
Detector Simulation
Sensitive Detectors and Hits

User Actions
Witek Pokorski
Alberto Ribon

CERN

13-14.02.2017

1

What you need to make simulation?

and to get something out of it…

UserActions

UserActions

2

Introduction

We know now how to create a detector
We have started to look at the physics simulation
In lecture we will learn how to extract information
useful to you. Examples: energy released, number of
particles, etc. Different methods:

Sensitive Detector
User Actions
Scoring

3

In This Part

What is a Sensitive Detector?

What is a G4Step?

How to create a Sensitive Detector and use it

4

Sensitive Detector

A SD can be used to simulate the “read-out” of your
detector:

It is a way to declare a geometric element
“sensitive” to the passage of particles

It gives the user a handle to collect quantities from
these elements. For example: energy deposited,
position, time information

5

Meeting

Example: Hadcalo
Hadronic Calorimeter consists of layers of absorber (Fe) and layers
of active material (LAr)

We want to collect energy released in LAr layers

G4 tracks particles in the detector, when a particle passes through
a detector declared sensitive the user’s SD code is called

mu- @ 2 GeV

Fe

LAr

6

Sensitivedetector Class

To create a SD you need to:

1. Write your SensitiveDetector class

2. Attach it to a logical volume

Example: HadCaloSensitiveDetector class, inherits
from G4VSensitiveDetector

G4VSensitiveDetector declares interface

7

Adding A Sd

Basic strategy (in src/DetectorConstruction.cc):

Each SD object must have a unique name.

Different logical volumes can share one SD object.

More than one SD object can be made from the same SD class with different detector
name.

8

Sensitivedetector Class

Add include

9

Sensitivedetector Class

Base class

10

Sensitivedetector Class

Constructor: SD are named!

11

Sensitivedetector Class

Initialization: called
at beginning of event

Note: G4HCofThisEvent will be discussed later today!

12

Sensitivedetector Class

Finalize: called at end
of event

Note: G4HCofThisEvent will be discussed later today!

13

Sensitivedetector Class

Called for each
G4Step in sensitive

volume

14

Sensitivedetector Class

G4Step: What is it?

15

G4Step
Snapshot of the interaction of a G4Track (particle) with a volume
A G4Step can be seen as a “segment” delimited by two points
It contains “delta” information (energy loss along the step, time-of-
flight, etc)
Each point knows the volume (and material) associated to it
A step never spans across boundaries: geometry or physics define the end
points

If the step is limited by a boundary, the post-step point stands on the
boundary and it logically belongs to the next volume

Get the volume information from the PreStepPoint

PreStepPoint
PostStepPoint

16

G4Step

LA
r

LA
r

LA
r

LA
rThe muon track

passes through the
calorimeter

17

G4Step

LA
r

LA
r

LA
r

LA
r

A Step in Fe:
SD is ignored

18

G4Step

LA
r

LA
r

LA
r

LA
rA Step in LAr:  

It’s sensitive thus
::ProcessHits(...) will

be called

19

G4Step

LA
r

LA
r

LA
r

LA
rFor all these G4Steps

::ProcessHits(...) will
be called

20

G4Step

LA
r

LA
r

LA
r

LA
rFor all these G4Steps

::ProcessHits(...) will
be called

21

G4Step

LA
r

LA
r

LA
r

LA
rFor all these G4Steps

::ProcessHits(...) will
be called

22

G4Step

LA
r

LA
r

LA
r

LA
rFor all these G4Steps

::ProcessHits(...) will
be called

23

G4Step

LA
r

LA
r

LA
r

LA
rFor all these G4Steps

::ProcessHits(...) will
be called

24

G4Step

LA
r

LA
r

LA
r

LA
rFor all these G4Steps

::ProcessHits(...) will
be called

25

A Note On G4Step

A G4Step is delimited by:

Geometry boundaries

A physics process (non continuous)

G4Track is constant during step, G4 guarantees step
is never too long (i.e. Edep does not change too much
Ekin G4Track)

Multiple
Scattering

secondary

26

Getting Information From G4Steps

G4Step can be interrogated to get information about
physics process and volumes:

Get volume where G4Step is remember:
Use PreStepPoint! PostStep “belongs” to next volume

Get energy deposited along G4Step (i.e. ionization)

27

In This Part

What is G4Hit?

How to use hits

28

Reminder: G4Step

LA
r

LA
r

LA
r

LA
rFor all these G4Steps

::ProcessHits(...) will
be called

29

What Hits Are

Hits are created in Sensitive Detector to store user quantities

Hits are collected in a container and “registered” in Geant4

Hits become available to all components of the application

A tracker detector typically generates a hit for every single step of
every single (charged) track.

A tracker hit typically contains: Position and time, Energy
deposition of the step, Track ID

A calorimeter detector typically generates a hit for every “cell”, and
accumulates energy deposition in each cell for all steps of all tracks.

A calorimeter hit typically contains: Sum of deposited energy ,
Cell ID

Hits should be identified: they have an id that uniquely identifies them

30

Hits

You need to write your own Hit class: inherits from G4VHit

Hits must be stored in a collection of hits instantiated from
G4THitsCollection template class

Headers files

31

Hits

You need to write your own Hit class: inherits from G4VHit

Hits must be stored in a collection of hits instantiated from
G4THitsCollection template class

Base class

32

Hits

You need to write your own Hit class: inherits from G4VHit

Hits must be stored in a collection of hits instantiated from
G4THitsCollection template class

Create a new Hit: the ID
is the layer index

33

Hits

You need to write your own Hit class: inherits from G4VHit

Hits must be stored in a collection of hits instantiated from
G4THitsCollection template class

Hit interface: print on
screen

34

Hits

You need to write your own Hit class: inherits from G4VHit

Hits must be stored in a collection of hits instantiated from
G4THitsCollection template class

Our specific hit interface

35

Hits

You need to write your own Hit class: inherits from G4VHit

Hits must be stored in a collection of hits instantiated from
G4THitsCollection template class

The Hit container, just
add this line

Warning: more advanced code (memory management optimization) not shown here, optional
but highly recommended

36

How To Declare Hits
A hits collection has a name, this name must be
declared in SensitiveDetector constructor

SD has a data member: collectionName, add your
name to this vector of names

A SD can declare more than one hits collection!

Our hits collection name!
37

How To Create A Hc (Hits Container)
Every event a new hit collection (HC) has to be created and
added to current event collection of hits

Every HC has two names: the SD name that created it and the
name of collection. This pair is unique

Geant4 uses also an identifier (a number) to uniquely identify
your collection, you need to use this ID to register/retrieve the
collection

38

How To Create A Hc (Hits Container)
Every event a new hit collection (HC) has to be created and
added to current event collection of hits

Every HC has two names: the SD name that created it and the
name of collection. This pair is unique

Geant4 uses also an identifier (a number) to uniquely identify
your collection, you need to use this ID to register/retrieve the
collection

Create a Hit Collection: GetName() returns SD name (“/HadCalo”) ,
collectionName is a vector: [0] is the first (and only in our case) element

(“HadCaloHitCollection”)
39

How To Create A Hc (Hits Container)
Every event a new hit collection (HC) has to be created and
added to current event collection of hits

Every HC has two names: the SD name that created it and the
name of collection. This pair is unique

Geant4 uses also an identifier (a number) to uniquely identify
your collection, you need to use this ID to register/retrieve the
collection

GetCollectionID(0) is an heavy operation, you should avoid to do it every event!
GetCollectionID(0) returns the unique ID associated to the hit collection!

40

How To Create A Hc (Hits Container)
Every event a new hit collection (HC) has to be created and
added to current event collection of hits

Every HC has two names: the SD name that created it and the
name of collection. This pair is unique

Geant4 uses also an identifier (a number) to uniquely identify
your collection, you need to use this ID to register/retrieve the
collection

Register the hits collection object in the Hits Collections of This Event
(G4HCofThisEvent)

41

How To Create And Fill Hits

Every time ProcessHits is called you can (if needed)
create a hit and add it to the hits collection

42

Summary

G4Step

43

Summary

G4Step
aHit

44

Summary

G4Step
Hits CollectionaHit

“collectionName” : ID

Repeat for each step in the event

45

Summary

G4Step
Hits CollectionaHit Hits CollectionaHit

“collectionName” : ID “anotherCollection” : ID

Hit Collections of This Event

End of the event

46

In This Part

User Actions

47

User actions (slide from Introduction)

■ how to control your simulation?
❑ G4UserRunAction

■ BeginOfRunAction, EndOfRunAction
❑ G4UserEventAction

■ BeginOfEventAction, EndOfEventAction
❑ G4UserStackingAction

■ ClassifyNewTrack, NewStage, PrepareNewEvent
❑ G4UserTrackingAction

■ PreUserTrackingAction, PostUserTrackingAction
❑ G4UserSteppingAction

■ BeginOfStepAction, EndOfStepAction

■ fully customizable (empty by default)
■ allow user to take actions depending on

his specific case
❑ simulated only relevant particles
❑ save specific information, fill histograms
❑ speed-up simulation by applying different

limits

R
un

Event

Event

Event

Event

stack

stack

stack

stack

tracks
steps

48

Extract information from G4 internal objects

■ Simulation is successively split
into

■ Run consists of
■ Event(s), consists of
■ Particle(s) transported in
■ Steps through detector setup,
■ depositing energy

(ionization),
■ and creating secondaries

■ Corresponding / related Objects
■ G4RunManager, G4Run
■ G4Event
■ G4Track, G4DynamicParticle
■ G4Step, G4StepPoint 

■ G4Trajectory 

■ G4Stack

49

User Actions
■ User at each moment has possibility to take control or

access information via UserAction classes
❑ G4UserRunAction Actions for each Run
❑ G4UserEventAction Actions for each Event
❑ G4UserTrackingAction Actions for each Track
❑ G4UserSteppingAction Actions for each Step
❑ G4UserStackingAction Tracks Stack management

50

RunManager in Geant4
■ G4RunManager class manages processing a run

❑ Must be created by user
❑ May be user derived class
❑ Must be singleton

■ User must register in RunManager using
❑ SetUserInitialization() method
■ Geometry
■ Physics

❑ SetUserAction() method
■ Event generator

❑ Optional UserAction objects

51

Run in Geant4
■ Run is a collection of events

❑ A run consists of one event loop
❑ Starts with a /run/beamOn command.

■ Within a run, conditions do not change, i.e. the user cannot change
❑ detector setup
❑ settings of physics processes

■ At the beginning of a run, geometry is optimized for navigation and
cross-section tables are calculated according to materials appear in the
geometry and the cut-off values defined.

■ Run is represented by G4Run class or a user-defined class derived
from G4Run.

❑ A run class may have a summary results of the run.
■ G4RunManager is the manager class
■ G4UserRunAction is the optional user hook.

52

Optional User Run Action Class
■ G4UserRunAction

❑ G4Run* GenerateRun()
■ Instantiate user-customized run object

❑ void BeginOfRunAction(const G4Run*)
■ Define histograms

❑ void EndOfRunAction(const G4Run*)
■ Analyze the run
■ Store histograms

53

R
un

Event

Event

Event

Event

stack

stack

stack

stack

tracks
steps

Event in Geant4
■ An event is the basic unit of simulation in Geant4.
■ At beginning of processing, primary tracks are generated. These

primary tracks are pushed into a stack.
■ A track is popped up from the stack one by one and “tracked”.

Resulting secondary tracks are pushed into the stack.
❑ This “tracking” lasts as long as the stack has a track.

■ When the stack becomes empty, processing of one event is over.
■ G4Event class represents an event. It has the following objects at the

end of its (successful) processing.
❑ List of primary vertices and particles (as input)
❑ Hits and Trajectory collections (as output)

■ G4EventManager class manages processing an event.
■ G4UserEventAction is the optional user hook.

54

Optional User Event Action Class
■ G4UserEventAction

❑ void BeginOfEventAction(const
G4Event*)
■ Event selection

❑ Using information from event generator,
vertices, primary particles

■ Optionally attach
G4VUserEventInformation object

❑ void EndOfEventAction(const
G4Event*)
■ Output event information
■ Analyse event

❑ Access to hits collection via
G4Event::GetHCofThisEvent()

❑ Acces digitisation collection via
G4Event:: GetDCofThisEvent()

■ Fill histograms

55

R
un

Event

Event

Event

Event

stack

stack

stack

stack

tracks
steps

Track in Geant4
■ Track is a snapshot of a particle.

❑ It has physical quantities of current instance only. It does not record
previous quantities.

❑ Step is a “delta” information to a track. Track is not a collection of
steps. Instead, a track is being updated by steps.

■ Track object is deleted when
❑ it goes out of the world volume,
❑ it disappears (by e.g. decay, inelastic scattering),
❑ it goes down to zero kinetic energy and no “AtRest” additional

process is required, or
❑ the user decides to kill it artificially.

■ No track object persists at the end of event.
❑ For the record of tracks, use trajectory class objects.

■ G4TrackingManager manages processing a track, a track is
represented by G4Track class.

■ G4UserTrackingAction is the optional user hook.

56

Tracking User Action Classes
■ G4UserTrackingAction

❑ void
PreUserTrackingAction(const
G4Track*)
■ Decide if trajectory should be

stored or not
■ Create user-defined trajectory

❑ void
PostUserTrackingAction(const
G4Track*)
■ Delete unnecessary trajectory

57

R
un

Event

Event

Event

Event

stack

stack

stack

stack

tracks
steps

Stacking User Action Class
■ G4UserStackingAction

❑ G4ClassificationOfNewTrack
ClassifyNewTrack(const G4Track*)
■ Invoked every time a new track is

created, ie. Pushed to the stack
■ Classify a new track -- priority

control
❑ Urgent, Waiting,

PostponeToNextEvent, Kill
❑ Manipulate track stack,

■ void PrepareNewEvent()
❑ Reset priority control

■ void NewStage()
❑ Invoked when the Urgent stack

becomes empty
❑ Change the classification criteria
❑ Event filtering (Event abortion)

58

R
un

Event

Event

Event

Event

stack

stack

stack

stack

tracks
steps

Step in Geant4
■ Step has two points and also “delta” information of a particle (energy

loss on the step, time-of-flight spent by the step, etc.).
❑ Point is represented by G4StepPoint class

■ Each point knows the volume (and material). In case a step is limited
by a volume boundary, the end point physically stands on the
boundary, and it logically belongs to the next volume.
❑ Because one step knows materials of two volumes, boundary

processes such as transition radiation or refraction could be
simulated.

■ G4SteppingManager class manages processing a step, a step is
represented by G4Step class.

■ G4UserSteppingAction is the optional user hook.

Post-step point

Step

Boundary

Pre-step point 59

Stepping User Action Class
■ G4UserSteppingAction

❑ void
UserSteppingAction(const
G4Step*)
■ Change status of track

❑ Kill / suspend / postpone the
track

■ Draw the step (for a track
not to be stored as a
trajectory)

60

R
un

Event

Event

Event

Event

stack

stack

stack

stack

tracks
steps

Recap – User action classes
■ All needed UserAction classes

❑ must be constructed in main()
❑ must be provided to the RunManager using SetUserAction() method

■ One mandatory User Action class
❑ Event generator must be provided
❑ Event generator class must be derived from

G4VUserPrimaryGeneratorAction
■ List of optional User Action classes

❑ G4UserRunAction
❑ G4UserEventAction
❑ G4UserTrackingAction
❑ G4UserSteppingAction
❑ G4UserStackingAction

61

Geant4 ‘Scoring’

• Retrieving information from Geant4 using scoring
• Command-based scoring
• Add a new scorer/filter to command-based scoring
• Define scorers in the tracking volume
• Accumulate scores for a run

62

covered
here

not covered
here

Extract useful information - reminder

Scoring I - M.Asai (SLAC) 4

• Given geometry, physics and primary track generation, Geant4 does proper physics
simulation “silently”.
– You have to add a bit of code to extract information useful to you.

• There are three ways:
– Assign G4VSensitiveDetector to a volume to generate “hit”.

• Use user hooks (G4UserEventAction, G4UserRunAction) to get event / run
summary

– Built-in scoring commands
• Most commonly-used physics quantities are available.

– Use scorers in the tracking volume
• Create scores for each event
• Create own Run class to accumulate scores

• You may also use user hooks (G4UserTrackingAction, G4UserSteppingAction, etc.)
– You have full access to almost all information
– Straight-forward, but do-it-yourself

Covered here

Not covered here

Covered before

Covered before

Command-based scoring

• Command-based scoring functionality offers the built-in scoring mesh
and various scorers for commonly-used physics quantities such as
dose, flux, etc.

• To use this functionality, access to the G4ScoringManager pointer
after the instantiation of G4RunManager in your main().

#include “G4ScoringManager.hh”
int main()
{
 G4RunManager* runManager = new G4RunManager;
 G4ScoringManager* scoringManager =  

 G4ScoringManager::GetScoringManager();
 …

• All of the UI commands of this functionality is in /score/ directory.
• /examples/extended/runAndEvent/RE03

Scoring I - M.Asai (SLAC) 6

/example/extended/runAndEvent/RE03

Scoring I - M.Asai (SLAC) 7

Define a scoring mesh

• To define a scoring mesh, the user has to specify the followings.
1. Shape and name of the 3D scoring mesh. Currently, box is the only available shape.

• Cylindrical mesh also available as a beta-release.
2. Size of the scoring mesh. Mesh size must be specified as "half width" similar to the

arguments of G4Box.
3. Number of bins for each axes. Note that too many bins causes immense memory

consumption.
4. Optionally, position and rotation of the mesh. If not specified, the mesh is positioned

at the center of the world volume without rotation.

define scoring mesh
/score/create/boxMesh boxMesh_1
/score/mesh/boxSize 100. 100. 100. cm
/score/mesh/nBin 30 30 30

• The mesh geometry can be completely independent to the real material geometry.

Scoring I - M.Asai (SLAC) 8

Scoring quantities

• A mesh may have arbitrary number of scorers. Each scorer scores one physics quantity.
– energyDeposit * Energy deposit scorer.
– cellCharge * Cell charge scorer.
– cellFlux * Cell flux scorer.
– passageCellFlux * Passage cell flux scorer
– doseDeposit * Dose deposit scorer.
– nOfStep * Number of step scorer.
– nOfSecondary * Number of secondary scorer.
– trackLength * Track length scorer.
– passageCellCurrent * Passage cell current scorer.
– passageTrackLength * Passage track length scorer.
– flatSurfaceCurrent * Flat surface current Scorer.
– flatSurfaceFlux * Flat surface flux scorer.
– nOfCollision * Number of collision scorer.
– population * Population scorer.
– nOfTrack * Number of track scorer.
– nOfTerminatedTrack * Number of terminated tracks scorer.

Scoring I - M.Asai (SLAC) 9
/score/quantitly/xxxxx <scorer_name>

Filter

Scoring I - M.Asai (SLAC) 11

• Each scorer may take a filter.
– charged * Charged particle filter.
– neutral * Neutral particle filter.
– kineticEnergy * Kinetic energy filter.

/score/filter/kineticEnergy <fname> <eLow> <eHigh> <unit>
– particle * Particle filter.

/score/filter/particle <fname> <p1> … <pn>
– particleWithKineticEnergy * Particle with kinetic energy filter.

/score/quantity/energyDeposit eDep
/score/quantity/nOfStep nOfStepGamma
/score/filter/particle gammaFilter gamma
/score/quantity/nOfStep nOfStepEMinus
/score/filter/particle eMinusFilter e-
/score/quantity/nOfStep nOfStepEPlus
/score/filter/particle ePlusFilter e+
/score/close

Close the mesh when defining scorers is done.

Same primitive scorers
with different filters may
be defined.

Drawing a score

• Projection

/score/drawProjection <mesh_name> <scorer_name> <color_map>

• Slice

/score/drawColumn <mesh_name> <scorer_name> <plane> <column> <color_map>

• Color map

– By default, linear and log-scale color maps are available.

– Minimum and maximum values can be defined by /score/colorMap/setMinMax

command. Otherwise, min and max values are taken from the current score.

Scoring I - M.Asai (SLAC) 12

Write scores to a file

• Single score
/score/dumpQuantityToFile <mesh_name> <scorer_name>

<file_name>
• All scores

/score/dumpAllQuantitiesToFile <mesh_name> <file_name>

• By default, values are written in CSV
• By creating a concrete class derived from G4VScoreWriter base

class, the user can define his own file format.
– Example in /examples/extended/runAndEvent/RE03
– User’s score writer class should be registered to

G4ScoringManager.

Scoring I - M.Asai (SLAC) 13

More than one scoring meshes

• You may define more than one scoring mesh.
– And, you may define arbitrary number of

primitive scorers to each scoring mesh.
• Mesh volumes may overlap with other

meshes and/or with mass geometry.
• A step is limited on any boundary.
• Please be cautious of too many meshes, too

granular meshes and/or too many primitive
scorers.
– Memory consumption
– Computing speed

Scoring I - M.Asai (SLAC) 14

Summary
■ Sensitive Detectors create ‘hits’
■ User action classes allow user to control simulation or

get information and results
■ Action classes for event generation, run, event,

track, and step
■ Ready-to-use scoring can be used to calculate

different quantities (flux, etc)

72

Attaching User Information to
selected Geant4 classes

73

Attaching user information to some Geant4
kernel classes
■ Abstract classes

❑ You can use your own class derived from provided base class
❑ G4Run, G4VTrajectory, G4VTrajectoryPoint

■ Other examples: G4VHit, G4VDigit
■ Concrete classes

❑ You can attach a user information object
■ G4Event - G4VUserEventInformation
■ G4Track - G4VUserTrackInformation
■ G4PrimaryVertex - G4VUserPrimaryVertexInformation
■ G4PrimaryParticle - G4VUserPrimaryParticleInformation
■ G4Region - G4VUserRegionInformation

❑ User information object is deleted when associated Geant4 object is
deleted.

❑ Objects are managed, but not used by Geant4

74

UserInformation classes (1)
■ G4VUserEventInformation

❑ Additional data user wants to store for the event
■ Only Print() method is required

❑ User needs to register an instance in his
G4UserEventAction class indirectly with G4Event

❑ Using
G4EventManager::SetUserInformation(G4VUserEventIn
formation * ..)

❑ Cannot register directly in G4Event, as this is a const pointer
■ Get previously registered object using GetUserInformation() from

G4Event or G4EventManager
❑ Object is deleted when G4Event object is deleted

75

UserInformation classes (2)
■ G4VUserTrackInformation

❑ Data user want to keep for track, and not in trajectory
■ Only Print() method is required

❑ Pointer to UserInformation object is kept in G4Track
■ should be set from G4UserTrackingAction indirectly via
■ G4TrackingManager::SetUserInformation(G4VUserTrackInformati

on * ..)
▪ Cannot register directly in G4Track, as this is a const pointer

■ Get previously registered object using GetUserInformation() from
G4Track or G4TrackManager

❑ Object is deleted when G4Track object is deleted

76

UserInformation classes (3)

■ G4VUserPrimaryVertexInformation
❑ Attach information to G4PrimaryVertex

■ G4VUserPrimaryParticleInformation
❑ Attach information to G4PrimaryParticle

■ G4VUserRegionInformation
❑ Attach information to G4Region

■ Us Set/Get-UserInformation methods in G4PrimaryVertex,
…, to attach object. 
 
 
 

77

