbus Backplane

ZE N _
&l \ / - BGO
J1 \E H BG1
l_// Daisy-chain [B2
jumpers (only —
on some old —] BG3
10 backplanes)
J2
J3 (9U
crates
only)
Slot 1
Front view Automatic 6U VMEG64x backplane 4 13
M. Joos — Introduction to VMEDbus

» Classes of modules (logical)
— Master
« A module that can initiate data transfers
— Slave
« A module that responds to a master
— Interrupter
« A module that can send an interrupt (usually a slave)
— Interrupt handler

« A module that can receive (and handle) interrupts (usually a Single
Board Computer)

— Arbiter

A piece of electronics (usually included in the SBC) that arbitrates
bus access and monitors the status of the bus. It should always be
installed in slot 1 of the VMEDbus crate if interrupts are used

. Joos — Introduction to VMEbus

14

 Electrical properties

— All lines use TTL levels

— Low=0..06V

— High=24..5V

— Address, address modifier and data lines are active high

— Protocol lines (e.g. AM, LWORD, DSO0/1) are active low
 Protocol

— Asynchronous with 4-edge handshaking

— The duration of a VMEDus cycle depends on the speed of the master and
the slave

« Byte ordering

— VMEDbus is big endian. It stores the most significant byte of a 32-bit word
at the lowest byte address (0x0)

— PCI and Intel CPUs are little endian. They store the most significant byte
of a 32-bit word at the highest byte address (0x3)

— Some (but not all) VMEbus masters (e.g. VP-E24) have automatic byte
swapping logic

M. Joos — Introduction to VMEDbus

15

VMEDbus basics (3)

« Main types of data transfers
— Single cycles
« Transfer 8, 16 or 32 bits of data (typically) under the control of the CPU on the master
« Mnemonic: D8, D16 and D32
« Typical duration: 1 us + S/W overhead
— Block transfers (DMA = Direct Memory Access)

« Transfer any amount of data (usually 32 or 64 bit at a time) under the control of a
DMA controller (CPU independent)

« Mnemonic: D32BLT and D64MBLT
« Data is transferred in bursts of up to 256 (D32) or 2048 (D64) bytes
« Typical duration: 150 ns per data word
— Interrupts
» Used typically by slaves to signal a condition (e.g. data available, internal error, etc.)
« Can (in principle) have 7 priorities

« The interrupter provides an 8-bit vector on request of the interrupt handler to identify
itself

ROAK (Release on Acknowledge) Or RORA (Release On Register Access)

e VM Ebus addresses

— Either 16, 24 or 32 valid bits. Mnemonic: A16, A24 or A32
— AJ40 and A64 defined but very rarely used

M. Joos — Introduction to VMEDbus 16

VMEDbus protocol

Why do I have to understand how the protocol
works if I am not designing cards?

« Some designers make mistakes and their VMEbus cards do not work at all
or fail in combination with certain other cards

« Debugging and optimizing VMEDbus traffic by S/W (printf(), gdb, etc.) is
difficult or even impossible

« A great help for fixing such problems are VMEDbus analyzers

« In order to understand the output of such an analyzer you have to have some
knowledge of the protocol

M. Joos — Introduction to VMEDbus 17

Name

Description

BBSY* Bus Busy. Once a master has been granted the bus it drives BBSY*. As long as BBSY™* is
asserted no other master can get the bus

AJ31..1] Address lines (can carry data in D64 multiplexed transfers). AOO does not exist

D[31..0] Data lines

AMI5..0] Address modifier. Defines the number of valid address bits and the cycle type

DS0* and DS1*

Data strobes. Tell the slave when the master is ready. Also encode the number of bytes to be
transferred

LWORD* Contributes to the definition of the transfer size and carries data in multiplexed block transfers
AS* Address Strobe. Tells the slaves when the address on the bus is valid

WRITE* Defines the direction of the data transfer

DTACK* Data acknowledge. Used by a slave to tell the master that it has read / written the data

BERR* Bus error. Used by slaves or arbiters to signal errors

IRQ1* .. IRQ7* Interrupt request lines. Asserted by the interrupter

IACK* Interrupt acknowledge. Used by the interrupt handler to retrieve an interrupt vector from the

Interrupter

Note: “*”” denotes active low signals

M. Joos — Introduction to VMEDbus

18

Arbitration

Before a master can transfer data it has to request the bus. It does this by
asserting one of the four bus request lines
— These lines (BRO, BR1, BR2 and BR3) can be used to prioritize requests in multi-
master systems)
The arbiter (usually in slot 1) knows (by looking at the BBSY line) if the bus is
busy or idle. Once it is idle it asserts one of the four Bus Grant out lines
(BGOUT 0..3)

If a master detects a “1” on the BGIN line corresponding to its BR it claims the
bus by asserting BBSY (otherwise it passes BGIN on to BGOUT to close the

daisy chain) ¢

Slot N Slot N+1
BR* T %5
BCINE & P2 f me
Bie BGOUT o= @
BBSY*

BG dqisy chain

Color code: Arbiter - Master

M. Joos — Introduction to VMEDbus

« The arbiter can use different schemes: PRI (priority based),
RRS (round robin)

— Not an issue for single master systems
 |f two masters use the same bus request level the one

closer to slot 1 inherently has a higher priority (because it
detects BGIN first)

 Modern masters support “fair arbitration”. I.e. they delay
their bus request if other masters are requesting the bus at
the same level

« A master may get stuck if the BG daisy chain is not closed

M. Joos — Introduction to VMEDbus 20

The VMEDbus backplane has 31 address lines: A01..A31

There is no A0O address line on the backplane. This information is encoded
In the DSO0/1 protocol lines
A slave is selected by two criteria:

— Address (usually 16, 24 or 32 valid bits)

— Address modifier (6 bits). It defines:
» The number of valid address bits
« The access mode (user/supervisor, program/data, CR/CSR)
» The transfer type (single cycle or block transfer)

Typically slaves respond to only one address width (A16, A24 or A32; read
the manual of the slave) but may allow both single cycles and block
transfers

The base address of a slave can be set:
— Mechanically: on-board Jumpers, DIP switches
— By S/W: VMEG64x geographical addressing, CR/CSR

M. Joos — Introduction to VMEDbus

Addressing protocol

e First the master drives AM, Address and L\WWORD*. Then it waits 35 ns and
finally drives AS* to validate the information

« The slave has to decode the address information within 40 ns (even though
most masters keep AS* asserted much longer)

« The master does not know if a slave has accepted the address information. It
continues with the data transfer until it either receives a DTACK* or a BERR*

» If two or more slaves believe to be addressed you have a problem...

AM[5..0] - .
Invalid valid The timing parameters mentioned

LWORD* : ; 2 here are two of about 50 in the
invalid valid VMEDbus standard. The standard
]]] also distinguishes master and slave

A[31.1] invalid valid timing (bus skew)

AS* —

Color code: Master 3905140 ns ,

M. Joos — Introduction to VMEDbus

22

Single cycles

Example: (Simplified) write cycle

BR*

BG*

AS*

1

> Arbitration

Address/AM

undefined >< defined

undefined

fined

Data undefined >< defined
2

BISig

DTACK*

BERR*

Color code: Master - Slave - Arbiter

M. Joos — Introduction to VMEDbus

1: Master drives address and AM
code. Then it asserts AS

2: Master puts data on the bus. Then it
asserts DS

3: Slave latches data and drives
DTACK

4: Master removes DS

5: Slave removes DTACK

6: Master releases Address, AM and
data lines. Then it releases AS

23

« The number of bytes to be transferred (1, 2 or 4) is encoded in the
DSO0, DS1 and LWORD protocol lines

« Remember that some slaves support only certain data widths (e.g. D8
and D16 but not D32)

« The VMEDbus address should be aligned to the data size
— Reading a D32 word e.g. from address 0x000003 may not be a good idea

« VMEDbus also supports (rarely used) read-modify-write cycles (useful
for semaphores)

« Remember that VMEDbus is big endian. Example:

Address Action Result
0x00000000 D32 write 0x11223344 | --
0x00000000 D32 read 0x11223344
0x00000000 D8 read Ox11
0x00000003 D8 read 0x44

M. Joos — Introduction to VMEDbus

24

Example: D32 write B I OCk tranSfe rS

AS

Address/AM __unefined X defined X andeined
Data undefined > defined X _ defined X defined X defined > undefined
DS

DTACK

« The Block transfer protocol is based on the single cycle protocol

 The address lines on the backplane do not change state during the transfer. Both
master and slave use internal counters to keep track of the address

As the address lines are not used they can carry data: 64-bit multiplexed DMA
In this case the slave uses DTACK for two purposes:

— Directly after the assertion of AS to acknowledge the address
— After each assertion of DS to acknowledge the data

Color code: Single cycle protocol — block transfer

M. Joos — Introduction to VMEDbus 25

» A master must not cross a 256 bytes (D32) or 2048 bytes (D64) address
boundary respectively without releasing AS (transparent to the user)

— This is to give other masters a chance to acquire the bus before too long

* Reading out single address FIFOs Is not foreseen by the standard and requires
special masters

« Designing a slave that terminates a block transfer from a FIFO with a bus
eLr_or IS legal but bad practice. It does not always work with the IDT Universe
chip

« VMEDbus interface chips may require a relative alignment of the remote
(VMEDbus) and local (PCI) addresses

— In case of the IDT Universe the VMEDbus and PCI addresses must be 8-byte
aligned with respect to each other

« Contiguous buffers

— Memory obtained with malloc () may be fragmented. Most DMA controllers,
however, need contiguous buffers

— Contiguous buffers can be provided by special drivers (e.g. ATLAS: cmem_rcc)
Ié)ased c))n kernel functions (e.g. get_free pages) or new features of the Linux kernel
CMA

M. Joos — Introduction to VMEDbus

VMEDbus typical performance

« Being a handshaked, asynchronous protocol there is no fixed transfer rate. The
timing parameters (see VMEbus standard) however set an upper limit.
« Single cycles: Typical performance = 1 s per transfer
— D8 =1MB/s
— D16 =2 MB/s
— D32=4MB/s
« Write posting decouples PCI and VMEDbus cycle. This increases the
performance to ~ 10 MB/s for D32
» Block transfers
— D32 =20..25 MBJ/s (theoretical: 40 MB/s)
— D64 =40..50 MB/s (theoretical: 80 MB/s)

M. Joos — Introduction to VMEDbus

2l

 In VMEDbus errors can occur under two conditions

— A sslave has been addressed but is incapable of performing the requested transfer. In
this case the BERR signal is issued by the slave and reaches the master within a few
HS.

— The master has issued an address that no slave recognizes. Such cycles get
terminated by the bus monitor (arbiter) by asserting BERR after a programmable
delay (typical values are 16 or 256 Ls)

« There is no standard way for the delivery of a BERR from the VMEDbus
interface to the CPU of the master

— On PowerPCs BERR is typically converted directly to a non-maskable interrupt and then converted to the
SIGBUS signal by the operating system

— Certain (old) Intel based SBCs ignore bus errors

— Other Intel based SBCs convert it to a regular PCI interrupt. This interrupt is
typically handled by the VMEbus driver and converted to the SIGBUS signal

M. Joos — Introduction to VMEDbus

28

« VMEDbus provides 7 interrupt levels (= bus lines) to prioritize interrupts
« Each interrupter can use any level
« There must only be one interrupt handler for each level

« The interrupt handler uses (under H/W control) a special type of single cycle (IACK
cycle) to obtain an 8-bit vector from the interrupter. This vector (set by jumpers or S/W)
must be unique (within the crate) and identifies the source of the interrupt

» There are two types of interrupters:

— ROAK (preferred)
« The IACK cycle clears the interrupt
— RORA
« The interrupt is cleared by an additional register access (single read or write cycle)

« Typically an interrupt gets handled by the H/W in a few ps (once the VMEDbus is free).
However there can be additional (possibly large) S/\W overheads depending on the
operating system used and the state of the CPU

« If two interrupters are active at the same time and on the same level the one closer to
slot 1 will be serviced first (IACK daisy chain)

Slot N Slot N+1
IACKIN | O f O
IACKOUT O— O——

M. Joos — Introduction to VMEDbus 29

« VMEBG4X is a set of extensions to the VMEDbus standard made in 1997

« Most features are optional and fall into one of four categories:
— Mechanics
« 5-row P1/J1 and P2/J2 connectors
« JO/PO connector
 Alignment pin
« EMC gaskets
« Injector / extractor handles
 Discharge strips
« Card keys
 Solder side covers
— Plug-and-play
« Geographical addressing (access a module by its slot number)

« CRJ/CSR space: Standardised registers for the automatic configuration of a module
(base address(es), interrupt vector(s), etc.)

— Power
« 3.3Vand48V
« Additional 5V

— 2eVVME Protocol: A rarely used way of speeding up block transfers (theoretical
bandwidth: 160 MB/s)

M. Joos — Introduction to VMEDbus

30

« “Classic” VMEDbus slaves use on-board jumpers or switches for the
Initialization of the base address and the interrupt vectors

« The VMEG4(x) standard proposes a S/W based mechanism (plug-and-play)
The basic principles are:

— Each slave has a special window of 512 kB consisting of a Configuration ROM
(CR) and a Control and Status Register (CSR) section

— Access to this window is in A24 mode with AM=0x2f

— The address of that window is either set by jumpers (VMEG64) or derived from
the slot number (geographical addressing, VME64x) with the formula:

address = slot# * 0x80000

— The CR/CSR space contains many (mostly optional) features to specify and
control the functions of a slave board

— Slave boards are identified by a manufacturer + board ID stored in the CR. These
IDs have to be unique

— The most important CSR space registers are the eight ADER registers. They are
used to define the base address(es) of the main function(s) of the slave.

M. Joos — Introduction to VMEDbus

31

« 2eSST = 2 edge Source Synchronous Transfer
« An addition to the VMEG4x standard (since 1999)
« |t defines a synchronous protocol for VMEbus block transfers

« Three transfer speeds are defined: 160, 267 and 320 MB/s (8 bytes @
20, 33.3 and 40 MHz)

« Allows for data broadcast and multicast

« Works only reliably on high quality backplanes (incident wave
switching) and with special (Texas Instruments) driver chips

« There exist only a hand full of VMEbus modules built to this standard

M. Joos — Introduction to VMEDbus 32

The VMEDbus single board computer

« Usually this is the only master and interrupt handler in the crate

« |t often also provides the arbiter functionality (and should therefore be
installed in slot 1, despite what will be said about cooling)

It behaves like a normal PC
— Operating system: Linux, (RT OS, Wlndows)
— Development tools: gcc, g++, gdb _— 2 . \
— Environment: Shell, Xterm, vi, emacs & ‘Pﬂ J
— Accessed via: RS232, Ethernet, VGA N&&

- It interfaces to VMEbus via a PCI device
— Typically IDT Universe / Tsi148
— Depending on the model and the S/W used the VMEDbus I/F has to be

configured in the BIOS or at start-up by special programs

« Some SBCs can be equipped with mezzanines (PMC, IP) but this

IS another story

M. Joos — Introduction to VMEDbus 33

CPU 2 GHz Intel® Core™ 17

RAM 4GB

VMEDbus interface IDT Tsil48

PMC sites Two. 32 or 64 bit, 33 or 66 MHz, (can be configured for 5V or 3.3V signaling)

Mass storage

A SATA or CompactFlash hard disk can be installed on-board. This takes one
of the PMC slots

Network interface

One channel, 1 Gbit/s, RJ45 on front panel

Mechanics

VMEG64x compliant: 5-row P1 and P2, PO (optional), front panel with
alignment pin and injector / extractor handles (alternative solution for 3-row
VME backplanes exists), solder side cover

Terminal connection

KVM via special connector on the front panel

M. Joos — Introduction to VMEDbus

34

Other VMEDbus masters and Interfaces
« PC to VMEDbus interfaces 1

— Available from several manufacturers

— A set typically consists of a PCI card, a VMEDbus card
and a cable (copper or optical fiber)

— Also available: VMEbus master with USB interface

« VMEDbus repeaters
— Allows a master in crate 1 to access a slave in crate 2
— A set consists of two VMEDbus cards and a cable

— There is usually a performance penalty

e VMEbus to CAMAC interface
— Allows a master in a VMEDbus crate to control a CAMAC crate
— A set consists of a VMEDbus slave, a CAMAC crate controller and a cable

M. Joos — Introduction to VMEDbus

35

The PO, P2 and P3 connectors have a number of user defined pins. They can be
used to implement specialized communication channels independently from the
VMEDbus protocol. Examples:

* VXS (-> next lecture)
— A recent but unsuccessful addition to the standard
— It allows each VMEDbus card to connect to a switch fabric.

— Initially it uses the Ethernet protocol but other technologies (e.g. PCle) are
possible as well

« (Custom P3

— In 9U crates the P3 is totally user defined

— Special backplanes are possible too

* VSB (VME Subsystem Bus)
— Obsolete.
— Provides a 32 bit bus for up to 8 adjacent cards
— Was used to interface to FASTBUS

M. Joos — Introduction to VMEDbus

36

« Find the right crate for your modules
— JO / Jaux incompatibility
— VME®64x (alignment pin, geographical addressing)
« Find out if your crate still has BG/IACK jumpers
— Rule: Each slot must be equipped with 1 card or 5 jumpers
— Attention: Jumpers may be on either side of the J1 connector depending on backplane type

« Card handling and insertion
— VMEDbus cards can be sensitive to electrostatic discharge. Take precautions &

— Never add or remove a card if the crate is switched on

— Depending on the type of module the insertion force is between 20 and 50 kg. Check twice
that the card really has been inserted properly!!

— Do not trust LEDs on the front panel. On certain (VMEG64Xx) cards the power pins are longer
than the protocol pins.

« Cooling
— Avoid installing CPUs in the leftmost or rightmost slot (there are special arbiter modules)
— Leave one or two slots empty between cards, if possible
— Close the front of the crate with blind panels
— Check the fan speed
— Check if your VMEDus cards have temperature sensors
Address lay-out
— Check that the address windows of the slave modules do not overlap
— Try to map similar slaves (e.g. A32, A24) to consecutive address ranges

M. Joos — Introduction to VMEDbus

37

True “Real time” S/W is rarely required (— buffer chains)

(Linux) Drivers

In (almost) all cases access to the VMEDus is via a device driver
The driver allows to use the VMEDbus in multi-processing environments

Interrupts are handled by the driver and signalled to the user application e.g. by means
of signals or semaphores

The drivers typically provide DMA request lists. A block transfer may therefore not
take place immediately but be delayed by other DMA requests

Accessing the bus via a driver has disadvantages too
— Additional overhead due to context switching (S/W overhead can be 10 * H/W latency)
— Drivers are difficult to debug
— Sometimes commercial drivers lack desirable features and performance

The “ATLAS approach”: We have developed our own driver and library
— Reduces dependency on commercial companies
— Allows for the implementation of performance optimized code
 Driver can be bypassed for fast H/W access
« Use of contiguous memory optimizes transfer of large blocks of data
— May not be justifiable for smaller projects

M. Joos — Introduction to VMEDbus

38

VMEbus S/W (2)

Libraries

« The driver is not used directly by the application but via a user library
« There is no standard API for such libraries

« Switching from one type of master to another imposes issues for S/W
portability

Performance optimization

« Avoid memcopy(); just pass pointers

» Avoid context switching (bypass drivers)

« Avoid single cycles (this may require special features at the H/\W level)
« Use contiguous buffers (for efficient DMA)

« Don’t be too generous with interrupts (less context switching)

« Only implement the features you need (e.g. multi-processing support)
 Understand the latencies in your S/W -> profiling

M. Joos — Introduction to VMEDbus 39

Debugging tools

« H/W (Examples)

— VMEtro VBT325 bus analyzer
Stores up to 16000 VMEDbus cycles
Powerful trigger and sequencer
Supports protocol analysis

terminal program (e.g. HypeTerm, minicom, kermit, putty)

— CES VMDIS8004
« Low cost bus monitor. Displays the most recent cycle
 Can latch the first cycle with a bus error or an interrupt
» Has a built in arbiter (useful if SBC runs hot in slot 1)

« S/W

— Standard tools for code debugging (gdb, printf(), etc.)
— Special tools depend on the S/W package

M. Joos — Introduction to VMEDbus

To operate it you need a VT100 (Falco) terminal or a PC with a

3

i

Note: This slide
contains product
placement

40

VMEDbus standard
— (unfortunately the standard is open but not freely available)

Atlas S/W

— https://edms.cern.ch/document/325729/4

— https://edms.cern.ch/document/349680/2

— https://edms.cern.ch/document/336290/3

— https://edms.cern.ch/file/325729/4/wrapper.pdf

Alternative open source VMEDbus drivers for the Universe chip

= (Webpage last changed on May 24, 2003)

VMEDbus market overview
— http://www.vita.com

M. Joos — Introduction to VMEDbus

41

http://www.vita.com/
http://www.vmelinux.org/
http://www.vmelinux.org/

M. Joos — Introduction to VMEDbus

The End

42

Additional slides

The slides below provide additional information at a more
detailed level. Some of them are based on the VMEbus S/W
that was developed at CERN for the ATLAS and ALICE
experiments. Keep in mind that the library functions and
applications of this S/W package are different from other
(commercial or public domain) packages for VMEDbus access

M. Joos — Introduction to VMEDbus

43

Use of pointers to generate VMEDus cycles

LISl CnySTE S i el iy SRR ele T 1 SaaE Ticl ialslEels s
LIRSS gneEss homsmusi Id=E , sy Do

un's vopledSchar usida tal S SueNpit T ;

Main ()

{
VARt Uad faddresss = Map VMENmedule (physh'ical faddress), " AMaode, LA ¥ v/ HypdtheTEal* funct ioW

CESSD TR s (USEecneciibn TSl s il o s Aslicle © Sisy
UE JOlEigs (Thisgne e S elpie oey - | Seaic BEL BEvels [o@ s
LcigE B = s M Guie] Wal ot Ny e Bl eielE Fe SIS

ui data = *ui ptr; //D32 read
e p =l tdata;) /D3 2MwriEe
us_data = *us_ptr; //D16 read
*us_ptr = us_data; //D16 write
uc_data = *uc_ptr; //D8 read
UG DU kU Gl delel: - W/ DB vl e

uiidat e ="t ptrl0] W Tfeque valent oW U fpier;
ui data = ui ptr[4]; // Read D32 at offset 0x10 (4 * 4 bytes)
uc data = uc_ptr[4]; // Read D8 at offset 0x4 (4 * 1 byte)

}

M. Joos — Introduction to VMEDbus

Signal handling

#include <signal.h>
//Prototypes
void SigBusHandler (int signum) ;

main
{

e s (en ST O F el () e = W

S eEEt Yisclsiis. S M sialy Tl s

S o TS RO

SeuZe. Samiamditer SRS TgRusHEICH o Iy

stat = sigaction (SIGBUS, &sa2, NULL);

1TSS e e O

{
PNt @ CamTow Lnsta lklngsS IEEUS" hiain d. e s (v O —%d) \ N Yes 9)7
exiit (=)

void SigBusHandler (int signum)

{

printf (“Bus error received\n”);

}

s

M. Joos — Introduction to VMEDbus

e Ismy driver loaded?
e/ SIOTD /MR CE)
* In what state is my driver?

- more /proc/<name> (value of name depends on the driver used.
ATLAS: “vme rcc”, “cmem_rcc” or “10_rcc”

 Is the driver currently used
L /'Shin /Adksmed
— Check the “Used by” number in the third column.
« How to restart a driver
— “Used by’ has to be 0
— su (then enter root password)
2 Cd e el fEERd /i e
— <name> restart (e.g. “vme rcc restart”)

M. Joos — Introduction to VMEDbus

46

AM code Description

0x08 A32, user, 64-bit (MBLT) block transfer

0x09 A32, user, data, single cycle

O0x0A A32, user, program, single cycle

0x0B A32, user, 32-bit (BLT) block transfer

0x0C A32, supervisor, 64-bit (MBLT) block transfer
0x0D A32, supervisor, data, single cycle

Ox0E A32, supervisor, program, single cycle

OxOF A32, supervisor, 32-bit (BLT) block transfer
0x29 Al6, user, data, single cycle

0x2C Al6, supervisor, data, single cycle

Ox2F CR/CSR single cycle (geographical addressing)
0x38 A24, user, 64-bit (MBLT) block transfer

0x39 A24, user, data, single cycle

0x3A A24, user, program, single cycle

0x3B A24, user, 32-bit (BLT) block transfer

0x3C A24, supervisor, 64-bit (MBLT) block transfer
0x3D A24, supervisor, data, single cycle

Ox3E A24, supervisor, program, single cycle

Ox3F A24, supervisor, 32-bit (BLT) block transfer

M. Joos — Introduction to VMEDbus

47

Other Information

» Forthe ATLAS VMEDbus library there is a C++ wrapper
— https://fedms.cern.ch/file/325729/4/wrapper.pdf

M. Joos — Introduction to VMEDbus 4 48

ACFAIL: A line on the VMEDbus backplane driven by the power supply. If asserted the +5V power will be available
for at least an other 4 ms and then drop below 4.875 V

BBSY: The protocol line that indicates if the bus is being used (Bus Busy)
BERR: The protocol line that signals a bus error

BGO0..3: Protocol lines used by the arbiter to grant the bus to a master
BRO..3: Protocol lines used by masters to request the bus

CR/CSR: Configuration ROM / Control and Status Registers, a feature of VME®64(x) slave cards for the plug-and-play
configuration of the on-board functions

Daisy chain: Some of the signal lines of a VMEDbus backplane are not bussed but connect only two adjacent slots. In
order to pass a signal from slot N to slot N+m the VMEbus modules in between these slots have to pass the signal
from the input side to the output side. In case of an empty slot the connection has to be made mechanically
(Jumper) or automatic (special backplane)

DMA: Direct Memory Access (block transfers)

EMC: ElectroMagnetic Compatibility:

IACK: Protocol line used for the interrupt handshake

JO, J1, J2, J3: The female jacks (connectors) on the VMEbus backplane

Jaux: A special connector sitting between J1 and J2 on some backplanes used at CERN. Required for certain front-end
modules but incompatible with the PO connector of VMEG64x

PO, P1, P2, P3: The male plugs on VMEbus cards connecting to the backplane

ROAK: Release On AKnowledge, A type of VMEDbus interrupter that clears the interrupt in response to the IACK
cycle

RORA: Release On Register Access, A type of VMEDbus interrupter that requires a special intervention from the master
to clear an interrupt

SBC: Single Board Computer

SYSFAIL: A VMEDbus line that indicates a problem with one card. SYSFAIL can be monitored e.g. by an SBC where
it would be converted to an interrupt

Write Posting: A way of speeding up single write cycles. The PCI cycle gets acknowledged before the VMEbus cycle
completes. This decoupling of the busses increases the speed but can complicate the detection of bus errors

M. Joos — Introduction to VMEDbus

49

The IDT Universe Il ASIC

LAY ta'n?

Universe

Four kecation . o
montiors Fixed priority,
bos;canVMEbus Round robin,
breadcast capabilty Single kevel medes

1 i « Bridges VMEbus to

hogation |l ViEbus PC|
A | ot P s, [A e Used on most of the
upl s
DMA Chamna . commercially available
s - o Biireotional FIFO, | Y 8
O I n = (=] -
Zs : g : VMEDus processors
$§ % COR?.gist?r CRhan%el E g
Q% - E Mailbo; ggs%l:s,gﬁwa;ﬁ\'ores § | — oo é%
o= = Y b
29 SN (neruptChannel RS = 5
g Interupter &
I - o P [‘
JTAG
* S0 AL BT Ok
|IEEE1149 .1
Boundary
Scan

M. Joos — Introduction to VMEDbus 50

« The vme_rcc package contains the default VMEDus driver and
library

« Documentation: https://edms.cern.ch/document/325729/4
« Supported H/W: Most SBCs of Concurrent Technologies

« The source code of both the driver and the library has been fully
developed at CERN and tested on Linux kernels up to 2.6.32

« Why not using an existing VMEbus driver instead of
developing a new one?

— We wanted to have a sufficiently generic API that could easily be
iImplemented for any VMEDus interface on a SBC

— Most drivers for the Universe chip lack support for some features
— External code is not necessarily optimized for your type of applications

M. Joos — Introduction to VMEDbus 51

. S/V}/:)The ATLAS vme_rcc package (other packages may have similar
tools

— Look at the /proc/vme_rcc file of the driver
— In the vme_rcc package you find special applications

« scanvme: Scan VMEDbus for modules

« vme_rcc_test: Use the functions of the library interactively. This program is also a
good programming example

« cctscope: Decode and dump the configuration of the Universe chip (and some other

VMEDbus related resources) in human readable form

cctscope example output of function 2/2:

LST VME address range PCI address range EN WP VDW VAS AM Typre S REINspace
0 00000000-10000000 9S0000000-a0000000 Yes No D32 A32 UD SC PCI MEM
1 00000000-01000000 a20000000-a21000000 Yes No D32 A24 UD SC PCI MEM
2 00000000-00010000 al000000-21010000 Yes No D32 Ale6 UD SC PCI MEM
3 00000000-01000000 a2000000-a3000000 Yes ek -T2 F ICRACES R NN SC PCI MEM
2 00/0[0I0/0[ClOESHE R 0l0/00] V00O R No N@ «iD32" A% UD SC PCI MEM
5 00000000-00000000 00000000-00000000 No No D32 A32 UD SC PCI MEM
6 00000000-00000000 00000000-00000000 No e « D82 A2 UD S@ PCI MEM
7 00000000-00000000 00000000-00000000 No N© =~ D3ar A2 UD SC PCI MEM

M. Joos — Introduction to VMEDbus

52

« The API used in the vme_rcc package is generic enough to fit
(almost) any type of VMEDbus interface. So far there exists only an
Implementation for the Universe and TS1148 chips

* The IDT Universe chip is used on most current SBCs but has a
number of limitations:

— There are only 8 map decoders for master and slave pages respectively

* In systems with more than 8 slaves one has to use one decoder for several
slaves. l.e. slaves have to be grouped -> slave base address

— It is not possible to execute block transfers with a constant VMEDbus address

« |If you are designing VMEDbus slaves: Do not implement single address FIFOs
for the read-out of internal memory

— Data can be lost if a block transfer is terminated with a BERR

— Some BERRs (posted write) are difficult to catch. The SBCs from
Concurrent Technologies have extra logic to cope with that

— There is no H/W byte swapping (required on little endian CPUs). The SBCs
from Concurrent Technologies have extra logic for that purpose

M. Joos — Introduction to VMEDbus

53

» The package provides:

— A VMEDbus driver

« To be dynamically installed in the Linux kernel
 You need the cmem_rcc and io_rcc drivers as well
« |f you are not using the standard CERN kernels you may have to
compile the drivers yourself
— A library
 There are about 60 functions.
— Utility programs
« vmeconfig

* Cctscope

— Dump the register of the Universe chip and some other resources of
the SBC in human readable form

e Scanvme
— Scan the VMEDbus for slave cards at unknown addresses

M. Joos — Introduction to VMEDbus

54

« Before the first VMEDbus cycle can be made one has to program
(at least) one of the 8 map decodes with appropriate parameters

« This basically means mapping a range of PCI| addresses (MEM
space) to an equally large window of VVMEDbus addresses

 In many drivers this can be done dynamically at run time via a
function call (but the VMEDbus and PCI base addresses still have
to be provided by the user)

« vme_rcc Is different. The library cannot modify the set-up of the
map decoders. This is the job of vmeconfig

— Using a static set-up has the advantage that one can not run out of map
decoders in the middle of an application

— This policy enforces some discipline and is therefore not liked by
everybody. We are, however, convinced that it helps to reduce problems

M. Joos — Introduction to VMEDbus

95

CPU addresses VME addresses

OXOT"1/0 space . Lt
Universe ASIC
Examples: memory | '
0214245 o 186EE I OXOFfFfffe
0x80000000
Ox8fffffff | A32 (4 GB)
PCI |
0xa0000000
0% SIOIE & Faru
0xb0000000) A24 (16 MB)
0xb0O00ffff
4GB ,
A16 (64 kB)

M. Joos — Introduction to VMEDbus 56

 Ifcalled in the form “vmeconfig —a vmetab” it loads a user set-up into the
Universe chip. This typically happens automatically at boot time

» Called as “vmeconfig —1 vmetab” 1t allows you to edit the configuration file
(vmetab)

« The configuration file is a binary. It cannot be modified with a text editor
« The (most important) user parameters are:

— Master and slave mapping

— Interrupts

— Byte swapping

— Arbitration and bus request modes

 In order to run vmeconfig you need a number of dynamic libraries from the
ATLAS TDAQ release. Use the command “1dd vmeconfig” to check

« Have a look at the on-line help in vmeconfig

M. Joos — Introduction to VMEDbus 57

Example: How to set up a master mapping

Use option 4 to program a map decoder. vmeconfig will ask you to enter a number of

parameters:
Enter number of map decoder LO.357>
Enable map decoder <0=no l=yes>

Select VMEbus base address
Select PCI base address
Select the window size (bytes)
Select Write posting <0=no l=yes>
Select address space

<0=Al6, 1=A24, 2=A32, 5=CR/CSR, 6=USER1l, 7=USER2>
Select cycle type <0=User, 1l=Supervisor>
Select cycle type <0=Data, l=Program>

Defining the PCI base address is the artistic part because you have to “guess” it. For an

educated “guess” use these guidelines:
-DRAM addresses grow from 0x0 upwards

-PClI devices are mapped by the kernel from Oxffffffff downwards

[0]
Lk ¢
[0x00000000]
[0x90000000]
[0x00010000]
L0 &

-Addresses in the range 0x50000000 — Oxbfffffff should be safe

-Never use addresses that are listed in /proc/iomem

When you are done upload the configuration into the Universe and save your changes. It is
recommended to check the new set-up with cctscope (function 2/2) for errors like address

overlaps

M. Joos — Introduction to VMEDbus

58

« There are four major groups of functions:
— Single cycles
— Block transfers
— Interrupts
— Service functions (including bus errors)

» Presenting all functions here would take too long. The
program vime_rcc_test.cpp shows how the different
functions are to be used

e All functions return error codes in the format defined in the
rcc_error package

« There exists a C++ wrapper In a separate package
(RCDVme)

M. Joos — Introduction to VMEDbus

59

A simple program doing single cycles
Let’s have a look at a very simple program executing a single read
cycle. For this purpose | assume that there is a VMEbus D32/A32

slave at address 0x02000000 with a total size of 4 Kb and a readable
register at offset 0x80

T UM necllerTOTY relC joriient "

#include "vme rcc.h" Declare VMEbus
. | . pointers volatile to
int main(void)

{ avoid problems
VI, g Ma 'S Mo &S Ciet) fiflalD // Wlth COde
4O 3, T =1alb A i W L el o k=Nt

u int ret, vbase; Optimiza’[ion
int handle;
e Yopen (e N?ver call afqnctlon
s (CElAl PRI UCCHED) without checking for
{

VME ErrorPrint (ret) ; errors!!!

e X WN(ES)
}

M. Joos — Introduction to VMEDbus 60

A simple program (2)

Nigis ey map Swiesaddiie s'ef = 0502001010 0\ F;
master map.window, _size = 0x1000;

MERSHC el =T ETelehge s S oo BL 1IN o, AN SN S
(e @it nkys, P C, S — iy,

et ="y MiE SRS Bere V& PR Smcishae T A DY Y Sl Create a master mapping.
iR el SIS LHIE SSNIC R SHy) ——_ | Remember: Your “vmetab”

{
VIV S e Ol T U (el rnUStSUppOﬂthese
exit (-1); parameters

}

race =) Vi MR M aip Vimlsitd T Al ASidir @ S Skl dTI el SIS D ey

) = .
?f G eIV LB SR, \ Get the virtual address for fast access.

VME ErrorPrint (ret); Alternatively you could use the safe (but
exit (-1); slow) functions of the API

}

Cast the generic pointer to a
32-bit data type and add the
register offset

Ot TSy fUE T, s #) SEaiomsiof T #0758 (NG

dicliad o~ =D ¢ q\\\\\\\\\\\\\\\\‘\\\\\\\\\
Execute the VMEDbus cycle

M. Joos — Introduction to VMEDbus 61

A simple program (3)

e e I VSIS Vel i S RN TTe TGRSy
AT Clwer = UM BRCEINC GRS S
{
VMESE T rolab ianiC (' Ee ik
Epe Hial =y 2
}

et = wilii, GH-oie ()% Yty
I tneiE L= MBI SIUGEE S'6)
{
Ry Bic Ie@IEP Y 1 TR e).
exn Tl)%
}

M. Joos — Introduction to VMEDbus

Always clean up when
you’re done!

62

A VMEDbus interrupt (identified by its unigue 8-bit vector) can be converted by the
library to either a signal or a semaphore

« |tis possible to link several interrupts (of the same type) to one signal or semaphore

« |t is not possible to service both RORA and ROAK interrupts on the same interrupt
level

« |If you are using RORA interrupts you have to re-enable the respective interrupt level
after each interrupt

« Remember: before you can use an interrupt level you have to enable it with vmeconfig

Traf Lissit .l issittga™ TCamsEl], o7 ecbenr =07 T

1 Pop umitETy, 1 s Eqialt i amel [y, | Shyell 5;

Igac ARl - SLFSYE O g mclEL | e = VME INT ROAK;

signum = 42;

Al =/ T S ChEisib L (1% Cgel SN 7R it el i Il o) 05

ret g VME, InflerriptWaslt (mt hamdle, tiancout, SilESimfo) ;
ref o VMg TN terfehp BRedgisiTer SH ghiciiy: nt- Jhandle B sSiGhim, g
reis = WMEENEn = sl oysiln L IR (C8h e eyl

M. Joos — Introduction to VMEDbus

63

Block transfers

» Block transfers can only be made to physically contiguous memory buffers (->
cmem_rcc). Using memory allocated by malloc() would technically be possible but
requires additional code in the driver to lock and chain the pages and there would
also be a performance penalty

* Supported modes are: A24D32, A32D32, A32D64 and “‘single cycle DMA”

« The VMEDbus and PCI addresses have to be 8-byte aligned with respect to each other
(also for D32)

« The library supports chained DMA
« Block transfers are independent of the master map decoders

« The driver can manage multiple DMA requests from several processes. It is
therefore possible that a transfer does not start immediately

o 1. St e S i o SACbus addiee sis 0x10000000;

Pld st UTSTMof I Hets . System iobus jaddresst~ 0x240000007 ¥ //BCI MEMYspace '->CMEM REC

0x1000;

DiSFos T%uts O TSLenis FStifEmes | neleyUe s L et

[0]
[0]
[0]
[0]

bils#eis. Tsits £ Vo] i tems .control word VME DMA D32W; //Implies A32
oD g RR(eRbl A LU

i3 S VIME, SEUCClc Tiee TSN J(6 1o AT TN CRICHIRE

if (ret == VME_DMAERR) ({
eizaae it (VS EaCUS & B0 NI AR s T ITSiERo B womls, | O.]% SEatms Fio el
printf("Bytes remaining: %d\n"™, blist.list of Items{0].size remaining);

}
M. Joos — Introduction to VMEDbus

64

« vme_rcc offers support for
— CRJ/CSR space read / write (only D8)
— User defined AM codes
— SYSFAIL interrupts
— Interrupt generation
— Supervisor / program AM codes
— Constant address DMA in single cycle mode
— Full bus error detection
e vme_rcc does not support
— Read-Modify-Write cycles
— Address only cycles
— ACFAIL interrupt

— A number of other exotic features of the Universe chip for which nobody
has requested support so far

. Joos — Introduction to VMEbus

65

e cmem_rcc

— Driver and library for the allocation of contiguous memory (e.g.
for block transfers) either via the get_free pages() kernel function
or the BigPhysArea patch

— Used by some of the test programs in the vme_rcc package

e 10 _rcc

— Driver and library for the access to PCI and PC 1/O registers from
user code

— Used by some of the test programs in the vme_rcc package

* ICC_error
— A simple library for error reporting

M. Joos — Introduction to VMEDbus

66

https://edms.cern.ch/document/336290/3

