85|pap esl

hl’rlt Tllt

Detector Simulation
Sensitive Detectors and Hits
User Actions

Witek Pokorski
Alberto Ribon
CERN

13-14.02.2017

/‘
SN | A

N/ S J
CERN

What you need to make simulation?

— UserActions

Beam Target

Detector

and to get something out of it...

UserActions

Sensitive Output
Geometry Detector -
Hit

Introduction

¢ We know now how to create a detector
¢ We have started to look at the physics simulation

¢ In lecture we will learn how to extract information
usetul to you. Examples: energy released, number of
particles, etc. Different methods:

Sensitive Detector
User Actions

Scoring

In This Part

& What is a Sensitive Detector?

¢ What is a G4Step?

& How to create a Sensitive Detector and use it

Sensitive Detector

¢ A SD can be used to simulate the “read-out” of your
detector:

It is a way to declare a geometric element
“sensitive” to the passage of particles

[t gives the user a handle to collect quantities from
these elements. For example: energy deposited,
position, time information

¢ Hadronic Calorimeter consists of layers of absorber (Fe) and layers
of active material (LAr)

We want to collect energy released in LAr layers

G4 tracks particles in the detector, when a particle passes through
a detector declared sensitive the user’s SD code is called

\
J.. ‘. || |||

mu- @ 2 GeV

Sensitivedetector Class

$ To create a SD you need to:
1. Write your SensitiveDetector class
2. Attach it to a logical volume

¢ Example: HadCaloSensitiveDetector class, inherits
from G4VSensitiveDetector

G4VSensitiveDetector declares interface

Adding A Sd

§ Basic strategy (in src/DetectorConstruction.cc):

G4LogicalVolume* hadlLayerlLogic = new G4LogicalVolume(hadlLayerSolid, lar, "HadlLayerlLogic");
HadCaloSensitiveDetector* sensitive = new HadCaloSensitiveDetector("/HadClo");
G4SDManager* sdman = G4SDManager: :GetSDMpointer();

sdman - >AddNewDetector(sensitive);
hadLayerlLogic->SetSensitiveDetector(sensitive);

¢ Each SD object must have a unique name.
Different logical volumes can share one SD object.

More than one SD object can be made from the same SD class with different detector
name.

Sensitivedetector Class

#include "G4VSensitiveDetector.hh"

iclass HadCaloSensitiveDetector : public G4VSensitiveDetector
{
'public:
/// Constructor
HadCaloSensitiveDetector(G4String SDname);
v /// Destructor

~HadCaloSensitiveDetector();

'public:
/// @name methods from base class G4VSensitiveDetector
//7@{
' /// Mandatory base class method : it must to be overloaded:
| G4bool ProcessHits(G4Step *step, G4TouchableHistory *ROhist);

' /// (optional) method of base class G4VSensitiveDetector
i volid Initialize(G4HCofThisEvent* HCE);
/// (optional) method of base class G4VSensitiveDetector
void EndOfEvent(G4HCofThisEvent* HCE);

v //@}

private:

I};

Add include

Sensitivedetector Class

#include "G4VSensitiveDetector.hh” B ase ClaSS

iclass HadCaloSensitiveDete@or :
{
'public:
/// Constructor
HadCaloSensitiveDetector(G4String SDname);
v /// Destructor

~HadCaloSensitiveDetector();

public G4VSensitiveDetector

'public:
/// @name methods from base class G4VSensitiveDetector
//7@{
' /// Mandatory base class method : it must to be overloaded:
| G4bool ProcessHits(G4Step *step, G4TouchableHistory *ROhist);

' /// (optional) method of base class G4VSensitiveDetector
i volid Initialize(G4HCofThisEvent* HCE);
/// (optional) method of base class G4VSensitiveDetector
void EndOfEvent(G4HCofThisEvent* HCE);

v //@}

private:

I};

10

Sensitivedetector Class

#include "G4VSensitiveDetector.hh"

iclass HadCaloSensitiveDetector : public G4VSensitiveDetector
{
'public:

ructor
' @HadCaloSensitiveDetector(G4String SDname) ;
‘ e L0

~HadCaloSens1itlve

Constructor:

'public:
/// @name methods from base class G4VSensitiveDetector
//@{
' /// Mandatory base class method : it must to be overloaded:
| G4bool ProcessHits(G4Step *step, G4TouchableHistory *ROhist);

' /// (optional) method of base class G4VSensitiveDetector
i volid Initialize(G4HCofThisEvent* HCE);
/// (optional) method of base class G4VSensitiveDetector
void EndOfEvent(G4HCofThisEvent* HCE);

v //@}

private:

I};

11

SD are named!

Sensitivedetector Class

#include "G4VSensitiveDetector.hh"

iclass HadCaloSensitiveDetector : public G4VSensitiveDetector
{
'public:
/// Constructor
' HadCaloSensitiveDetector(G4String SDname);
v /// Destructor

~HadCaloSensitiveDetector();

'public:
/// @name methods from base class G4VSensitiveDetector
//@{

' /// Mandatory base class method : it must to be overloaded:
| G4bool ProcessHits(G4Step *step, G4TouchableHistory *ROhist);

ensitiveDetector Initialization: Called

/ (optional) method of base class

- 4VSensitiveDetector at beginning Of event

void EndOfEvent(G4HCofThisEvent* HCE);
v //@}

private:
I};

Note: G4HCofThisEvent will be discussed later today!

12

Sensitivedetector Class

#include "G4VSensitiveDetector.hh"

iclass HadCaloSensitiveDetector : public G4VSensitiveDetector
{
'public:
/// Constructor
' HadCaloSensitiveDetector(G4String SDname);
v /// Destructor

~HadCaloSensitiveDetector();

'public:
/// @name methods from base class G4VSensitiveDetector
//@{

' /// Mandatory base class method : it must to be overloaded:
| G4bool ProcessHits(G4Step *step, G4TouchableHistory *ROhist);

' /// (optional) method of base class G4VSensitiveDetector

void Ini -YAeVITTarx 2 ent* HCE); . .
optional) method of base cla aSensitiveDetector :I:II]EiIIZZ(E: (:Elll(}(i Elt E}I](j_
of event

void EndOfEvent(G4HCofThisEvent* HCE);

private:
I};

Note: G4HCofThisEvent will be discussed later today!

13

Sensitivedetector Class

#include "G4VSensitiveDetector.hh"

iclass HadCaloSensitiveDetector : public G4VSensitiveDetector
{
'public:
/// Constructor
' HadCaloSensitiveDetector(G4String SDname);
v /// Destructor

~HadCaloSensitiveDetector();

'public:

/// @name methods from base class G4VSensitiveDetector Called for eaCh

" /// g@datory base class method : it must
Wl ProcessHits(G4Step *step, G4Touchable

g overloaded:

rory sronsst); (G4Step in sensitive

' /// (optional) method of base class G4VSensitiveDetector

i volid Initialize(G4HCofThisEvent* HCE); VOlume
/// (optional) method of base class G4VSensitiveDetector
void EndOfEvent(G4HCofThisEvent* HCE);

v //@}

private:

I};

14

Sensitivedetector Class

#include "G4VSensitiveDetector.hh"

iclass HadCaloSensitiveDetector : public G4VSensitiveDetector
{
'public:
/// Constructor
' HadCaloSensitiveDetector(G4String SDname);
v /// Destructor

~HadCaloSensitiveDetector();

'public:
/// @name methods from base class G4VSensitiveDetector
//@{

' /// (optional) method of base class G4VSensitiveDetector
i volid Initialize(G4HCofThisEvent* HCE);
/// (optional) method of base class G4VSensitiveDetector
void EndOfEvent(G4HCofThisEvent* HCE);

v //@}

private:

I};

15

\ /// Mandatory base clg Blmiaad . it must to be overloaded:
| G4bool ProcessllitG4TouchableHistory *ROhist);
| G4Step: What is it?

G45tep

¢ Snapshot of the interaction of a G4Track (particle) with a volume
$ A G4Step can be seen as a “segment” delimited by two points

¢ It contains “delta” information (energy loss along the step, time-of-
flight, etc)

¢ Each point knows the volume (and material) associated to it

§ A step never spans across boundaries: geometry or physics define the end
points

If the step is limited by a boundary, the post-step point stands on the
boundary and it logically belongs to the next volume

Get the volume information from the PreStepPoint

A Note On G45tep

$ A G4Step is delimited by:
Geometry boundaries
A physics process (non continuous)

$ G4Track is constant during step, G4 guarantees step

is never too long (i.e. Edep does not change too much
Ekin G4Track)

Multiple secondary

26

Getting Information From G4Steps

$ (G45Step can be interrogated to get information about
physics process and volumes:

G4bool HadCaloSensitiveDetector::ProcessHits(G4Step *step, G4TouchableHistory *)
{

G4TouchableHandle touchable = step->GetPreStepPoint()->GetTouchableHandle();
G4int copyNo = touchable-=GetVolume(0)->GetCopyNo();

N\

Get volume where G4Step is remember:
Use PreStepPoint! PostStep “belongs” to next volume

G4double edep = step->GetTotalEnergyDeposit();

N\

Get energy deposited along G4Step (i.e. ionization)

27

In This Part

¢ What is G4Hit?

¢ How to use hits

28

What Hits Are

¢ Hits are created in Sensitive Detector to store user quantities
¢ Hits are collected in a container and “registered” in Geant4
Hits become available to all components of the application

$ A tracker detector typically generates a hit for every single step of
every single (charged) track.

A tracker hit typically contains: Position and time, Energy
deposition of the step, Track ID

$ A calorimeter detector typically generates a hit for every “cell”, and
accumulates energy deposition in each cell for all steps of all tracks.

A calorimeter hit typically contains: Sum of deposited energy ,
Cell ID

¢ Hits should be identified: they have an id that uniquely identifies them

30

Hits

¢ You need to write your own Hit class: inherits from G4VHit

¢ Hits must be stored in a collection of hits instantiated from
G4THitsCollection template class
#include "G4VHit.hh" R
#Jz.nclude :G4Al¥ocator.hh'i) * Headers ﬁleS
#1nclude "G4THitsCollection.hh
class HadCaloHit : public G4VHit {

public:
HadCaloHit(const G4int layer);
~HadCaloHit();
void Print();
void AddEdep(const double e){ eDep += e; }
G4double GetEdep() const { return eDep;}
G4int GetLayerNumber() const { return layerNumber; }
private:
const G4int layerNumber;
G4double eDep;
}i

// Define the "hit collection" using the template class G4THitsCollection:
typedef G4THitsCollection<HadCaloHit> HadCaloHitCollection;

31

Hits

¢ You need to write your own Hit class: inherits from G4VHit

¢ Hits must be stored in a collection of hits instantiated from
G4THitsCollection template class

#include "G4VHit.hh"
#include "G4Allocator.hh"
#include "G4THitsCollaminin

. public G4VHit

Base class

class HadCaloHi
public:
HadCaloHit(const G4int layer);
~HadCaloHit();
void Print();
void AddEdep(const double e){ eDep += e; }

G4double GetEdep() const { return eDep;}

G4int GetLayerNumber() const { return layerNumber; }
private:

const G4int layerNumber;

G4double eDep;

}i

// Define the "hit collection" using the template class G4THitsCollection:
typedef G4THitsCollection<HadCaloHit> HadCaloHitCollection;

32

Hits

¢ You need to write your own Hit class: inherits from G4VHit

¢ Hits must be stored in a collection of hits instantiated from
G4THitsCollection template class

#include "G4VHit.hh"

#include "G4Allocator.hh" Create d New Hlt the ID

#include "G4THitsCollection.hh"

class HadCaloHit : public G4VHit { / iS the layer index

adCaloHit(const G4int layer):

void Print();

void AddEdep(const double e){ eDep += e; }

G4double GetEdep() const { return eDep;}

G4int GetLayerNumber() const { return layerNumber; }
private:

const G4int layerNumber;

G4double eDep;

}i

// Define the "hit collection" using the template class G4THitsCollection:
typedef G4THitsCollection<HadCaloHit> HadCaloHitCollection;

33

Hits

¢ You need to write your own Hit class: inherits from G4VHit

¢ Hits must be stored in a collection of hits instantiated from
G4THitsCollection template class

#include "G4VHit.hh"

Finclude oL Locator N Hit interface: print on
#1nclude "G4THitsCollection.hh
:}l:::cl:-ladCaloHlt : public G4VHit { screen

HadCaloHit(const G4int layer);

void Print();
VOLC

double e){ eDep += e; }

G4double GetEdep() const { return eDep;}

G4int GetLayerNumber() const { return layerNumber; }
private:

const G4int layerNumber;

G4double eDep;

}i

// Define the "hit collection" using the template class G4THitsCollection:
typedef G4THitsCollection<HadCaloHit> HadCaloHitCollection;

34

Hits

¢ You need to write your own Hit class: inherits from G4VHit

¢ Hits must be stored in a collection of hits instantiated from
G4THitsCollection template class

#include "G4VHit.hh"
#include "G4Allocator.hh"”

#include "G4THitsCollection.hh® OUI' SpeCiﬁC hlt interface
class HadCaloHit : public G4VHit {
public:
HadCaloHit(const G4int layer);
~HadCaloHit();
void Prin .

AddEdep(const double e){ eDep += e; }

G4double GetEdep() const { return eDep;}
aint GetLayerNumber() const { return layerNumber;

private’
const G4int layerNumber;
G4double eDep;

}i

// Define the "hit collection" using the template class G4THitsCollection:
typedef G4THitsCollection<HadCaloHit> HadCaloHitCollection;

35

Hits

¢ You need to write your own Hit class: inherits from G4VHit

¢ Hits must be stored in a collection of hits instantiated from
G4THitsCollection template class

#include "G4VHit.hh" . . .
#include "G4Allocator.hh" The Hlt Contalner,]USt

#include "G4THitsCollection.hh"

class HadCaloHit : public G4VHit { add thiS line

public:
HadCaloHit(const G4int layer);
~HadCaloHit();
void Print();
void AddEdep(const double e){ eDep += e; }

G4double GetEdep() const { return eDep;}
G4int GetLayerNumber() const { return layerNumber; }

private:
const G4int layerNumber;

G4double eDep;

}i

/ Define the "hit collection” using the template class G4THitsCollection:
typedef G4THitsCollection<HadCaloHit> HadCaloHitCollection;

Warning: more advanced code (memory management optimization) not shown here, optional
but hig}§16y recommended

How To Declare Hits

¢ A hits collection has a name, this name must be
declared in SensitiveDetector constructor

$ SD has a data member: collectionName, add your
name to this vector of names

A SD can declare more than one hits collection!

‘HadCaloSensitiveDetector: :HadCaloSensitiveDetector(G4String SDname)
I : G4VSensitiveDetector(SDname)
|
{
G4cout=<"Creating SD with name: "<<SDname<=<=G4endl;
' // 'collectionName' is a protected data member of base class G4VSensitiveDetector.
i // Here we declare the name of the collection we will be using.
. collectionName. insert("HadCaloHitCollection");

v // Note that we may add as many collection names we\ wo
" // a sensitive detector can have many collections.

Our hits collection name!

37

How To Create A Hc (Hits Container)

¢ Every event a new hit collection (HC) has to be created and
added to current event collection of hits

§ Every HC has two names: the SD name that created it and the

name of collection. This pair is unique

Geant4 uses also an identifier (a number) to uniquely identify
your collection, you need to use this ID to register/retrieve the

collection

void HadCaloSensitiveDetector::Initialize(G4HCofThisEvent* HCE)

{

hitCollection = new HadCaloHitCollection(GetName(), collectionName[0]);

static G4int HCID = -1;
if (HCID<0®) HCID = GetCollectionID(0); // ==<-- this is to get an ID for collectionName[O]

HCE->AddHitsCollection(HCID, hitCollection);

38

How To Create A Hc (Hits Container)

¢ Every event a new hit collection (HC) has to be created and
added to current event collection of hits

§ Every HC has two names: the SD name that created it and the
name of collection. This pair is unique

Geant4 uses also an identifier (a number) to uniquely identify
your collection, you need to use this ID to register/retrieve the
collection

void HadCaloSensitiveDetector::

hitCollection = new HadCaloHitCollection (GetName(), collectionName[0]);

static G4int HCID = -1;
if (HCID<0) HCID = GetCollectionID(0); // =<-- this@As to get an ID for collectionName[O]
HCE->AddHitsCollection(HCID, hitCollection);

Create a Hit Collection: GetName() returns SD name (“/HadCalo”),
collectionName is a vector: [0] is the first (and only in our case) element
(“HadCaloHitCollection”)

39

How To Create A Hc (Hits Container)

¢ Every event a new hit collection (HC) has to be created and
added to current event collection of hits

§ Every HC has two names: the SD name that created it and the
name of collection. This pair is unique

Geant4 uses also an identifier (a number) to uniquely identify
your collection, you need to use this ID to register/retrieve the
collection

void HadCaloSensitiveDetector::Initialize(G4HCofThisEvent* HCE)

{

static G4int HCID = -1;
if (HCID<0®) HCID = GetCollectionID(0); /
HCE->AddHitsCollection(HCID, hitCollecti

<<-- this 1is to get an ID for collectionName[O]

GetCollectionID(0) is an heavy operation, you should avoid to do it every event!
GetCollectionID(0) returns the unique ID associated to the hit collection!

40

How To Create A Hc (Hits Container)

¢ Every event a new hit collection (HC) has to be created and
added to current event collection of hits

§ Every HC has two names: the SD name that created it and the

name of collection. This pair is unique

Geant4 uses also an identifier (a number) to uniquely identify
your collection, you need to use this ID to register/retrieve the

collection

void HadCaloSensitiveDetector::Initialife(G4HCofThisEvent* HCE)
{

hitCollection = new HadCaloHitCollection(GetName(), llectionName[0]);

static G4int HCID = -1;
if (HCID<0) HCID = GetCollectionID(0); // =<-- this il to get an ID for collectionName[O]

HCE->AddHitsCollection(HCID, hitCollection);

~

Register the hits collection object in the Hits Collections of This Event
(G4HCofThisEvent)

41

How To Create And Fill Hits

$ Every time ProcessHits is called you can (if needed)
create a hit and add it to the hits collection

G4bool HadCaloSensitiveDetector::ProcessHits(G4Step *step, G4TouchableHistory #)

{ L
HadCaloHit* aHit = new HadCaloHit(layerIndex);

hitCollection-=>insert(aHit);

aHit->AddEdep(edep);
return true;

3

42

Summary

G4Ste}/

43

Summary

44

Summary

“collectionName” : ID

G45tep
/ »

Repeat for each step in the event

45

Summary

“collectionName” : ID “anotherCollection” : ID

aHit Hits Collection aHit Hits Collection

Hit Collections of This Event

End of the event

46

In This Part

¢ User Actions

47

User actions (slide from Introduction) steps

- how to control your simulation?

0 G4UserRunAction

= BeginOfRunAction, EndOfRunAction
G4UserEventAction

- BeginOfEventAction, EndOfEventAction
G4UserStackingAction

= ClassifyNewTrack, NewStage, PrepareNewEvent
G4UserTrackingAction

= PreUserTrackingAction, PostUserTrackingAction
G4UserSteppingAction

- BeginOfStepAction, EndOfStepAction

- fully customizable (empty by default)
= allow user to take actions depending on
his specific case
2 simulated only relevant particles
1 save specific information, fill histograms
1 speed-up simulation by applying different
limits

(]

(]

(]

(]

tracks
i/i

48

Extract information from G4 internal objects

Simulation is successively split
into

Run consists of

Event(s), consists of
Particle(s) transported in
Steps through detector setup,
depositing energy

(lonization),

and creating secondaries

Corresponding / related Objects
G4RunManager, G4Run
G4Event

G4 Track, G4DynamicParticle
G4Step, G4StepPoint

G4 Trajectory

G4Stack

49

User Actions

- User at each moment has possibility to take control or

access information via UserAction classes
serRunAction Actions for each Run
sereEventAction Actions for each Event

o O O 0O U

G4
G4
G4
G4
G4

-/

-

-

-

-/

serTrackingAction
serSteppingAction
serStackingAction

Actions for each Track
Actions for each Step
Tracks Stack management

50

RunManager in Geant4

- G4RunManager class manages processing a run
2 Must be created by user
a0 May be user derived class
1 Must be singleton

= User must register in RunManager using
0 SetUserlnitialization() method
Geometry
Physics
1 SetUserAction() method
Event generator
a Optional UserAction objects

51

Run 1n Geant4

Run is a collection of events

a A run consists of one event loop

a Starts with a /run/beamOn command.

Within a run, conditions do not change, i.e. the user cannot change
2 detector setup

2 settings of physics processes

At the beginning of a run, geometay IS optimized for navigation and
cross-section tables are calculated according to materials appear in the
geometry and the cut-off values defined.

Run is represented by G4Run class or a user-defined class derived
from G4Run.

a2 Arun class may have a summary results of the run.
G4RunManager is the manager class
G4UserRunAction is the optional user hook.

52

| Optional User Run Action Class

' 35

stack

= G4UserRunAction

2 G4Run* GenerateRun()
Instantiate user-customized run object

1 void BeginOfRunAction(const G4Run™)

= Define histograms

2 void EndOfRunAction(const G4Run*)
Analyze the run
Store histograms

53

Event in Geant4

An event is the basic unit of simulation in Geant4.

At beginning of processing, primary tracks are generated. These
primary tracks are pushed into a stack.

A track is popped up from the stack one by one and “tracked”.
Resulting secondary tracks are pushed into the stack.

a This “tracking” lasts as long as the stack has a track.
When the stack becomes empty, processing of one event is over.

G4Event class represents an event. It has the following objects at the
end of its (successful) processing.

2 List of primary vertices and particles (as input)

a Hits and Trajectory collections (as output)
G4EventManager class manages processing an event.
G4UserEventAction is the optional user hook.

54

| Optional User Event Action Class

tracks

= G4UserEventAction

0 void BeginOfEventAction(const
G4Event®)

Event selection

2 Using information from event generator,
vertices, primary particles

= Optionally attach
G4VUserEventinformation object

0 void EndOfEventAction(const
G4Event®)

Output event information

Analyse event

J Access to hits collection via
G4Event::GetHCofThisEvent()

2 Acces digitisation collection via
G4Event:: GetDCofThisEvent()

Fill histograms

stack

55

Track in Geant4

Track is a snapshot of a particle.

2 It has physical quantities of current instance only. It does not record
previous quantities.

2 Step is a “delta” information to a track. Track is not a collection of
steps. Instead, a track is being updated by steps.

= Track object is deleted when
0 it goes out of the world volume,
2 it disappears (by e.g. decay, inelastic scattering),

0 it goes down to zero kinetic energy and no “AtRest” additional
process Is required, or

0 the user decides to kill it artificially.
= No track object persists at the end of event.
2 For the record of tracks, use trajectory class objects.

G4 TrackingManager manages processing a track, a track is
represented by G4 Track class.

G4UserTrackingAction is the optional user hook.

56

Tracking User Action Classes

= G4UserTrackingAction

2 void
PreUserTrackingAction(const
G4 Track™)

Decide if trajectory should be
stored or not

Create user-defined trajectory
2 void
PostUserTrackingAction(const
G4 Track™)

Delete unnecessary trajectory

tramﬂ

stack

57

Stacking User Action Class

tracks
i/l

= G4UserStackingAction

a0 G4ClassificationOfNewTrack
ClassifyNew Track(const G4 Track™)

= |nvoked every time a new track is
created, ie. Pushed to the stack

= Classify a new track -- priority
control
2 Urgent, Waiting,
Postpone ToNextEvent, Kill
2 Manipulate track stack,
= void PrepareNewEvent()
2 Reset priority control
= void NewStage()

2 Invoked when the Urgent stack
becomes empty

4 Change the classification criteria
a2 Event filtering (Event abortion)

stack

58

Step 1n Geant4

Step has two points and also “delta” information of a particle (energy
loss on the step, time-of-flight spent by the step, etc.).

a2 Point is represented by G4StepPoint class

Each point knows the volumeéand material). In case a step is limited
by a volume boundary, the end point physically stands on the
boundary, and it logically belongs to the next volume.

a2 Because one step knows materials of two volumes, boundary

processes such as transition radiation or refraction could be
simulated.

G4 SteppingManager class manages processing a step, a step is
represented by G4Step class.

G4UserSteppingAction is the optional user hook.

Boundary

Step

W‘Post-step point

Pre-step point »

| Stepping User Action Class

tracks
i/l

= G4UserSteppingAction

Q void
UserSteppingAction(const
G4Step™)

Change status of track

a2 Kill / suspend / postpone the
track

Draw the step (for a track

not to be stored as a

trajectory)

stack

60

| Recap — User action classes

- All needed UserAction classes

4 must be constructed in main()

4 must be provided to the RunManager using SetUserAction() method
- One mandatory User Action class

2 Event generator must be provided

a2 Event generator class must be derived from
G4VUserPrimaryGeneratorAction

- List of optional User Action classes
1 G4UserRunAction

G4UserEventAction

G4UserTrackingAction

G4UserSteppingAction

G4 UserStackingAction

4
4
Q
Q

Geant4 ‘Scoring’

Retrieving information from Geant4 using scoring >

Command-based scoring
Add a new scorer/filter to command-based scoring
Define scorers in the tracking volume

covered
here

> not covered

Accumulate scores for a run

>

62

here

Extract useful information - reminder

« Given geometry, physics and primary track generation, Geant4 does proper physics
simulation “silently”.

— You have to add a bit of code to extract information useful to you.
 There are three ways:
— Assign G4V SensitiveDetector to a volume to generate “hit”. }

» Use user hooks (G4UserEventAction, G4UserRunAction)
summary

— Built-in scoring commands
 Most commonly-used physics quantities are available.
— Use scorers in the tracking volume
« Create scores for each event Not covered here
« Create own Run class to accumulate scores
* You may also use user hooks (G4UserTrackingAction,XG4UserSteppingAction, etc.)
— You have full access to almost all information Covered before
— Straight-forward, but do-it-yourself

Covered before
get event / run

> Covered here

Command-based scoring

« Command-based scoring functionality offers the built-in scoring mesh
and various scorers for commonly-used physics quantities such as

dose, flux, etc.

* To use this functionality, access to the G4ScoringManager pointer
after the instantiation of G4RunManager in your main().

#include “G4ScoringManager.hh”
int main()

{

G4RunManager® runManager = new G4RunManager;

G4ScoringManager* scoringManager =
G4ScoringManager::GetScoringManager (),

« All of the Ul commands of this functionality is in /score/ directory.
» /examples/extended/runAndEvent/REO3

[example/extended/runAndEvent/REO3

viswer-0 (OpanGLIMmedatlex) - viewer-0 (OpanGLIMmedaleX)

viewsr-0 (OpenGLImmadiataX)

2.95+03 \ A L AR b.Uc R
.99+03 : - % %ot 1.Uc R

1.09+00" \ PR RN TR

Define a scoring mesh

« To define a scoring mesh, the user has to specify the followings.
1. Shape and name of the 3D scoring mesh. Currently, box is the only available shape.
« Cylindrical mesh also available as a beta-release.

2. Size of the scoring mesh. Mesh size must be specified as "half width" similar to the
arguments of G4Box.

3. Number of bins for each axes. Note that too many bins causes immense memory
consumption.

4. Optionally, position and rotation of the mesh. If not specified, the mesh is positioned
at the center of the world volume without rotation.

define scoring mesh

/score/create/boxMesh boxMesh 1
/score/mesh/boxSize 100. 100. 100. cm
/score/mesh/nBin 30 30 30

 The mesh geometry can be completely independent to the real material geometry.

Scoring quantities

A mesh may have arbitrary number of scorers. Each scorer scores one physics quantity.
— energyDeposit * Energy deposit scorer.
— cellCharge * Cell charge scorer.
— cellFlux * Cell flux scorer.
— passageCellFlux * Passage cell flux scorer
— doseDeposit * Dose deposit scorer.
— nOfStep * Number of step scorer.
— nOfSecondary * Number of secondary scorer.
— trackLength * Track length scorer.
— passageCellCurrent * Passage cell current scorer.
— passageTrackLength * Passage track length scorer.
— flatSurfaceCurrent * Flat surface current Scorer.
— flatSurfaceFlux * Flat surface flux scorer.
— nOfCollision * Number of collision scorer.
— population * Population scorer.
— nOfTrack * Number of track scorer.
— nOfTerminatedTrack * Number of terminated tracks scorer.

/score/quantitly/xxxxx <scorer _name>

Filter

« Each scorer may take a filter.

— charged * Charged particle filter.

— neutral * Neutral particle filter.

— kineticEnergy * Kinetic energy filter.
/scoref/filter/kineticEnergy <fname> <eLow> <eHigh> <unit>

— particle * Particle filter.
/score/filter/particle <tname> <p1> ... <pn>

— particleWithKineticEnergy * Particle with kinetic energy filter.

/score/quantity/energyDeposit eDep
/score/quantity/nOfStep nOfStepGamma

/scoref/filter/particle gammakFilter gamma ~
/score/quantity/nOfStep nOfStepEMinus
/scoref/filter/particle eMinusFilter e- Same primitive scorers
/score/quantity/nOfStep nOfStepEPIus >wi’rh different filters may
/scoref/filter/particle ePlusFilter e+ be defined.
/score/close

>

@ | <. the mesh when defining scorers is done.

Drawing a score

* Projection
/score/drawProjection <mesh_name> <scorer_name> <color_map>
« Slice

/score/drawColumn <mesh_name> <scorer_name> <plane> <column> <color_map>

 Colormap
— By default, linear and log-scale color maps are available.

— Minimum and maximum values can be defined by /score/colorMap/setMinMax

command. Otherwise, min and max values are taken from the current score.

Write scores to a file

» Single score
/score/dumpQuantity ToFile <mesh name> <scorer name>
<file_name>
« All scores
/score/dumpAllQuantitiesToFile <mesh name> <file _nhame>

« By default, values are written in CSV

* By creating a concrete class derived from G4V ScoreWriter base
class, the user can define his own file format.

— Example in /fexamples/extended/runAndEvent/REO3

— User's score writer class should be registered to
G4ScoringManager.

More than one scoring meshes

* You may define more than one scoring mesh.
— And, you may define arbitrary number of E | Wiewier-0 (OpenGLImMedateX)
primitive scorers to each scoring mesh. "

 Mesh volumes may overlap with other
meshes and/or with mass geometry.

« Astep is limited on any boundary. AR

* Please be cautious of too many meshes, too \ U
granular meshes and/or too many primitive SRR
scorers. R e
— Memory consumption
— Computing speed

' | - e
P, ¢ . / '\K { AL P ok’
7 4 oy 2 S 1 -
| L W, . } -
) ; . K'] \. -
£ 4 I, L. L~
) - g
q I,I' IU', Jo _v_-' e -4\\
e L‘C la »,[; e \
? 6.Z2c1U27 [~
"7 £ 1
i

. 1Uewu

........

N 5 J 1 |
1 1

Summary

Sensitive Detectors create ‘hits’

User action classes allow user to control simulation or
get information and results

Action classes for event generation, run, event,
track, and step

Ready-to-use scoring can be used to calculate
different quantities (flux, etc)

72

Attaching User Information to
selected Geant4 classes

Attaching user information to some Geant4
kernel classes

- Abstract classes
2 You can use your own class derived from provided base class

2 G4Run, G4V Trajectory, G4V TrajectoryPoint
= Other examples: G4VHit, G4VDigit

- Concrete classes

2 You can attach a user information object
G4Event - G4VUserEventinformation
G4 Track - G4VUserTracklnformation
G4PrimaryVertex - G4VUserPrimaryVertexInformation
G4PrimaryParticle - G4VUserPrimaryParticleInformation
G4Region - G4VUserRegionInformation

a gslef[iréformation object is deleted when associated Geant4 object is

eleted.

a2 Objects are managed, but not used by Geant4

74

Userlnformation classes (1)

= G4V UserEventinformation

2 Additional data user wants to store for the event
= Only Print() method is required

a2 User needs to register an instance in his
G4UserEventAction class indirectly with G4Event

4 Using
G4EventManager::SetUserlnformation(G4VUserEventin

formation * ..)
2 Cannot register directly in G4Event, as this is a const pointer

« Get previously registered object using GetUserInformation() from
G4Event or G4EventManager

2 Object is deleted when G4Event object is deleted

75

Userlnformation classes (2)

= G4V UserTrackinformation

a2 Data user want to keep for track, and not in trajectory
Only Print() method is required

2 Pointer to Userlnformation object is kept in G4 Track
should be set from G4UserTrackingAction indirectly via

G4 TrackingManager::SetUserInformation(G4VUserTrackinformati
on~*..)
Cannot register directly in G4Track, as this is a const pointer

Get previously registered object using GetUserInformation() from
G4 Track or G4TrackManager

a2 Object is deleted when G4 Track object is deleted

76

Userlnformation classes (3)

- G4VUserPrimaryVertexInformation

2 Attach information to G4PrimaryVertex
- G4VUserPrimaryParticleInformation

o Attach information to G4PrimaryParticle
- G4VUserRegionlnformation

a Attach information to G4Region

- Us Set/Get-Userinformation methods in G4PrimaryVertex,
..., to attach object.

77

