Low Temperature Detectors

A. Monfardini – Institut Néel - Grenoble

ESIPAP - Archamps - 22/02/2017

 Science cases
 Introduction to LTD
 Superconductivity
 Kinetic Inductance Detectors (KID)
 Applications (selected) and Technology

2

Science cases

Science case (I): the cold Universe

Blackbody's Wien law $\rightarrow \lambda_{max} \approx (5 / T) mm$

 \rightarrow «Cold» radiation ($\lambda = 1$ mm $\equiv 5$ K; $\lambda = 2$ mm $\equiv 2.5$ K)

Astrophysics :

Galaxies, stars and planets are born from cold gas and powder.

→ Early formation stages of small-scale structures

<u>Cosmology :</u>

14 billions years ago, first H atoms formed from e^- and p^+ hot «soup». A flash of UV light was emitted, at the same time, everywhere in the Universe. Expansion \rightarrow TODAY the Universe is cold (2.7K) and brightest in mm-wave.

→ Universe shape; large scale; primordial structures; inflation test

Science case (I): an example

Horsehead Nebula

- <u>Thick dust (mm and sub-mm)</u>
 Ionised H (UV-NIR)
- Young Stars (UV-NIR)
- Polarisation (all bands)

Multiwavelength required !!

Effect of redshift (z): wavelengths are stretched by a factor (z+1) \Rightarrow mm-wave is the new fronteer to explore the Dark Ages (z = 6 ÷ 20)

Science case (I): the whole Sky

Science case (II): the hot Universe

- ABUNDANCES (ion-per-ion)
- LINE PROFILES → velocity profiles

Galaxy cluster simulation ATHENA+ satellite (2030)

Science case (III): weak interactions

- Directly detecting Dark Matter

Clear (but indirect) observational evidences $\rightarrow M_{dark} > 5 \cdot M_{baryons}$! The nature of M_{dark} is 100% unknown.

- Neutrino physics (e.g. double beta decay)

→ Large cross - section Detectors (rare events)

- Neutrino(s) mass (single beta decay ¹⁸⁷Re, Electron Capture ¹⁶³Ho)

→ Smaller Detectors (higher energy resolution, faster)

Science case (III): the neutrino mass

$$^{187}\text{Re} \rightarrow ^{187}\text{Os} + e^- + \bar{v}_e (Q = 2466 \text{ eV}; T_{1/2} = 43.2 \text{ Gyr})$$

Now these experiments are **a bit outdated**, the ¹⁸⁷Re is replaced by ¹⁶³Ho and the beta decay is replaced by electronic capture.

LTD: motivations and classification

Low Temperature Detectors: a comment

http://ltd16.grenoble.cnrs.fr/#LTD-history

LTD are in general defined as just the very-low-temperature ones e.g. 95% of our community works at <u>sub-Kelvin temperatures</u>.
Most of the sub-Kelvin cryogenics techniques have been developed and spread around by the LTD and Solid-State Physics community.
More than 90% of the « LTD » operate between 5 and 300mK.

For example, we do not consider as LTD the IR semiconducting detectors that are cooled to LN2 temperature just to suppress the thermal noise

ESIPAP - Archamps - 22/02/2017

The EM spectrum: count vs record

Pulses versus time-traces

A typical LTD has two 'operating modes':

Low Temperature Detectors

Whole point is to reduce the energy associated to the "elementary excitation".

 $\Rightarrow N = E/\varepsilon$ $\Rightarrow \sqrt{N} = \sqrt{E/\varepsilon}$ $\Rightarrow \text{Energy Resolution } \propto \sqrt{\varepsilon}$ $\Rightarrow \varepsilon \text{ to be MINIMIZED}$

- \rightarrow Cooper-pair-breaking detectors (gap $\approx 3.5 \cdot kT_c$)
- → Bolometers (phonon energy \approx kT)

Big advantage of bolometers: working temperature is a "free" parameter

Big advantage of pair-breaking detectors: design not driven by thermal constrains

Independent "practical" limitation: multiplexing

Low Temperature Detectors

Whole point is to reduce the energy associated to the "elementary excitation".

 $\Rightarrow N = E/\varepsilon$ $\Rightarrow \sqrt{N} = \sqrt{E/\varepsilon}$ $\Rightarrow \text{Energy Resolution } \propto \sqrt{\varepsilon}$ $\Rightarrow \varepsilon \text{ to be MINIMIZED}$

→ Cooper-pair-breaking detectors (gap $\approx 3.5 \cdot kT_c$)

T_{base} << T_c

→ Bolometers (phonon energy \approx kT)

Big advantage of bolometers: working temperature is a "free" parameter

Big advantage of pair-breaking detectors: design not driven by thermal constrains

Independent "practical" limitation: multiplexing

Bolometers: ideally simple

The R(T) shown here is verified for example in the case of doped semiconductors.

Real bolometers: more complicated

Transition Edge Sensor - TES

Magnetic Metallic Calorimeters -MMC

The radiation absorber is thermally coupled to a **paramagnetic sensor** that is actually the **thermometer**.

The magnetization is in fact temperature-dependent and is measured by means of a SQUID magnetometer.

The sensor is realized by implantation of paramagnetic ions into a metallic host (e.g. **Au:Eu**) that allows a sufficiently fast relaxation time.

Macro-bolometers for rare events search

In this case, the detector (bolometer-absorber) has to be big !!

EDELWEISS-II 320gr Ge Total mass: 40kg Frejus - FRANCE

Super CDMS 350gr Ge+Si Total mass: 25kg Soudan - USA

CUORE 750gr TeO₂ Total mass: 750kg Gran Sasso - ITALIA

So far a list of bolometers equipped with different thermistors

What about Cooper-pair-breaking devices ?

Superconducting Tunnel Junction - STJ

Pair-breaking detectors (not phonon-mediated)

<u>Advantages:</u> relatively fast, 300mK operations, position-sensitive. <u>Drawbacks:</u> complexity, need of B field, resolution worse than others, not easily multiplexable.

In the old days used to be the 1st choice for Astronomical applications (e.g. S-CAM).

Kinetic Inductance Detectors - KID

BIG ADVANTAGE: intrinsically multiplexable.

Seems a merely « technical » advantage, in reality VERY important.

<u>Old LTD workshops:</u> in 2005 only one talk on KID ... <u>LTD16 (Grenoble, 2015):</u> the number of abstract received concerning KID surclassed the bolometers for the first time.

Bolometers vs Pair-breaking: detection

Bolometers vs Pair-breaking: detection

Bolometers vs Pair-breaking

Single events detection (counting/measuring):

- if the priority is <u>the best energy resolution</u> (very often the case for LTD), BOLOMETERS (e.g. TES) are the best choice.

Low energy photons detection (recording):

- if the priority is <u>be sensitive and maximizing the number of pixels</u> (very often the case for LTD) KID are the best choice

THESE CONCLUSIONS ARE OBVIOUSLY TOO SIMPLE AND SCHEMATIC. MANY EXCEPTIONS CAN BE FOUND !!!!

TO BE CONSIDERED: response speed, sensitivity to B fields, microphonics, readout electronics, environment, technology availability etc. etc.

26

Superconductivity and high-Q resonators

27

Superconductivity (I)

At low T the electrons have very little thermal energy, and can bind to form Cooper Pairs through a phonon-mediated interaction

The binding energy of a Cooper Pair is given by :

$$2\Delta = 3.5 k_{b}T_{c}$$

QUANTUM MECHANICS

This corresponds to typically few meV.

The Cooper Pairs are bosons \rightarrow perfectly ordered motion, $\rho = 0$

Electrons that remain unbound are called quasi-particles. $\rho \neq 0$

Excitation = quasiparticles!
$$E = 3.5k_{b}T_{c}$$

Superconductivity (II)

We can describe the conductivity of a superconductor starting from the behavior of CPs and QPs two families:

- DC field : zero impedance (→ 'classical' superconductivity)
- AC field : non-zero impedance!

The distributed ($\lambda/4$) planar resonator

The "lumped elements" planar resonator

Distributed vs. Lumped

32

Additional ingredient from superconductivity

The reactance of the CP is due to their acceleration!

When moving, the CP store energy:

- Magnetic field → magnetic inductance, L_

Kinetic energy → kinetic inductance, L

L, depends on the desity of Cooper Pairs, n.e.:

k

Integrate the L_k into the circuit

- A variable inductance
 - $(\rightarrow superconductivity)$
- A resonating circuit

Sensitive devices

Quality factor: $Q \equiv \Delta f / f_0$ (typ. $10^3 - 10^7$) superconductivity

Q is a kind of « internal gain ». Best Q is application-dependent.

An LC(R) resonator is sensitive to L, C and (R) changes. Obvious.

 $\begin{array}{l} \hline \textbf{Quarter Wave Electrical Measurable:}\\ Transmission (complex) (S21) \Rightarrow I,Q (projections on complex plane)\\ \hline \textbf{Physically interesting quantity:}\\ Frequency shift \Rightarrow \delta f \propto power \quad (L.J. Swenson et al., APL 96, Issue 26, 263511 (2010)) \end{array}$

EM environment (C): dielectrics + geometry

Quasi-particles (or Cooper pairs) density (L,R): KID

Cooling down in LHe .. strange effect

LHe dielectric constant

Applied Physics Letters 93, Issue 13, 134102 (2008)

Kinetic Inductance Detectors (KID)

Kinetic Inductance Detectors MUX

Kinetic Inductance Detectors : how it works

A real array

LEKID intuitive model - take it with care

"Classical" films for KID

e.g. Al, our best friend !!

A real MUX electronics

Board specs:

500 MHz, 400 channels - ADC 12 bits 1GSPS

- DAC 16 bits 1GSPS
- FPGA Xilinx Virtex-6

Board functions:

- Excitation tones
- Up-and-down conversion
- Digital mixing
- mini-PC integrated, ethernet to DAQ

For full details: O. Bourrion et al., Journ. of Instrum. 7, P07014 (2012) arXiv:1204.1415

Transmission of a (good) 132 pixels array

Frequency-space occupation

Quality factors statistics

<u>Selected (example)</u> <u>application of KID:</u> <u>mm-wave astronomy</u>

The biggest mm-wave telescope around

Working Bands:

3mm (100GHz)
2.05mm (146 GHz)
1.25mm (240 GHz)
0.87mm (345 GHz)

IRAM, based in Grenoble, was founded in 1979 by the French **CNRS**, the German **MPG** (Max-Planck-Gesellschaft) and the Spanish **IGN** (Instituto Geográfico Nacional).

IRAM = Institute for Millimetric RadioAstronomy

New IRAM KID Arrays (NIKA)

NIKA2 Véel L'PSC IPAG iram Benoît Alain Adam Rémi Bacmann Aurore Billot Nicolas Boudou Nicolas Ceccarelli Cecilia Angot Julien Bourrion Olivier Kramer Carsten Calvo Martino Désert Francols-Xavler Navarro Santiago Camus Philippe Hilv-Blant Plerre Slevers Albrecht Catalano Andrea Donnier-Valentin Guillaume Ponthleu Nicolas Comis Barbara Adane Amar Exshaw Olivier Colffard Grégolire Dargaud Guillaume Garde Gregon Leclercq Samuel Maclas-Perez Juar Goupy Johannes Francisco Pety Jerome Hoaurau Christophe Schuster Karl Geraci Calogero Leggeri Jean-Paul IAS · Mayet Frédéric Zvika Robert Levy-Bertrand Florence Menu Johann Monfardini Alessandro Pellssler Alain Abergel Alain Triqueneaux Sebastien Perotto Laurence Aghanim Nabila Aumont Jonathan D'Addabbo Antonio Ritacco Alessia Roni Samuel Beelen Alexandre Roudler Sébastien Boulanger François Scordillis Jean-Plerre Bracco Andrea Tourres Damlen œ Dole Hervé UC Vescovi Christophe Dousnis Marian saclay Lagache Gullaine Savini Glorok Martino Joseph André Philippe Miniussi Antóine Oirap Amaud Monique Pajot François Aussel Hervé Soler Juan Bernard J.-Ph. Daddl Emanuele Duc Plerre-Alain Montler Ludovic Pointecouteau Etienne Elbaz David Galliano Frederic Konyves Vera Lebouteiller Vlanner Omont Alaln Madden Suzanne Roussel Hélène Maury Anaelle Mello Jean-Baptiste Beller Benoît Motte Frederique Pratt Gabriel Reveret Vincen SAPIENZ/ Rodriguez Louis D'Addabbo Antonio Ō ARDIF de Petris Marco Bethermin Matthleu **AFRD**W Ade Peter Bideaud Aurélien Castillo Edgard Davles Jonathan Dovie Simon Eales Steve Mauskoof Phil El titt Parise Berangere I.T. Pascale Enzo Peretto Nicolas Tucker Carole m Ne Pas LPSC IAS

NIKA (until 2015)

- Dualband (1.25mm and 2mm)
- LEKID Arrays Detectors:
 - 132 pixels @ 2mm (150 GHz)
 - 224 pixels @ 1.25mm (240 GHz)
- NIKEL Read-Out Electronics
- State-of-the-art sensitivity (even compared to TES)
- PIs: A. Benoit & A. Monfardini
- Ten successful observing runs at the telescope (2009-15) ... celebrated our 100th day on top of the Sierra Nevada
- Fully justifying NIKA2 !!

From NIKA0 to NIKA2 arrays evolution

2009

2009:

- 30 pixels, detectors noise limited

<u>2014:</u>

- kpixels, photon-noise limited
- large area (full 4 inches)
- Readout line 2.5 m long !!

NIKA on the Moore plot !!

The NIKA2 arrays technology

- Pixels are fractal Hilbert-shaped LEKID
- Films: thin Al (18 25 nm)
- Different arrays designed/fab/tested:
 - No AR layer +

AR layer (dicing, etching)

CPW feedline

MS feedline

http://ltd16.grenoble.cnrs.fr/IMG/UserFiles/Images/06_GOUPY-LTD16.pdf

... not in clean-room today ?

NIKA at the 30m

NIKA at the 30m

NIKA seeing glows in the Dark Age

Looking 13 billions years in the past !! Universe only 0.88 Gyr old.

Mapping the intergalactig medium kinetics

58

The largest g-bound objects, building blocks of our Universe, are the clusters of galaxies. They are mainly made of dark matter and hot ionized gas. Only a few percent of the mass is contained in galaxies. These mergers are the most energetic events since the Big Bang and they are fundamental to understand.

Selected NIKA images

The Crab nebula – Intensity and polarisation (A. Ritacco et al., arXiv:1508.00747)

NIKA2 fabrication in Grenoble (2013-15)

60

Goals et Varia

- 6.5 arc-min FoV (≡ IRAM 30m)
- Close to background-limited
- Dual-band imaging + polarization
- Derived from NIKA R&D

Characteristics

- Dual-band (1.25mm and 2mm)
- Polarization @ 1.25mm
- KID Arrays Detectors:
 - 1000 pixels @ 2mm
 - 2 × 1200 pixels @ 1.15mm

A. Monfardini et al., arXiv:1310.1230

NIKA2 cross-section

NIKA2 is installed (10/2015) !!

The cryostat in the receivers cabin

60 meters of pipes

The dilution gas handling in the basement

NIKA2 figures:

- 3300 pixels over 3 arrays
- 1.2 tons; 2.5 m long; 3000 pieces
- Two Pulse Tubes
- Fully remote control
- Completely cryogen free
- Base T $\approx 100 \text{ mK}$

NIKA2 preliminary (technical run 1) results

DR21OH at 260GHz (left) and 150GHz (right)

(10⁻²⁹ W/m²/Hz) level detected despite preliminary status of the instrument and the data analysis software. - Started (well ahead schedule)

polarisation tests.

Beam maps of the 2mm array (1020 pix).

Nearby galaxies mapping/spectrum

Nearby galaxies mapping/spectrum

More instruments using KID

MUSIC and MAKO (US)

- 10.4 m CSO telescope (Hawaii)
- Mm and sub-mm (MAKO) bands
- Antenna-coupled (MUSIC) and

- LEKID (MAKO):
- 2,304 pixels (MUSIC)
- 100s pixels (MAKO)

ARCONS (US)

- 5 m Palomar telescope (visible)
- Counting/measuring visible photons
- Lumped Element KID:

2,024 pixels

A-MKID (EU)

- 12 m APEX telescope (Chili)
- Two sub-mm bands (350 and 850 GHz)
- Antenna-coupled KID:
 - 3,500 pixels @ 0.85mm
 - 20,000 pixels @ 0.35mm (PLANNED)
 - Bonn FFTS read-out

ESIPAP - Archamps - 22/02/2017

A lot more in fabrication or planned

- Deshima spectrometer (Delft SRON Japan)
- OLIMPO balloon (Italy USA)
- QUBIC (France UK Italy Argentina)
- US balloons
- GMT (Gran Telescopio Milimetrico) Cardiff, Mexico

- Large future telescopes (Caltech, JPL)
- etc.

Further (selected) applications of KID

Passive THz cameras for security

pplications

Operating at 350GHz, sweeps a Human body with a moving mirror

A: a walletB: a pistolC: a few pounds fora beer

S. Rowe et al., Review of Scientific Instruments 87, Issue 3, 033105 (2016)

LEKID arrays for Space

132-pixels arrays designed for NIKA (New IRAM KID Arrays) exhibit Planck-like sensitivity at both 100 and 150 GHz.

One such arrays, under realistic background conditions (0.5 pW/pix) and sensitivity (10⁻¹⁷ W/Hz^{0.5}), irradiated with 630-keV alphas.

For any useful sampling frequency only one sample is affected.

A. Catalano, A. Benoit, O. Bourrion, M. Calvo, G. Coiffard, A. D'Addabbo, J. Goupy, H. Le Sueur, J. Macias-Perez and A. Monfardini, arXiv:1511.02652, submitted to A&A (11/2015)

A 132-pixels array at L2 (simulation)

Phonons-mediated particles imaging

EM sensitivity: NbN resonators in LHe

LHe Hydrodynamics with resonators

Motivations:

The very low viscosity of cryogenic Helium offers unique opportunities for turbulence studies (μ (LHe) < μ (water)/100).

Beside, the superfluid state (T < 2.17K) allows to explore quantum turbulence.

A specific instrumentation is needed.

Advantages:

- Spatial resolution (\approx 100 μ m)
- Robust to static pressure fluctuations
- Normal AND Superfluid (inertial force)

Superfluid LHe turbulence

Resonators as London depth sensors

Resonators as London depth sensors

Resonators as London depth sensors

78

Superconductor films fundamental studies

InO_x (disordered) resonators ($T_c \approx 3K$) Study of fundamental superconducting thin films properties (collaboration with B. Sacepe, F. Levy-Bertrand – Institut Néel)

Thank you for your attention !!

