
Detector Simulation
Primary particles

1

Witek Pokorski
Alberto Ribon

CERN

13-14.02.2017

1

Primary particles

This	lecture	is	entirely	based	on	the	talk	from	Geant4	tutorial	by	
Giovanni	Santin	

Ecole	Geant4,	Annecy	2008

Outline

General	concepts	
G4VUserPrimaryGeneratorAction	class	
Primary	vertex	and	primary	particle	

Built-in	primary	particle	generators	
G4ParticleGun	
Interfaces	to	HEPEVT	and	HEPMC	
General	Particle	Source	(GPS)

What you need to make simulation?
(slide from Introduction)

4

and to get something out of it…

UserActions

UserActions

reconstruction

Simulation chain for HEP
experiment (slide from Introduction)

Generator Event
record Detector Simulation

Detector
Construction

‘Hits’ ‘Digits’

5

Pythia8,
Herwig++,

…

HepMC

Geant4

User	Actions	and	Initializations

• Initialization	classes	
• Use	G4RunManager::SetUserInitialization()	to	define.	
• Invoked	at	the	initialization	

• G4VUserDetectorConstruction	
• G4VUserPhysicsList	

• Action	classes	
• Use	G4RunManager::SetUserAction()	to	define.	
• Invoked	during	an	event	loop	

G4VUserPrimaryGeneratorAction	
+	G4UserRunAction	/	G4UserEventAction	/	G4UserStackingAction	/	

G4UserTrackingAction/	G4UserSteppingAction	/	…

3

mandatory

mandatory

//	mandatory	User	Action	classes	
		G4VUserPrimaryGeneratorAction*	gen_action	=	new	PrimaryGeneratorAction;	
		runManager->SetUserAction(gen_action);

⇨		Main	program		(.cc		file	in	your	root	development	tree)	:

General	concepts

G4VUserPrimaryGeneratorAction

• This	class	is	one	of	the	mandatory	user	classes	and	controls	the	generation	of	

primaries		⇨ what	kind	of	particle	(how	many)	what	energy,	position,	direction,	

polarisation,	etc	

• This	class	should	NOT	generate	primaries	itself	but	invoke	GeneratePrimaryVertex()	
method	of	the	selected	primary	generator(s)	to	make	primaries	

• G4VPrimaryGenerator	class	provides	the	primary	particle	generators	

G4VUserPrimaryGeneratorAction	class	description	:	

• Constructor	(&	destructor)	
Instantiate	primary	generator		and	set	default	values

• GeneratePrimaries(G4Event *)	method	

• Randomize	particle-by-particle	value(s)	

• Set	these	values	to	primary	generator(s)	

• Invoke	GeneratePrimaryVertex()	method	of	primary	generator

4

General	concepts

Primary	vertices	and	primary	particles

• Primary	 vertices	 and	 primary	 particles	 are	 stored	 in	 G4Event	 in	 advance	 to	

processing	an	event.	

• G4PrimaryVertex	and	G4PrimaryParticle	classes	

• They	will	become	“primary	tracks”	only	at	Begin-of-Event	phase	and	put	into	a	

“stack”

5

MyPrimaryGenerator	
(G4VUserPrimaryGeneratorAction)

Computes	desired		
primary	properties

MyParticleGun	
(G4VPrimaryGenerator))

Vertices	and		
Primary	particles		

are	created

G4Event	

Primaries	are	stored		
for	later	tracking

General	concepts

• Capability	of	bookkeeping	decay	chains	

⇨ primary	particles	may	not	necessarily	be	particles	which	can	be	
tracked	by	Geant4	

• Pre-assigned	decay	channels	attached	to	particles	

• Also,	“exotic”	particles	can	be	imported	from	Particle	Generators,	followed	

by	either	decay	or	user	defined	physics	processes	

																							(e.g.	Higgs,	W/Z	boson,	SUSY	particle,	…)

6

General	concepts
Primary	vertices	and	primary	particles

Built-in	primary	particle	generators

• Geant4	provides	some	concrete	implementations	of	
G4VPrimaryGenerator.	

1. G4ParticleGun	
2. G4HEPEvtInterface,	G4HEPMCInterface	
3. G4GeneralParticleSource

7

G4ParticleGun

• Concrete	implementations	of	G4VPrimaryGenerator	

				It	shoots	one	primary	particle	of	a	certain	energy	from	a	certain	point	
at	a	certain	time	to	a	certain	direction.	
(a	complete	set	of	function	is	available)	

• UI	commands	are	also	available	for	setting	initial	values	
/gun/List	 	 List	available	particles		
/gun/particle	 	 Set	particle	to	be	generated		
/gun/direction	 	 Set	momentum	direction		
/gun/energy	 	 Set	kinetic	energy		
/gun/momentum																						Set	momentum	
/gun/momentumAmp	 Set	absolute	value	of	momentum	
/gun/position	 	 Set	starting	position	of	the	particle		
/gun/time	 	 Set	initial	time	of	the	particle	
/gun/polarization																						Set	polarization		
/gun/number	 	 Set	number	of	particles	to	be	generated		(per	event)	
/gun/ion	 	 Set	properties	of	ion	to	be	generated		[usage]	/gun/ion	Z	A	Q

8

Built-in	primary	particle	generators
-		G4ParticleGun

G4ParticleGun	:	complex	sources

• G4ParticleGun	is	basic,	but	it	can	be	used	from	inside	
UserPrimaryGeneratorAction	to	model	complex	source	types	or	
distributions:	
• Generate	the	desired	distributions	(by	shooting	random	numbers)	

• Use	(C++)	set	methods	of	G4ParticleGun	

• Use	G4ParticleGun	as	many	times	as	you	want	

• Use	any	other	primary	generators	as	many	times	as	you	want	to	make	
overlapping	events

9

Built-in	primary	particle	generators
-		G4ParticleGun

Example	of	user	PrimaryGeneratorAction	using	G4ParticleGun	

void	T01PrimaryGeneratorAction::GeneratePrimaries(G4Event*	anEvent){		
					G4ParticleDefinition*	particle;	
					G4int	i	=	(int)(5.*G4UniformRand());	
					switch(i){		
									case	0:		particle	=	positron;		break;	
								case	1:	
									...		
						}	
					particleGun->SetParticleDefinition(particle);	

				G4double	pp	=	momentum+(G4UniformRand()-0.5)*sigmaMomentum;	
				G4double	mass	=	particle->GetPDGMass();	
				G4double	Ekin	=	sqrt(pp*pp+mass*mass)-mass;	
				particleGun->SetParticleEnergy(Ekin);	

				G4double	angle	=	(G4UniformRand()-0.5)*sigmaAngle;	
				particleGun->SetParticleMomentumDirection(G4ThreeVector(sin(angle),0.,cos(angle)));	

				particleGun->GeneratePrimaryVertex(anEvent);	
}

10

G4ParticleGun	:	complex	sources
Built-in	primary	particle	generators

	⇨ You	can	repeat	this	for	generating	more	than	one	primary	particles.

choose	particle

set	particle

set	kinetic	energy	
and	momentum

generate	event

-		G4ParticleGun

Interfaces	to	external	event	generators

Concrete	implementations	of	G4VPrimaryGenerator	

• Good	examples	for	experiment-specific	primary	generator	implementation	
• Interface	to	external	physics	generators	

⇨ G4HEPEvtInterface	

• Event	record	structure	based	on	HEPEVT	common	block		
• Used	by	(FORTRAN)	HEP	physics	generators	
• Developed	and	agreed	on	within	the	framework	of	the	1989	LEP	physics	study	
• ASCII	file	input	

⇨ G4HepMCInterface	

• HepMC	Event	record	for	MC	generators.	Object	Oriented,	C++	
• Used	by	new	(C++)	HEP	physics	generators	
• ASCII	file	input	or	direct	linking	to	a	generator	through	HepMC

11

Built-in	primary	particle	generators
					-			G4HEPEvtInterface,	

G4HEPMCInterface

User	actions	for	external	event	generators

Adapted	from	examples/extended/eventgenerator/HepMC/HepMCEx01	and	examples/
extended/runAndEvent/RE01

12

PrimaryGeneratorAction::PrimaryGeneratorAction()	{	
				//	HepMC	
				m_currentGenerator	=	new	HepMCG4AsciiReader();	
				//	HEPEvt	
				//	G4String	filename	=	"pythia_event.data";	
				//	m_currentGenerator	=	new	G4HEPEvtInterface(filename);	
}	

PrimaryGeneratorAction::~PrimaryGeneratorAction()	{	
						delete	m_currentGenerator;	
}	

void	PrimaryGeneratorAction::GeneratePrimaries(G4Event*	anEvent)	{	
						m_currentGenerator->	GeneratePrimaryVertex(anEvent);	
}	

/generator/hepmcAscii/open	filename	
/run/beamOn	1	

Built-in	primary	particle	generators

+	UI	macro	commands

					-			G4HEPEvtInterface,	
G4HEPMCInterface

G4GeneralParticleSource	(GPS)

• An	advanced	concrete	implementation	of	G4VPrimaryGenerator	

• First	development	(2000)	University	of	Southampton	(ESA	contract),	maintained	and	
upgraded	now	mainly	by	QinetiQ	and	ESA	

• Offers	as	pre-defined	many	common	(and	not	so	common)	options	
• Position,	angular	and	energy	distributions	

• Multiple	sources,	with	user	defined	relative	intensity	

• Capability	of	event	biasing	

• All	features	can	be	used	via	C++	or	command	line	(or	macro)	UI

13

Built-in	primary	particle	generators
-		G4GeneralParticleSource

14

Primary	vertex	can	be	randomly	positioned	with	several	options	

• Emission	from	point,	plane,…	

Angular	emission	

• Several	distributions;	isotropic,	cosine-law,	focused,	…	

• With	some	additional	parameters	(min/max-theta,	min/max-phi,…)	

Kinetic	energy	of	the	primary	particle	can	also	be	randomized.	

• Common	options	(e.g.	mono-energetic,	power-law),	some	extra	shapes	(e.g.	black-

body)	or	user	defined	

Multiple	sources	

• With	user	defined	relative	intensity	

Capability	of	event	biasing	(variance	reduction).	

• By	enhancing	particle	type,	distribution	of	vertex	point,	energy	and/or	direction

G4GeneralParticleSource	(GPS) Built-in	primary	particle	generators
-		G4GeneralParticleSource

Features	available	in	GPS:

15

Example	of	user	PrimaryGeneratorAction	using	GPS	

MyPrimaryGeneratorAction::MyPrimaryGeneratorAction()	{	
	 m_particleGun	=	new	G4GeneralParticleSource();	
}	

MyPrimaryGeneratorAction::~MyPrimaryGeneratorAction()	{	
	 delete	m_particleGun;	
}	

void	MyPrimaryGeneratorAction::GeneratePrimaries(G4Event*	anEvent)	{	
	 m_particleGun->GeneratePrimaryVertex(anEvent);	
}	

+	all	user	instructions	given	via	macro	UI	commands

User	Actions	for	GPS
Built-in	primary	particle	generators

-		G4GeneralParticleSource

16

G4GeneralParticleSource	(GPS) Built-in	primary	particle	generators
-		G4GeneralParticleSource

• Example	1		
	 /gps/particle proton  

 /gps/ene/type Mono  
/gps/ene/mono 500 MeV  

 /gps/pos/type Plane
 /gps/pos/shape Rectangle  

/gps/pos/rot1 0 0 1
 /gps/pos/rot2 1 0 0
 /gps/pos/halfx 46.2 cm
 /gps/pos/halfy 57.2 cm
 /gps/pos/centre 0. 57.2 0. cm

 /gps/direction 0 –1 0

 /run/beamOn ...

mono	energetic	beam	
500	Mev	

planar	emission	from	a	z×x	plane	
along	-y	axis	

Conclusion

• User	primary	generator	action	is	a	mandatory	
class	that	user	must	implement	
• This	class	can	re-use	existing	primary	
generators	

• ‘particle	guns’	used	for	test-beam	or	fixed	
target	simulations	

• interface	to	HepMC	event	record	used	for	MC	
event	generators

