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Primary particles

This	lecture	is	entirely	based	on	the	talk	from	Geant4	tutorial	by	
Giovanni	Santin	

Ecole	Geant4,	Annecy	2008
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General	Particle	Source	(GPS)



What you need to make simulation? 
(slide from Introduction)
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and to get something out of it…

UserActions

UserActions



reconstruction

Simulation chain for HEP 
experiment (slide from Introduction)

Generator Event 
record Detector Simulation

Detector 
Construction

‘Hits’ ‘Digits’
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Pythia8, 
Herwig++, 

…

HepMC

Geant4



User	Actions	and	Initializations

• Initialization	classes	
• Use	G4RunManager::SetUserInitialization()	to	define.	
• Invoked	at	the	initialization	

• G4VUserDetectorConstruction	
• G4VUserPhysicsList	

• Action	classes	
• Use	G4RunManager::SetUserAction()	to	define.	
• Invoked	during	an	event	loop	

G4VUserPrimaryGeneratorAction	
+	G4UserRunAction	/	G4UserEventAction	/	G4UserStackingAction	/	

G4UserTrackingAction/	G4UserSteppingAction	/	…
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mandatory

mandatory

//	mandatory	User	Action	classes	
		G4VUserPrimaryGeneratorAction*	gen_action	=	new	PrimaryGeneratorAction;	
		runManager->SetUserAction(gen_action);

⇨		Main	program		(.cc		file	in	your	root	development	tree)	:

General	concepts



G4VUserPrimaryGeneratorAction

• This	class	is	one	of	the	mandatory	user	classes	and	controls	the	generation	of	

primaries		⇨ what	kind	of	particle	(how	many)	what	energy,	position,	direction,	

polarisation,	etc	

• This	class	should	NOT	generate	primaries	itself	but	invoke	GeneratePrimaryVertex()	
method	of	the	selected	primary	generator(s)	to	make	primaries	

• G4VPrimaryGenerator	class	provides	the	primary	particle	generators	

G4VUserPrimaryGeneratorAction	class	description	:	

• Constructor	(&	destructor)	
Instantiate	primary	generator		and	set	default	values 

• GeneratePrimaries(G4Event *)	method	

• Randomize	particle-by-particle	value(s)	

• Set	these	values	to	primary	generator(s)	

• Invoke	GeneratePrimaryVertex()	method	of	primary	generator
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General	concepts



Primary	vertices	and	primary	particles

• Primary	 vertices	 and	 primary	 particles	 are	 stored	 in	 G4Event	 in	 advance	 to	

processing	an	event.	

• G4PrimaryVertex	and	G4PrimaryParticle	classes	

• They	will	become	“primary	tracks”	only	at	Begin-of-Event	phase	and	put	into	a	

“stack”
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MyPrimaryGenerator	
(G4VUserPrimaryGeneratorAction) 

Computes	desired		
primary	properties

MyParticleGun	
(G4VPrimaryGenerator))  

Vertices	and		
Primary	particles		

are	created

G4Event	

Primaries	are	stored		
for	later	tracking

General	concepts



• Capability	of	bookkeeping	decay	chains	

⇨ primary	particles	may	not	necessarily	be	particles	which	can	be	
tracked	by	Geant4	

• Pre-assigned	decay	channels	attached	to	particles	

• Also,	“exotic”	particles	can	be	imported	from	Particle	Generators,	followed	

by	either	decay	or	user	defined	physics	processes	

																							(e.g.	Higgs,	W/Z	boson,	SUSY	particle,	…)
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General	concepts
Primary	vertices	and	primary	particles



Built-in	primary	particle	generators

• Geant4	provides	some	concrete	implementations	of	
G4VPrimaryGenerator.	

1. G4ParticleGun	
2. G4HEPEvtInterface,	G4HEPMCInterface	
3. G4GeneralParticleSource
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G4ParticleGun

• Concrete	implementations	of	G4VPrimaryGenerator	

				It	shoots	one	primary	particle	of	a	certain	energy	from	a	certain	point	
at	a	certain	time	to	a	certain	direction.	
(	a	complete	set	of	function	is	available	)	

• UI	commands	are	also	available	for	setting	initial	values	
/gun/List	 	 List	available	particles		
/gun/particle	 	 Set	particle	to	be	generated		
/gun/direction	 	 Set	momentum	direction		
/gun/energy	 	 Set	kinetic	energy		
/gun/momentum																						Set	momentum	
/gun/momentumAmp	 Set	absolute	value	of	momentum	
/gun/position	 	 Set	starting	position	of	the	particle		
/gun/time	 	 Set	initial	time	of	the	particle	
/gun/polarization																						Set	polarization		
/gun/number	 	 Set	number	of	particles	to	be	generated		(per	event)	
/gun/ion	 	 Set	properties	of	ion	to	be	generated		[usage]	/gun/ion	Z	A	Q

8

Built-in	primary	particle	generators
-		G4ParticleGun



G4ParticleGun	:	complex	sources

• G4ParticleGun	is	basic,	but	it	can	be	used	from	inside	
UserPrimaryGeneratorAction	to	model	complex	source	types	or	
distributions:	
• Generate	the	desired	distributions	(by	shooting	random	numbers)	

• Use	(C++)	set	methods	of	G4ParticleGun	

• Use	G4ParticleGun	as	many	times	as	you	want	

• Use	any	other	primary	generators	as	many	times	as	you	want	to	make	
overlapping	events
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Built-in	primary	particle	generators
-		G4ParticleGun



Example	of	user	PrimaryGeneratorAction	using	G4ParticleGun	

void	T01PrimaryGeneratorAction::GeneratePrimaries(G4Event*	anEvent){		
					G4ParticleDefinition*	particle;	
					G4int	i	=	(int)(5.*G4UniformRand());	
					switch(i){		
									case	0:		particle	=	positron;		break;	
								case	1:	
									...		
						}	
					particleGun->SetParticleDefinition(particle);	

				G4double	pp	=	momentum+(G4UniformRand()-0.5)*sigmaMomentum;	
				G4double	mass	=	particle->GetPDGMass();	
				G4double	Ekin	=	sqrt(pp*pp+mass*mass)-mass;	
				particleGun->SetParticleEnergy(Ekin);	

				G4double	angle	=	(G4UniformRand()-0.5)*sigmaAngle;	
				particleGun->SetParticleMomentumDirection(G4ThreeVector(sin(angle),0.,cos(angle)));	

				particleGun->GeneratePrimaryVertex(anEvent);	
}
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G4ParticleGun	:	complex	sources
Built-in	primary	particle	generators

	⇨  You	can	repeat	this	for	generating	more	than	one	primary	particles.

choose	particle

set	particle

set	kinetic	energy	
and	momentum

generate	event

-		G4ParticleGun



Interfaces	to	external	event	generators

Concrete	implementations	of	G4VPrimaryGenerator	

• Good	examples	for	experiment-specific	primary	generator	implementation	
• Interface	to	external	physics	generators	

⇨  G4HEPEvtInterface	

• Event	record	structure	based	on	HEPEVT	common	block		
• Used	by	(FORTRAN)	HEP	physics	generators	
• Developed	and	agreed	on	within	the	framework	of	the	1989	LEP	physics	study	
• ASCII	file	input	

⇨  G4HepMCInterface	

• HepMC	Event	record	for	MC	generators.	Object	Oriented,	C++	
• Used	by	new	(C++)	HEP	physics	generators	
• ASCII	file	input	or	direct	linking	to	a	generator	through	HepMC
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Built-in	primary	particle	generators
					-			G4HEPEvtInterface,	

G4HEPMCInterface



User	actions	for	external	event	generators

Adapted	from	examples/extended/eventgenerator/HepMC/HepMCEx01	and	examples/
extended/runAndEvent/RE01
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PrimaryGeneratorAction::PrimaryGeneratorAction()	{	
				//	HepMC	
				m_currentGenerator	=	new	HepMCG4AsciiReader();	
				//	HEPEvt	
				//	G4String	filename	=	"pythia_event.data";	
				//	m_currentGenerator	=	new	G4HEPEvtInterface(filename);	
}	

PrimaryGeneratorAction::~PrimaryGeneratorAction()	{	
						delete	m_currentGenerator;	
}	

void	PrimaryGeneratorAction::GeneratePrimaries(G4Event*	anEvent)	{	
						m_currentGenerator->	GeneratePrimaryVertex(anEvent);	
}	

/generator/hepmcAscii/open	filename	
/run/beamOn	1	

Built-in	primary	particle	generators

+	UI	macro	commands

					-			G4HEPEvtInterface,	
G4HEPMCInterface



G4GeneralParticleSource	(GPS)

• An	advanced	concrete	implementation	of	G4VPrimaryGenerator	

• First	development	(2000)	University	of	Southampton	(ESA	contract),	maintained	and	
upgraded	now	mainly	by	QinetiQ	and	ESA	

• Offers	as	pre-defined	many	common	(and	not	so	common)	options	
• Position,	angular	and	energy	distributions	

• Multiple	sources,	with	user	defined	relative	intensity	

• Capability	of	event	biasing	

• All	features	can	be	used	via	C++	or	command	line	(or	macro)	UI
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Built-in	primary	particle	generators
-		G4GeneralParticleSource
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Primary	vertex	can	be	randomly	positioned	with	several	options	

• Emission	from	point,	plane,…	

Angular	emission	

• Several	distributions;	isotropic,	cosine-law,	focused,	…	

• With	some	additional	parameters	(min/max-theta,	min/max-phi,…)	

Kinetic	energy	of	the	primary	particle	can	also	be	randomized.	

• Common	options	(e.g.	mono-energetic,	power-law),	some	extra	shapes	(e.g.	black-

body)	or	user	defined	

Multiple	sources	

• With	user	defined	relative	intensity	

Capability	of	event	biasing	(variance	reduction).	

• By	enhancing	particle	type,	distribution	of	vertex	point,	energy	and/or	direction

G4GeneralParticleSource	(GPS) Built-in	primary	particle	generators
-		G4GeneralParticleSource

Features	available	in	GPS:
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Example	of	user	PrimaryGeneratorAction	using	GPS	

MyPrimaryGeneratorAction::MyPrimaryGeneratorAction()	{	
	 m_particleGun	=	new	G4GeneralParticleSource();	
}	

MyPrimaryGeneratorAction::~MyPrimaryGeneratorAction()	{	
	 delete	m_particleGun;	
}	

void	MyPrimaryGeneratorAction::GeneratePrimaries(G4Event*	anEvent)	{	
	 m_particleGun->GeneratePrimaryVertex(anEvent);	
}	

+	all	user	instructions	given	via	macro	UI	commands

User	Actions	for	GPS
Built-in	primary	particle	generators

-		G4GeneralParticleSource
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G4GeneralParticleSource	(GPS) Built-in	primary	particle	generators
-		G4GeneralParticleSource

• Example	1		
	 /gps/particle proton  

 /gps/ene/type Mono  
/gps/ene/mono 500 MeV  

 /gps/pos/type Plane 
 /gps/pos/shape Rectangle  

/gps/pos/rot1 0 0 1 
 /gps/pos/rot2 1 0 0 
 /gps/pos/halfx 46.2 cm 
 /gps/pos/halfy 57.2 cm 
 /gps/pos/centre 0. 57.2 0. cm 

 /gps/direction 0 –1 0 

 /run/beamOn ... 

mono	energetic	beam	
500	Mev	

planar	emission	from	a	z×x	plane	
along	-y	axis	



Conclusion

• User	primary	generator	action	is	a	mandatory	
class	that	user	must	implement	
• This	class	can	re-use	existing	primary	
generators	

• ‘particle	guns’	used	for	test-beam	or	fixed	
target	simulations	

• interface	to	HepMC	event	record	used	for	MC	
event	generators


