
2014
edition

Supervisers: Eric Chabert,
Eric Conte

Computing session 3

Getting familiar with the framework ROOT:

example of a silicon strip detectors analysis

Abstract:
This computing session is dedicated to the so-called ROOT framework. Born at CERN, this
framework is used every day by thousands of physicists to analyze data and to perform sim-
ulations. This session is an opportunity to have a quick overview of basics but most used
functionalities provided by ROOT. More than a simple tutorial, the session also aims to use ROOT
for analysis purpose in the context of a silicon strip detectors data analysis. The program to be
build could involve class development, however for the sake of simplicity and in order to focus
on learning ROOT, simplest developments will be su�cient.

Pedagogical goals:

Software handling • Browsing e�ciently software documentation

• Understanding the description of ROOT classes

• Reading and understanding code examples. Extracting rele-
vant information useful for the development of your programs

ROOT skills • Reading data �le (text and ROOT format)

• Reading and writing trees

• Creating and customizing graphics

• Fitting data distributions according to model functions

• Writing results in several formats

Compiling/linking • Creating an executable �le from a simple source �le using
ROOT classes.

• Using a Make�le with links to the ROOT libraries.

Requirements:

• Similar to the previous sessions

1 / 26

Contents

1 Foreword 3

I Getting started with ROOT 4

2 Introduction to ROOT 5
2.1 Documentation . 5
2.2 Overview of the main functionalities . 5
2.3 ROOT classes . 6

3 Software Handling 8
3.1 Using ROOT intepreter . 8
3.2 Using ROOT macros . 9

3.2.1 ROOT compilation: ACLIC . 10
3.2.2 $ROOTSYS and access to tutorials . 11

3.3 Using ROOT classes in a standalone program . 11
3.4 ROOT Graphical User Interface . 12

II Silicon strip modules commissioning 14

4 Physics context 15
4.1 Strip sensor description . 15
4.2 Characterization of silicon strip detector noise 16
4.3 Commissioning runs . 17

5 First step: reading data 19
5.1 Converting a data stored in a text �le into a ROOT tree 19
5.2 Reading data from the tree . 20

6 Data analysis: creating histograms and graphs 21
6.1 Using the TTreeViewer . 21
6.2 Using ROOT graphics in a program . 22

7 Data analysis: �tting 25
7.1 Using the FitPanel . 25
7.2 Automatized �ts from a compiled program . 25

2 / 26

1 Foreword

Computing sessions belong to the educational program of the ESIPAP (European School in
Instrumentation for Particle and Astroparticle Physics). Their goal is to teach the secrets of
C++ programming through practical work in the context of high energy physics. The session
is designed to be pedagogical. Except the Physics context, each section of the document is a
milestone allowing to acquire computing skills and to validate them. The sections related to
C++ programming are ranked in terms of complexity. In order to facilitate the reading of this
document and to measure his progress, the student must �ll up the dedicated roadmap
which includes a check-list and empty �elds for personal report.

In the document, some graphical tags are used for highlighting some particular points. The list
of tags and their description are given below.

The student is invited to perform a pratical work by
writing a piece of code following some instructions.

Analyzing or interpreting task is requested and the re-
sults must be reported in the roadmap.

Some additional information is provided for extend-
ing the main explanations. It is devoted to curious stu-
dents.

A piece of advice is given to help the student in his
task.

Concerning the evaluation of these computing sessions, all source �les and other relevant digital
documents must be provided to the examiner. Therefore they must be stored in a public folder
on the lxplus session. The suggested naming convention is the following:

$HOME/public/TP1

$HOME/public/TP2

$HOME/public/TP3

$HOME/public/TP4

The student is invited to develop his code directly in such folder.

3 / 26

Part I

Getting started with ROOT

4 / 26

2 Introduction to ROOT

2.1 Documentation

The package ROOT is very well documented. Extensive information can be found in its website:
http://root.cern.ch/drupal/ and we encourage to visit it. Instructions for downloading and
installing the software are also provided for those who would like to install it on their own
machine later. On the documentation part, several sources might be very useful depending on
the purpose:

• Users's guide:
This is a nice manual that introduces several applications that ROOT covers. A general
presentation as well as examples are there presented. This is an interesting document to
be partially read as an introduction to the software.

• Reference guide:
This section of the website present all the classes, namespaces, typedef, etc that have
been de�ned in ROOT. The documentation is quite similar to what you have obtained
with DOXYGEN in the previous computing session. The Reference guide is then convenient
to understand the inheritance, the relationship between classes, discover the available
methods with their arguments as well as a general presentation of the class. This is a
guide you should refer each time you want to access a class for which you do not remember
what it does and the de�nition of the methods.

• Tutorials: Tutorials are available online and also on the installed ROOT version. There
are code examples ful�lling speci�c goals and by the way showing the possibilities of ROOT.
In another word, they show in situation how to use ROOT classes.

• How To's: That section replies to questions that beginners might face such as "How to
Create and Fill a Tree" or even more advanced users such as "How to Use Mathematica
From ROOT".

2.2 Overview of the main functionalities

An global overview of what ROOT o�ers can be reached here. A subset of interesting domains
for which ROOT proposes interesting solutions are:

• Data analysis and visualization: This is probably the most used functionalities that
ROOT provides among the HEP community. It o�ers possibilities to display histograms or
graphs, to stack them, to superimpose them, etc.

• Fitting and statistics: ROOT give tools to represent mathematical functions and also
to perform �ts. Additional packages have been more recently developed to handle those
particular tasks. They are called ROOFIT and ROOSTAT. We will not discuss them during
that session but use the simplest �tting tools that ROOT gives access to.

• Randomization and Monte Carlo: Randomization is mainly used for Monte Carlo
techniques. ROOT provides pseudo-random generators as well as more advanced tools to
perform pseudo-experiments. We will not discuss those functionalities due to the lack of
time.

5 / 26

http://root.cern.ch/drupal/
http://root.cern.ch/drupal/content/users-guide
http://root.cern.ch/drupal/content/reference-guide
http://root.cern.ch/root/html534/tutorials/
http://root.cern.ch/drupal/content/howtos
http://root.cern.ch/drupal/image

• Storing information/ROOT Format: ROOT provides tools for input/output manage-
ment. If o�ers classes to manipulate �les, folders, and to store data in a given format.
We will use during this session the so class TTree and TBranch classes.

• Mathematical libraries: Those libraries include mathematical functions (Poison, Gauss,etc),
computation of statistic quantities (mean, rms), basic algorithms (search min, max ele-
ments, etc) and over features. Moreover a Linear Algebra package is available allowing
the description and manipulation of matrices like their decomposition.

• Physics vectors: As ROOT is used in HEP, and it gives a description of physics vectors
such as the energy-impulsion four-momentum called TLorentzVector in ROOT. This is
commonly used to describe the particles colliding or produced in our experiments.

• GUI: It is possible to create your own Graphical User Interface based on ROOT classes.
ROOT provides also an editor to easy the creation of such applications.

• Detector: The description of geometries are available in ROOT and are used to also
describe detector. They might have an overlap with the software GEANT4 functionalities
that we will be studied in the next session.

• Event display: ROOT as also been used to create event display applications, proo�ng
that it might be used in many applications.

2.3 ROOT classes

Inheritance and ROOT principles

As discussed during the lectures, ROOT respects C++ coding conventions that can be found
here. By example, the name of all ROOT classes starts with a capital T. They all inherit from
a mother class TObject. Inheritance with many generation as well as multiple inheritance is
commonly used in that software.

In the Reference guide, browse in the documentation of classes that will
be used later in the sessions such as TH1F, TGraph, TF1. See how the
concepts mentioned in the lectures and applied in the previous sessions
have been used in the structure of that software.

6 / 26

http://root.cern.ch/drupal/content/c-coding-conventions

Global variables and environment

ROOT de�nes many global variables that control dedicated functionalities
such as the memory management, the graphic style management, etc.
Some of them are listed below:

• gEnv

• gApplication

• gSystem

• gStyle

• gObjectTable

• gClassTable

• gFile, gDirectory, gPad, gRootDir, gProgName, gProgPath

7 / 26

3 Software Handling

3.1 Using ROOT intepreter

If ROOT has been correctly installed on the machine or server you are accessing as it is with
lxplus, the software can be launch as following:

1 bash$ root

A window showing the ROOT version will appear on the screen. Then a user console is
openend with a prompt where instructions can be launched:

1 root [0]

You can now use ROOT interpreter, called CINT, to execute sequentially C++ instructions as
shown below:

1 root [0] float a = 1.2345;

2 root [1] cout <<"a^0.5 = "<<sqrt(a)<<endl;

The interpreter is sometimes more permissive that g++ compiler would be. This might some-
times be useful but it has to be used with cautious. If C++ rules are not followed, the results
might not be the one expected. Some examples:

• if you forget to type a semi-colon at the end of the line, the instruction will be anyway
executed.

• the use of std namespace is not required.

• if you a�ect a value to a variable that has not yet been declared, it will give you a warning
but will still be executed.

The interpreter might be convenient for small applications, quick tests, but its usage should be
discouraged for more advanced applications.

The interpreter provides also tools too than can be used in complement of additional docu-
mentation. Let's consider a simple example with a class that describes an histogram of double:
TH1D. Instantiate an object h as following:

1 root [0] TH1D h;

If you want to know what are the available public methods and data members of TH1D,
you can simplify type h. and then use the tabulation. A long list should appear. If you
remember that the name of the methods starts with GetBin, you can type h.GetBin and use
the tabulation and then a shorter list should appear. If the name of the methods you were
looking for is GetBinContent, type h.GetBinContent(and all the existing methods with their
arguments will appear.

Moreover two speci�c virtual methods inheriting from TObject, the base class of all ROOT
classes, might be useful:

• Print(): it summaries few information on the object

1 root [3] h.Print ()

2 TH1.Print Name = , Entries= 0, Total sum= 0

8 / 26

http://root.cern.ch/drupal/content/cint

• Dump(): it gives you the list of all data members with their value and their meaning

1 root [4] h.Dump ();

2 ==> Dumping object at: 0x00000000017c4310 , name=, class=TH1F

• Inspect(): it does something equivalent to Dump() but in a graphic way.

• DrawClass(): it opens a window on which all inherited classes and the current class
present their public methods.

The above mentioned procedures can be applied to any ROOT class.

Finally to quit ROOT interpreter, you simply have to to do:

1 root [5] .q

The instructions that have been launched are stored in a �le
/.root_history. Moreover, in a similar way as you would do in a Ter-
minal, you can use the top and bottom array to browse in the history
from the ROOT interpreter.

.

3.2 Using ROOT macros

Compared to the interpreted way, a more elaborate way to use ROOT consists in typing directly
all the instructions in a �le. The instructions might be encapsulated in brackets. Then to
launch it, two procedures could be used. If the �le is called myMacroFile.cpp:

1 root myMacroFile.cpp

or

1 root

2 root [0] .X myMacroFile.cpp

To manage more complex applications, one could decide to use functions de�ned in macro
�les. They can be loaded and launched with speci�c arguments as following:

1 root

2 root [0] .L myMacroFileWithFunctions.cpp // the file is loaded

3 root [1] myFunction (3.2 ," histoName ");

The second instruction call the function myFunction(float x, char* name).

9 / 26

• Copy the macro �les in your working folder by the commands:

cp ~echabert/public/ESIPAP/myMacroFile.cpp ./

cp ~echabert/public/ESIPAP/myMacroWithFunctions.cpp ./

• Open the �les and study the structure of these macros.

• Test the commands given for running macros (or functions from
macros).

3.2.1 ROOT compilation: ACLIC

The performances obtained with an interpreted code are poor compared to the ones obtained
with the same code but compiled. ROOT proposes a compiler to take that in charge inter-
nally:ACLIC. Using the previous example but in a compiled way, one could execute the following
instructions:

1 root -l

2 root [0] .L myMacroFile.cpp++ // the file will be compiled

3 Info in <TUnixSystem ::ACLiC >: creating shared library

4 /home/login/path/myMacroFile_Cpp.so

5 root [1] myFunction (3.2,"histoName")

ACLIC compilation options can be de�ned, for additional information, refer to the dedicated
documentation. One interesting feature of ACLIC is that you do not have to take care of loading
the ROOT libraries ourself.

Use the previous example and execute it in a compiled way. Quantify
what are the di�erence in term of execution time.

10 / 26

ftp://root.cern.ch/root/doc/ROOTUsersGuideHTML/ch07s09.html
ftp://root.cern.ch/root/doc/ROOTUsersGuideHTML/ch07s09.html

It is interesting to notice that ROOT can be launch with several options.
To know then, you can simply type:

root --help

As you can see from the output, it is also possible to use dedicated �le
to con�gure ROOT usage.

• .rootrc is a �le containing some global default for your ROOT ses-
sion. There are three locations where the system looks for this �le:
$ROOTSYS/system.rootrc, /.rootrc and ./.rootrc (the latter tak-
ing precedence over the former). If you type in a root session the
command gEnv->Print() you see which defaults are active.

• .rootalias.C: It is loaded and executed at ROOT startup. If can
de�ne some often used functions.

• .rootlogon.C: It contains the code that will be executed at ROOT
startup.

• .rootlogo�.C: it is called when the session is �nishing.

These last 3 �les are always taken from the current working directory. If
you would like to have a global version of one or all of these �les make
the change in your /.rootrc.

3.2.2 $ROOTSYS and access to tutorials

If the ROOT installation has been properly done, an environment variable ROOTSYS should have
been set up. It refers to the directory where headers, source code, libraries and tutorials are
installed. It might be interesting for pedagogical reasons, to read some tutorials. They are
contained in the directory $ROOTSYS/tutorials. You can scrutinize them, execute them and
also copy them.

Execute the tutorial $ROOTSYS/tutorials/demoshelp.C

3.3 Using ROOT classes in a standalone program

The most general and �exible way to use ROOT functionalities is to write your own standalone
compiled code linked to ROOT libraries. To do that, you should follow those recommendations:

• Include all the appropriate header �le.
If you use a TH1F histogram, you should include "TH1F.h".

• Use compiler options to link your code with the ROOT libraries. Let's consider the example
of a program main.cpp that use histograms, you should compile it as following:

1 g++ -o main main.cpp `root -config --cflags --glibs `

11 / 26

• Type root-config to observe exactly what it does.

• Write a simple code that instantiates a TH1F object, �ll it with
few entries and then print on screen the mean and the rms of the
distribution.

• Compile this simple code as a standalone program.

If you want to display graphical elements on screen while running your
standalone compiled code, you could follow the instructions below:

1 #include "TApplication.h"

2 #include "TSystem.h"

3 #include "TCanvas.h"

4

5 int main(int argc , char **argv) {

6 TApplication* theApp = new TApplication ("App", &argc , argv);

7 // Write the core of your program

8 // You can display graphical elements

9 TCanvas* c = new TCanvas ();

10 c->Draw ();

11 // Run the application - the program will not stop

12 theApp ->Run();

13 delete theApp;

14 }

3.4 ROOT Graphical User Interface

Many manipulation of ROOT objects can be done in a graphic way. This is sometimes really
convenient especially for the graphical display like the histograms, the graphs, etc.

TBrowser

ROOT provides a class that is dedicated to browse directories, �les and even ROOT �le content.
Type the following command in ROOT:

1 TBrowser b;

A window will appear. You can now browse the directories and �les.

Let's take an example �le for explaining how to browse a ROOT �le. First copy in your working
folder the ROOT example �le:

cp ~echabert/public/ESIPAP/demo.root ./

12 / 26

Then with an instance of TBrowser, try to access on the �le and double-click on it. You should
now be able to browse its content. Double click on the histogram myHisto. You can now use
the GUI to modify the properties of the histogram. On the window Canvas_c1, you can use
right click over di�erent elements and access to their public methods:

• TH1F

• TCanvas

• TFrame

• TPaveStats

Use the Rebin method of TH1F and see what happens.
On the top menu, activate Editor from the top menu. The content on the new frame that

appeared depends on the latest graphical object you have clicked on. You can now try to
modify many parameters like the style, width, color of the lines, background, etc.

• Take few minutes to get familiar with the GUI if you are not used
to before.

• Modify the properties of the histogram with the Editor and observe
the result

Saving histograms in several formats

Once you have a modi�ed displayed histogram, you should think about saving it. This can be
done with several formats:

• .root: this will allow you to reopen a �le that contain the histogram later on.

• .C: this might be useful to store the code that describe your histogram.

• .pdf .ps .esp: could be convenient to include it in latex �le later on.

• image format(.jpg,.png,.ti�,...)

• Try to save your histogram in di�erent format.

• Open the .C �le that you have created and see what it contains.
You should observe a long list of lines. This .C �le might be useful
to understand how you could modify your macros/programs later in
order to have a visualization that corresponds to what you wanted.

13 / 26

Part II

Silicon strip modules commissioning

14 / 26

4 Physics context

The subject proposed during that session concerns the characterization of silicon strips de-
tectors. Those detectors are commonly used in many HEP experiments and beyond. Part of
the tracker subdetector of the LHC experiments are based on such technology. By example,
the CMS tracker is composed of around 15000 silicon strip modules corresponding to a total
surface of about 200 m2. The �gure 1 show the barrel and end cap pictures of the CMS tracker.
The whole description of those detectors and their associated readout chain will not be given
in that document but interested students could �nd more details in many references such as
the Technical Design Report of the LHC experiments. (link). An incoming particle crossing
a silicon strip module deposits a small fraction of its energy that can lead to the observation
of hits. Those latter can be clustered and then associate among di�erent layers composing the
detector in order to reconstruct tracks with dedicated algorithms.

Figure 1: Pictures of the silicon strip CMS tracker composed of a barrel (left) and tow end-caps
(right)

4.1 Strip sensor description

Silicon strip sensors are semi-conductors whose aim to amplify the charge induced by an in-
coming particle in the sensitive volume of the detector, ie a depleted region created under the
application of a high voltage. The collected charged leads to a signal preampli�ed and shaped
at the end of each strip by dedicated front-end ASICs. This signal is then sent to the control
room often via optical �bers. The signal could be digitized at front-end or back-end level de-
pending on the design chosen by the experiment. In our case, the signal is digitized by a 10
bits ASIC leading to a value in ADC count ranging from 0 to 1023. The �gure 2 presents a
transverse scheme of a silicon strip module illustrating the principle of operation. Additionally
a picture of a CMS silicon strip detector with its electronics is also presented.

Silicon strip sensors have properties that depends on many parameters corresponding to
their geometry (strip length, thickness,etc) , their production process, the choice of the silicon
doping, etc.

15 / 26

Figure 2: Traversal scheme of a silicon strip module on the right and picture of CMS silicon
strip module with its front-end electronics on the the right)

4.2 Characterization of silicon strip detector noise

The noise is one of the most important characteristics of the detector. It has to be low enough
to ensure that energy deposited by the incoming minimum ionizing particles will lead to an
good enough detection e�ciency. One interesting quantity used as estimator is the so-called
S/B ratio where S is the signal strength and B is the average noise. By example, S/B is about
30 for the CMS silicon strip modules.

The noise arise from electronic activities that appear both on the sensor and the electronic
circuits. The electrical behavior of a silicon strip module can be simply as the scheme presented
on the �gure 3.

Figure 3: A simpli�ed equivalent electrical scheme of a silicon strip module.)

Noise can be divided into several sources:

• noise arising from the capacitance (BC)

• shot noise arising from leakage current (BIleak)

• parallel thermal noise arising from bias resistance (BRp)

• serial thermal noise term arising from the metal strip resistance (BRs)

For the sake of simplicity, we will not consider the BRs term during that session. Moreover,
we will consider that most of the module characteristics are �xed parameters and we will focus
on only few noise dependencies as express below:

16 / 26

B2 = B2
Ileak

+B2
C +B2

Rp
(1)

BC = a+ b× L (2)

BIleak = c×
√
Ileak (3)

BRp = d×

√
e× T

Rp

(4)

where T is the temperature, L is the strip length and a,b,c,d are constant parameters. The
units are arbitrary.

4.3 Commissioning runs

Before using silicon strip detectors for physics analysis, physicists in charge of the detector
operation should perform commissioning runs. They are done in absence of signal, ie while
beam is o�. The data provided later in that session originate from a very simple simulation
tool, however they are su�ciently realistic to re�ect the behavior of silicon strip modules.

Instrumental setup

We will consider that the data registered correspond to a bunch of modules having di�erent
length. The table 1 describes the modules used, their length and their ID range.

Number of modules Module Id range Strip length (cm)
50 [1-50] 9
50 [51-100] 11
50 [101-150] 13
50 [151-200] 15

Table 1: Description of the modules used during commissioning runs.

Data format

The data analyzed later in the session follow the format described below:

• event id (integer)

• detector id (integer)

• leakage current measured (real)

• signal measured in each of the 128 channels expressed in ADC counts: 128 integers
belonging to [0-1023]

17 / 26

Commissioning tasks

The commissioning runs have to ful�ll many goals. We will not describe all of them (initial-
ization, synchronization, alignment,etc), but only discuss the ones relevant for the exercise
proposed today.

• Measuring the pedestal: the average activity in each of the channel in absence of signal
is not null and has to be measured. It is the quantity that will has to be subtracted later
to check if a signal has been observed

• Measuring the noise: it corresponds to the �uctuation around the pedestal for each
channel. To detect a signal, the response of a channel will be compare to the noise
�uctuations on top of the pedestal. A typical 3 σ criterion could be apply to reconstruct
hits.

• Detecting noisy and dead channels. For many physical reasons, such as bonding
problems, channels could have a really low response or at the contrary a too important
noise. Such channels can be spotted and then masked during the physics runs.

18 / 26

5 First step: reading data

Pedagogical goals:

• Reading data: transforming data contained in a text �le into a tree

• Writing a code skeleton to analyze a tree

• Manipulating root �les

Ressources:

Documentation • Users guide: Tree and I/O sections

• Tutorials:tree section

• How To's: create, �ll and read trees

ROOT classes • TTree

• TBranch

• TFile

• TBrowser

5.1 Converting a data stored in a text �le into a ROOT tree

Start that section by copying the �le ~echabert/public/ESIPAP/Test.dat in your working
directory. This �le contains hundred events corresponding to the data acquisition of the 200
silicon strip modules of the setup, totalizing 20000 lines. Each line corresponds to the acquisition
of a given module, specify by its module-id, taken at a given event labeled by an event-id. Then
the current leakage measurement precedes the signals measured in each of the 128 channels of
module expressed in ADC counts (128 integers ranging in [0-1023]). The program developed in
that section and the next ones must have to be compiled.

19 / 26

http://root.cern.ch/download/doc/ROOTUsersGuideChapters/Trees.pdf
http://root.cern.ch/drupal/content/how-read-objects-file
http://root.cern.ch/drupal/content/how-write-objects-file
http://root.cern.ch/root/html534/tutorials/tree/index.html
http://root.cern.ch/drupal/content/how-create-and-fill-tree
http://root.cern.ch/drupal/content/how-read-tree
http://root.cern.ch/root/html/TTree.html
http://root.cern.ch/root/html/TBranch.html
http://root.cern.ch/root/html/TFile.html
http://root.cern.ch/root/html/TBrowser.html

• Read the basic documentation about TTree manipulation linked
above in a partial an e�cient way. Find the relevant information
and the instructions to perform the tasks listed below.

• Read the ~echabert/public/ESIPAP/Test.dat and load it
into a TTree by calling the method ReadFile.

• Is the �rst line of the text �le useful ? If yes, what does it
do?

• Save the tree into a ROOT �le. Note that you can give
a name to the TTree via the construtor or the method
SetName()

5.2 Reading data from the tree

• Create a skeleton of code that can load that tree, and
set a loop over its entries to be able to access the tree
content. You will have to use SetBranchAddress() method.
Find an automated way to load the branches containing
the digital signal of each channel. Variables referring to
the tree content will be contained in a C structure or in a
simple C++ class.

• Check that you are able to access the data and that you
are ready to implement your future analysis. You could
simply try to print on screen one entry and compare it
with the original �le.

It is possible to create an automatic code skeleton from a tree. Following
the instructions below you should be able to run on a given tree according
its data structure.

1 TTree* tree;

2 //here you need to access to a tree ,

3 //by example from a TFile

4 tree ->MakeClass (" ClassName ");

5 //The previous line will generate two files:

6 // ClassName.h and ClassName.cc

Open the �le ClassName.cc and read the instructions to launch the
program. This example can help you to undestand the structure of a code
that reads a tree. As you can see, this solution is written in a way to be
executed in the ROOT interpreter. Moreover, it might be convenient to
write an equivalent code in a more condensed way, especially for reading
the vXXX branches of the tree.

20 / 26

6 Data analysis: creating histograms and graphs

Pedagogical goals:
The goals of that section is to be trained to obtain basic graphical results that are commonly
used in our disciplines. That knowledge will be directly useful for data analysis latter.

• Getting familiar with TTreeViewer

• Creating and customizing one-dimensional and bi-dimensional histograms

• Manipulating histograms in an automated way

Ressources:

Documentation • Users guide: Histograms and Graphs sections

• Tutorials: histo and graph sections

• How To's: Histograms and Graphics and Graphical User In-
terface sections

ROOT classes • TCanvas

• TH1F

• TH2F

• TGraph

• TGraphErrors

• TLegend

• TStyle

• TTreeViewer

6.1 Using the TTreeViewer

ROOT o�ers a graphical solution to run simple analysis interactively on a TTree. The class in
charge of that is called TTreeViewer. This is the two options to launch it on your tree:

1. From the TBrowser : Select a tree in the TBrowser, then call the StartViewer() method
from its context menu (right-click on the tree).

2. From the command line : Start a ROOT session in the directory where you have your tree.
You will need �rst to load the library for TTreeViewer and optionally other libraries for
user de�ned classes (you can do this later in the session) :

1 root [0] gSystem ->Load(" TTreeViewer ");

2 //For a tree MyTree contained in a file MyFile , you can do :

3 root [1] TFile file(" Myfile ");

4 root [2] new TTreeViewer (" Mytree ");

21 / 26

http://root.cern.ch/download/doc/ROOTUsersGuideChapters/Histograms.pdf
http://root.cern.ch/download/doc/ROOTUsersGuideChapters/Graphs.pdf
http://root.cern.ch/root/html534/tutorials/hist/index.html
http://root.cern.ch/root/html534/tutorials/graphs/index.html
http://root.cern.ch/drupal/content/how-use-histogram-classes
http://root.cern.ch/drupal/content/howtos#graf
http://root.cern.ch/drupal/content/howtos#graf
http://root.cern.ch/root/html/TCanvas.html
http://root.cern.ch/root/html/TH1F.html
http://root.cern.ch/root/html/TH2F.html
http://root.cern.ch/root/html/TGraph.html
http://root.cern.ch/root/html/TGraphErrors.html
http://root.cern.ch/root/html/TLegend.html
http://root.cern.ch/root/html/TLegend.html
http://root.cern.ch/root/html/TTreeViewer.html

For further documentation, you can read the class description here

• Take few minutes to play with the TTreeViewer and display quan-
tities.

• Display 1-D or 2-D histogram while dragging variables of interest.

• Even cuts can be added. By example you can apply a selection
based on the detector id.

6.2 Using ROOT graphics in a program

This section can be realized with some freedom. However, beginners are encourage to build
their program following successive steps:

1. Using TTreeViewer to check the expected results for basic histograms

2. Writing code in a macro, running it interactively and checking that the histograms per-
formed correspond to the ones obtained previously

3. Adapting the code to become a standalone program link to ROOT libraries

The list of histograms we are interested in will be given below. The displayed quantities can be
obtained by running on the whole modules or such on one subset or few subsets depending on
the analysis purpose. You should think in advance of a way to implement a program that could
accommodate to such changes. You are encourage to use functions that takes arguments such
as the module id, the event id, etc. In view of time execution "optimization", think about a
solution where you don't loop over the TTree each time you want to produce a new histogram
...

Producing your �rst histograms

The �rst histogram you could create is simply the silicon strip signal measured on a given
module for a given event. This histogram should contain 128 bins corresponding to the 128
channels.

22 / 26

http://root.cern.ch/root/html/TTreeViewer.html

Histograms at module level

• Write functions that can create and display the following quantities:

• leakage current distribution

• pedestal distribution

• noise distribution

• Test your code interactively and check the distributions obtained

• TCanvas can be divided in order to display the 3 distributions of a
given module at once.

• Automatize the creation of such distributions for all modules and
save them into folders of a TFile. This will imply the manipulation
of string for the name of histograms and folders. Note that ROOT
implemented a class TString than could eventually be used instead
of std::string.

• De�ne your own graphical chart (line width, colors, etc) and apply
it to all your distributions. One should have a look to the class
TStyle.

• Save all you distributions in the same pdf �le. For readiness think
about relevant title for your histograms (variable, module id)

Histograms of mean values for all modules

We are now interested to check the distributions of quantities average for each module. TH1

class provides functions that gives access to the mean and rms of the distributions. Check on
the documentation and use them to �ll the above mentioned distributions

• Write the code to obtained the following quantities

• mean and rms leakage current distributions

• mean and rms pedestal distributions

• mean noise distribution

• mean leakage current versus mean noise (TH2F)

• For the 2D-histogram, check the available display options. More-
over, you will see on the documentation that TH2 class provided a
function to return linear correlation. Use it and interpret the result.
One could think about producing additional 2D-histograms.

• As for the previous subsection, save the histograms into folders in
the TFile as well as in a pdf.

23 / 26

http://root.cern.ch/root/html/TString.html

Analysis depending on the strip length

We are now interesting in observing quantities for subset of modules that have the same strip
length.

• Compute the mean noise for each group of modules having the same
length and create a graph from the 4 points obtained. Propagate
the uncertainty on each point into the graph.

• Similar graphs could be obtained from over histograms.

• Save it into a TFile and a pdf.

24 / 26

7 Data analysis: �tting

Pedagogical goals:

• Handling �t functionality and getting used to the �t options

• Fitting distribution with prede�ned or user-de�ned functions

• Automation of �ts other a collection of histograms

Ressources:

Documentation • Users guide: Fitting Histograms sections

• Tutorials: �t sections

• How To's: Fitting Histograms section

ROOT classes • TF1

• FitPanel

7.1 Using the FitPanel

ROOT o�ers a graphical solution to perform �t interactively on histograms. Read the appropriate
documentation here.

• Train yourself on the following distributions:

• leakage current distribution for a given module

• Distribution of mean leakage current averaged per module

• For each distribution:

• Find the appropriate model function

• Check the value of the χ2 returned

• Test the stability of the �t depending on the range used

• Try several minimization options and compare the results

7.2 Automatized �ts from a compiled program

The goal is now to reuse the conclusion obtained from the the previous tries using the FitPanel
and to perform the same �t in our program.

25 / 26

http://root.cern.ch/download/doc/ROOTUsersGuideChapters/FittingHistograms.pdf
http://root.cern.ch/root/html534/tutorials/fit/index.html
http://root.cern.ch/drupal/content/how-fit-histograms-or-data-points
http://root.cern.ch/root/html/TF1.html
http://root.cern.ch/drupal/content/how-fit-using-fitpanel
http://root.cern.ch/drupal/content/how-fit-using-fitpanel

• Call the Fitter and �t the histograms previously used

• Retrieve the parameters of the �tted function as well as their errors

• Compute a probability (p-value) from the χ2 returned (see docu-
mentation in TMath)

• Superimpose the �tted function to the histogram produced. Cus-
tomize the display (color, size, etc)

Once you are able to reproduce the previously obtained results in our program, you could
envisage to extend that for a bunch of histograms. Automatized �ts might however be dangerous
if one doesn't properly look to some meaningful quantities like the errors of the p-value.

• Fit the leakage current distribution for each module, retrieve the
mean, the σ and the p-value and �ll an histogram for each of those
3 quantities

• Fit the distribution of the mean noise as function of the strip length

• Fit the mean leakage current versus mean noise per module (2D
distribution)

• How would you interpret the previous results obtained ?

• Can you extract noise parameters described in the beginning of
that document from your �t ? If not, what would you propose.

26 / 26

	Foreword
	I Getting started with ROOT
	Introduction to ROOT
	Documentation
	Overview of the main functionalities
	ROOT classes

	Software Handling
	Using ROOT intepreter
	Using ROOT macros
	ROOT compilation: ACLIC
	 $ROOTSYS and access to tutorials

	Using ROOT classes in a standalone program
	ROOT Graphical User Interface

	II Silicon strip modules commissioning
	Physics context
	Strip sensor description
	Characterization of silicon strip detector noise
	Commissioning runs

	First step: reading data
	Converting a data stored in a text file into a ROOT tree
	Reading data from the tree

	Data analysis: creating histograms and graphs
	Using the TTreeViewer
	Using ROOT graphics in a program

	Data analysis: fitting
	Using the FitPanel
	Automatized fits from a compiled program

