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Chalenge

■ how	to	implement	(efficiently)	
this	in	your	computer	program?	
❑ you	need	‘bricks’	
■ ‘solids’,	‘shapes’	
■ you	need	to	position	them	
■ you	want	to	‘reuse’	as	much	

as	possible	the	same	
‘templates’
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Building blocks

■ set	of	solids	(shapes)	classes	
❑ box,	sphere,	tube,	etc,	etc…	
❑ boolean	operations	on	solids	

■ logical	volumes	
❑ unpositioned	volumes	with	associated	
materials	and	possibly	with	‘daughter’	volumes	
■ 	unpositioned	hierarchies	of	volumes	

■ physical	volumes	
❑ concrete	‘placements’	of	logical	volumes	
❑ can	reuse	the	same	logical	volume	several	times
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Hierarchy
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Units
• In	Geant4	quantities	should	be	explicitly	multiplied	by	units	

– for	example	:	
					G4double width = 12.5*m; 
					G4double density = 2.7*g/cm3; 
– If	no	unit	is	specified,	the	internal	G4	unit	will	be	used,	but	this	is	

discouraged	!	
– Almost	all	commonly	used	units	are	available.	
– The	user	can	define	new	units.	
– Refer	to	CLHEP:	SystemOfUnits.h 

• Divide	a	variable	by	a	unit	you	want	to	get.	
					G4cout << dE / MeV << “ (MeV)” << G4endl;
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Describe	your	detector
• Derive	your	own	concrete	class	from	

G4VUserDetectorConstruction	abstract	base	class.	
• Implementing	the	method	Construct(): 

– Modularize	it	according	to	each	detector	component	or	sub-detector:	
1. Construct	all	necessary	materials	
2. Define	shapes/solids	required	to	describe	the	geometry	
3. Construct	and	place	volumes	of	your	detector	geometry	

➢Define	sensitive	detectors	and	identify	detector	volumes	which	to	associate	
them	

➢Associate	magnetic	field	to	detector	regions	
➢Define	visualization	attributes	for	the	detector	elements
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Definition	of	Materials

• Different	kinds	of	materials	can	be	defined:	
– isotopes	 <>	 G4Isotope 
– elements	<>	 G4Element 
– molecules	 <>	 G4Material 
– compounds	and	mixtures	<>	G4Material 

• Attributes	associated:	
– temperature,	pressure,	state,	density
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Isotopes,	Elements	and	Materials

• G4Isotope	and	G4Element	describe	the	properties	of	
the	atoms:	
– Atomic	number,	number	of	nucleons,	mass	of	a	mole,	shell	
energies	

– Cross-sections	per	atoms,	etc…	
• G4Material	describes	the	macroscopic	properties	of	
the	matter:	
– temperature,	pressure,	state,	density	
– Radiation	length,	absorption	length,	etc…	

• G4Material	is	the	class	used	for	geometry	definition
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Elements	&	Isotopes

• Isotopes	can	be	assembled	into	elements	
G4Isotope (const G4String& name, 
                 G4int     z,    // atomic number 
                 G4int     n,    // number of nucleons 
                 G4double  a );  // mass of mole 

• …	building	elements	as	follows:	
G4Element (const G4String& name, 
           const G4String& symbol, // element symbol 
                 G4int     nIso ); // # of isotopes 
G4Element::AddIsotope(G4Isotope* iso,  // isotope 
                      G4double relAbund); // fraction of atoms 
                                          // per volume
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Material	of	one	element

• Single	element	material	
G4double density = 1.390*g/cm3; 
G4double a = 39.95*g/mole; 
G4Material* lAr = 
 new G4Material("liquidArgon",z=18.,a,density);
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Material:	molecule

• A	Molecule	is	made	of	several	elements	(composition	
by	number	of	atoms):	
a = 1.01*g/mole; 
G4Element* elH  = 
   new G4Element("Hydrogen",symbol="H",z=1.,a); 
a = 16.00*g/mole; 
G4Element* elO  = 
   new G4Element("Oxygen",symbol="O",z=8.,a); 
density = 1.000*g/cm3; 
G4Material* H2O = 
   new G4Material("Water",density,ncomp=2); 
H2O->AddElement(elH, natoms=2); 
H2O->AddElement(elO, natoms=1);

12



Material:	compound	
• Compound:	composition	by	fraction	of	mass	

a = 14.01*g/mole; 
G4Element* elN  =  
   new G4Element(name="Nitrogen",symbol="N",z= 7.,a); 
a = 16.00*g/mole; 
G4Element* elO  =  
   new G4Element(name="Oxygen",symbol="O",z= 8.,a); 
density = 1.290*mg/cm3; 
G4Material* Air =  
   new G4Material(name="Air",density,ncomponents=2); 
Air->AddElement(elN, 70.0*perCent); 
Air->AddElement(elO, 30.0*perCent);
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Material:	mixture

• Composition	of	compound	materials	

  G4Element* elC  = …;   // define “carbon” element 
  G4Material* SiO2 = …;  // define “quartz” material 
  G4Material* H2O = …;   // define “water” material 

  density = 0.200*g/cm3; 
  G4Material* Aerog = 
     new G4Material("Aerogel",density,ncomponents=3); 
  Aerog->AddMaterial(SiO2,fractionmass=62.5*perCent); 
  Aerog->AddMaterial(H2O ,fractionmass=37.4*perCent); 
  Aerog->AddElement (elC ,fractionmass= 0.1*perCent);
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Example:	gas

• It	may	be	necessary	to	specify	temperature	and	pressure	
– (dE/dx	computation	affected)	

  G4double density = 27.*mg/cm3; 
  G4double temperature = 325.*kelvin; 
  G4double pressure = 50.*atmosphere; 

  G4Material* CO2 = 
     new G4Material(“CarbonicGas", density, ncomponents=2 
                    kStateGas, temperature, pressure); 
  CO2->AddElement(C,natoms = 1); 
  CO2->AddElement(O,natoms = 2);
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Example:	vacuum

• Absolute	vacuum	does	not	exist.	It	is	a	gas	at	very	low	density	!	
– Cannot	define	materials	composed	of	multiple	elements	through	Z	or	A,	or	

with	ρ=0	

  G4double atomicNumber = 1.; 
  G4double massOfMole = 1.008*g/mole; 
  G4double density = 1.e-25*g/cm3; 
  G4double temperature = 2.73*kelvin; 
  G4double pressure = 3.e-18*pascal; 
  G4Material* Vacuum = 
     new G4Material(“interGalactic", atomicNumber, 
                    massOfMole, density, kStateGas, 
                    temperature, pressure);
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NIST	Manager	&	Messenger

• NIST	database	for	materials	is	imported	
inside	Geant4	
http://physics.nist.gov/PhysRefData	

• Additional	interfaces	defined	
• UI	commands	specific	for	handling	
materials	

• The	best	accuracy	for	the	most	relevant	
parameters	guaranteed:	

• Density	
• Mean	excitation	potential	
• Chemical	bounds	
• Element	composition	
• Isotope	composition	
• Various	corrections
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NIST	Elements	&	Isotopes
Z					A						m						error					(%)								Aeff	
=========================	
14				Si		22			22.03453										(22)																																28.0855(3)															
												23			23.02552										(21)																										
												24			24.011546								(21)																											
												25			25.004107								(11)																											
												26			25.992330								(3)																											
												27			26.98670476				(17)																									
												28			27.9769265327	(20)										92.2297	(7)											
												29			28.97649472						(3)												4.6832	(5)												
												30			29.97377022						(5)												3.0872	(5)												
												31			30.97536327						(7)																										
												32			31.9741481						(23)																										
												33			32.978001								(17)																											
												34			33.978576								(15)																											
												35			34.984580								(40)																											
												36			35.98669										(11)																												
												37			36.99300										(13)																												
												38			37.99598										(29)																												
												39			39.00230										(43)																									
												40			40.00580										(54)																									
												41			41.01270										(64)																										
												42			42.01610										(75)	

• Natural isotope compositions  

• More than 3000 isotope masses 

• Used for elements definition

18



NIST	Materials
====================================	
###			Elementary	Materials	from	the	NIST	Data	Base	

==================================	
	Z	Name		ChFormula								density(g/cm^3)		I(eV)									
====================================	
1				G4_H				H_2																		8.3748e-05								19.2	
2				G4_He																										0.000166322						41.8	
3				G4_Li																											0.534																	40	
4				G4_Be																										1.848																	63.7	
5				G4_B																												2.37																		76	
6				G4_C																												2																							81	
7				G4_N				N_2																		0.0011652										82	
8				G4_O				O_2																		0.00133151								95	
9				G4_F																												0.00158029							115	
10		G4_Ne																										0.000838505					137	
11		G4_Na																										0.971																149	
12		G4_Mg																										1.74																	156	
13		G4_Al																												2.6989													166	
14		G4_Si																												2.33																	173

===================================	
###				Compound	Materials	from	the	NIST	Data	Base					
===================================	
	N	Name					ChFormula							density(g/cm^3)		I(eV)					
===================================	
13		G4_Adipose_Tissue														0.92													63.2	
															1					0.119477	
															6					0.63724	
															7					0.00797	
															8					0.232333	
														11					0.0005	
														12					2e-05	
														15					0.00016	
														16					0.00073	
														17					0.00119	
														19					0.00032	
														20					2e-05	
														26					2e-05	
														30					2e-05	
4		G4_Air																																0.00120479				85.7	
														6					0.000124	
														7					0.755268	
														8					0.231781	
													18					0.012827	
2		G4_CsI																																4.51														553.1	
														53					0.47692	
														55					0.52308

• NIST Elementary materials: 

• H -> Cf ( Z = 1 -> 98 ) 

• NIST compounds: 
• e.g. “G4_ADIPOSE_TISSUE_IRCP” 

• HEP and Nuclear materials: 

• e.g. Liquid Ar, PbWO	

• It is possible to build mixtures of 

NIST and user-defined materials
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How	to	use	the	NIST	DB

• No	need	to	predefine	elements	and	materials		
• Retrieve	materials	from	NIST	manager:	
  G4NistManager* manager = G4NistManager::Instance(); 

  G4Material* H2O = manager->FindOrBuildMaterial(“G4_WATER”); 

  G4Material* mat = manager->ConstructNewMaterial(“name”,  
                             const std::vector<G4String>& elements, 
                             const std::vector<G4double>& weights, 
                             G4double density, G4bool isotopes); 
  G4double isotopeMass = manager->GetMass(G4int Z, G4int N); 

• Some	UI	commands	…	
			/material/nist/printElement						ß print	defined	elements	
			/material/nist/listMaterials				ß	print	defined	materials
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Creating	a	Detector	Volume

• Start	with	its	Shape	&	Size	
– Box	3x5x7	cm,	sphere	R=8m	

• Add	properties:	
– material,	B/E	field,		
– make	it	sensitive	

• Place	it	in	another	volume	
– in	one	place	
– repeatedly	using	a	function

➢Solid	

➢Logical-Volume	

➢Physical-Volume
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Solids
■ Solids	defined	in	Geant4:	

■ CSG	(Constructed	Solid	Geometry)	solids	
• G4Box,	G4Tubs,	G4Cons,	G4Trd,	…	
• Analogous	to	simple	GEANT3	CSG	solids	

■ Specific	solids	(CSG	like)	
• G4Polycone,	G4Polyhedra,	G4Hype,	…	
• G4TwistedTubs,	G4TwistedTrap,	…	

■ Boolean	solids	
• G4UnionSolid,	G4SubtractionSolid,	…
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CSG:	G4Tubs,	G4Cons

G4Tubs(const G4String& pname,  // name 
             G4double  pRmin,  // inner radius 
             G4double  pRmax,  // outer radius 
             G4double  pDz,    // Z half length 
             G4double  pSphi,  // starting Phi 
             G4double  pDphi); // segment angle 

G4Cons(const G4String& pname,  // name 
             G4double  pRmin1, // inner radius -pDz 
             G4double  pRmax1, // outer radius -pDz 
             G4double  pRmin2, // inner radius +pDz 
             G4double  pRmax2, // outer radius +pDz 
             G4double  pDz,    // Z half length 
             G4double  pSphi,  // starting Phi 
             G4double  pDphi); // segment angle
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Specific	CSG	Solids:	G4Polycone

G4Polycone(const G4String& pName, 
                 G4double phiStart, 
                 G4double phiTotal, 
                 G4int numRZ, 
           const G4double r[], 
           const G4double z[]); 

• numRZ	-	numbers	of	corners	in	the	r,z	space	
• r, z	-	coordinates	of	corners	

• Also	available	additional	constructor	using	planes
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Boolean	Solids

■ Solids	can	be	combined	using	boolean	operations:	
■ G4UnionSolid, G4SubtractionSolid, G4IntersectionSolid 

■ Requires:	2	solids,	1	boolean	operation,	and	an	(optional)	transformation	for	
the	2nd	solid	
• 2nd	solid	is	positioned	relative	to	the	coordinate	system	of	the	1st	solid	
• Component	solids	must	not	be	disjoint	and	must	well	intersect	

  
 G4Box box(“Box", 20, 30, 40); 
 G4Tubs cylinder(“Cylinder”, 0, 50, 50, 0, 2*M_PI);  // r:     0 -> 50 
                                                     // z:   -50 -> 50 
                                                     // phi:   0 ->  2 pi 
 G4UnionSolid union("Box+Cylinder", &box, &cylinder);  
 G4IntersectionSolid intersect("Box Intersect Cylinder", &box, &cylinder);  
 G4SubtractionSolid subtract("Box-Cylinder", &box, &cylinder); 

■ Solids	can	be	either	CSG	or	other	Boolean	solids	
■ Note:	tracking	cost	for	the	navigation	in	a	complex	Boolean	solid	is	proportional	

to	the	number	of	constituent	solids

G4UnionSolid G4IntersectionSolidG4SubtractionSolid
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G4LogicalVolume

G4LogicalVolume(G4VSolid* pSolid, G4Material* pMaterial, 
                const G4String& name, G4FieldManager* pFieldMgr=0, 
                G4VSensitiveDetector* pSDetector=0, 
                G4UserLimits* pULimits=0, 
                G4bool optimise=true); 

– Contains	all	information	of	volume	except	position:	
• Shape	and	dimension	(G4VSolid)	
• Material,	sensitivity,	visualization	attributes	
• Position	of	daughter	volumes	
• Magnetic	field,	User	limits	
• Shower	parameterisation	

– Physical	volumes	of	same	type	can	share	a	logical	volume.	
– The	pointers	to	solid	and	material	must	be	NOT	null	
– Once	created	it	is	automatically	entered	in	the	LV	store	
– It	is	not	meant	to	act	as	a	base	class
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Geometrical	hierarchy
■ Mother	and	daughter	volumes		
■ A	volume	is	placed	in	its	mother	volume	
• Position	and	rotation	of	the	daughter	volume	is	described	with	respect	to	the	local	
coordinate	system	of	the	mother	volume	
• The	origin	of	the	mother's	local	coordinate	system	is	at	the	center	of	the	mother	
volume	
• Daughter	volumes	cannot	protrude	from	the	mother	volume	
• Daughter	volumes	cannot	overlap	

■ One	or	more	volumes	can	be	placed	in	a	mother	volume
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• Note	that	the	mother-daughter	relationship	is	an	
information	of	G4LogicalVolume	

– If	the	mother	volume	is	placed	more	than	once,	all	
daughters	by	definition	appear	in	each	placed	physical	
volume	

• The	world	volume	must	be	a	unique	physical	
volume	which	fully	contains	with	some	margin	all	
the	other	volumes	

– The	world	volume	defines	the	global	coordinate	system.	
The	origin	of	the	global	coordinate	system	is	at	the	center	
of	the	world	volume	

– Position	of	a	track	is	given	with	respect	to	the	global	
coordinate	system

Geometrical	
hierarchy
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G4PVPlacement
G4PVPlacement(G4RotationMatrix* pRot,     // rotation of mother frame 
            const G4ThreeVector& tlate, // position in rotated frame 
              G4LogicalVolume* pCurrentLogical, 
            const G4String& pName, 
            G4LogicalVolume* pMotherLogical, 
            G4bool pMany,            // not used. Set it to false… 
            G4int pCopyNo,           // unique arbitrary index 
              G4bool pSurfChk=false);  // optional overlap check 

• Single	volume	positioned	relatively	to	the	mother	volume	
– In	a	frame	rotated	and	translated	relative	to	the	coordinate	system	of	the	mother	
volume	

• Three	additional	constructors:	
– A	simple	variation:	specifying	the	mother	volume	as	a	pointer	to	its	physical	volume	
instead	of	its	logical	volume.	

– Using	G4Transform3D	to	represent	the	direct	rotation	and	translation	of	the	solid	
instead	of	the	frame	(alternative	constructor)	

– The	combination	of	the	two	variants	above

29



Mother	volume

G4PVPlacement 
Rotation	of	mother	frame	…

G4PVPlacement(G4RotationMatrix* pRot,      // rotation of mother frame 
            const G4ThreeVector& tlate, // position in mother frame 
              G4LogicalVolume* pCurrentLogical, 
            const G4String& pName, 
            G4LogicalVolume* pMotherLogical, 
            G4bool pMany,            // not used. Set it to false… 
            G4int pCopyNo,           // unique arbitrary index 
               G4bool pSurfChk=false ); // optional overlap check 
• Single	volume	positioned	relatively	to	the	mother	volume

rotation

tran
slati

on	i
n	m

othe
r	

fram
e

Mother	volume

translatio
n	in	mother	

frame
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G4PVPlacement 
Rotation	in	mother	frame	…

G4PVPlacement( G4Transform3D( G4RotationMatrix &pRot,      // rotation of daughter frame 
                           const G4ThreeVector &tlate), // position in mother frame 
               G4LogicalVolume *pDaughterLogical, 
               const G4String &pName,  
               G4LogicalVolume *pMotherLogical, 
               G4bool pMany,            // not used, set it to false… 
               G4int pCopyNo,           // unique arbitrary integer 
               G4bool pSurfChk=false ); // optional overlap check

rotation

Mother	volume

translation
	in	mother	

frame
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Detector	geometry	components

• Basic	strategy		
G4Material* pBoxMaterial = new G4Material(…); 

G4VSolid* pBoxSolid = 

  new G4Box(“aBoxSolid”, 1.*m, 2.*m, 3.*m); 

G4LogicalVolume* pBoxLog = 
  new G4LogicalVolume( pBoxSolid, pBoxMaterial, 
                       “aBoxLog”, 0, 0, 0); 

G4VPhysicalVolume* aBoxPhys = 
  new G4PVPlacement( pRotation, 
                     G4ThreeVector(posX, posY, posZ), 
                     pBoxLog, “aBoxPhys”, pMotherLog, 
                     0, copyNo); 

• A	unique	physical	volume	which	represents	the	experimental	area	must	exist	and	fully	
contains	all	other	components	
➢The	world	volume

Step	1				
Create	the			geom.	
object		:		box

Step	2		
Assign	properties	
to	object	:	material	

Step	3	
Place	it	in	the	
coordinate	system	of	
mother	volume
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Conclusion

• we know know how to describe our detector 
geometry 

• we create materials 

• instantiate solids 

• build the volumes hierarchy
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Backup



System	of	Units
• System	of	units	are	defined	in	CLHEP,	based	on:	

– millimetre	(mm),	nanosecond	(ns),	Mega	eV	(MeV),	positron	charge	
(eplus)	degree	Kelvin	(kelvin),	the	amount	of	substance	(mole),	
luminous	intensity	(candela),	radian	(radian),	steradian	
(steradian)	

• All	other	units	are	computed	from	the	basic	ones	
• In	output,	Geant4	can	choose	the	most	appropriate	unit	to	use.	

Just	specify	the	category	for	the	data	(Length,	Time,	Energy,	
etc…):	

G4cout << G4BestUnit(StepSize, “Length”); 

  StepSize will	be	printed	in km, m, mm or … fermi, depending	
on	its	value
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Defining	new	units

• New	units	can	be	defined	directly	as	constants,	or	(suggested	
way)	via	G4UnitDefinition	
– G4UnitDefinition ( name, symbol, category, value ) 

• Example	(mass	thickness):	
– G4UnitDefinition (“grammpercm2”, “g/cm2”, 
                    “MassThickness”, g/cm2); 

– The	new	category	“MassThickness”	will	be	registered	in	the	kernel	
in	G4UnitsTable 

• To	print	the	list	of	units:	
– From	the	code	
					G4UnitDefinition::PrintUnitsTable();	
– At	run-time,	as	UI	command:	

Idle> /units/list
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Kinds	of	G4VPhysicalVolume

– G4PVPlacement														1	Placement	=	One	Volume	
• A	volume	instance	positioned	once	in	a	mother	volume	

– G4PVParameterised							1	Parameterised	=	Many	Volumes	
• Parameterised	by	the	copy	number	

– Shape,	size,	material,	position	and	rotation	can	be	parameterised,	
by	implementing	a	concrete	class	of	G4VPVParameterisation.	

• Reduction	of	memory	consumption		
– Parameterisation	can	be	used	only	for	volumes	that	either	a)	have	
no	further	daughters	or	b)	are	identical	in	size	&	shape.	

– G4PVReplica																		1	Replica	=	Many	Volumes	
• Slicing	a	volume	into	smaller	pieces	(if	it	has	a	symmetry)
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Physical	Volumes

• Placement:	it	is	one	positioned	volume	

• Repeated:	a	volume	placed	many	times	
– can	represent	any	number	of	volumes	
– reduces		use	of	memory.	
– Replica	

• simple	repetition,	similar	to	G3	divisions	
– Parameterised	

• A	mother	volume	can	contain	either		 	
– many	placement	volumes	OR		
– one	repeated	volume

repeated

placement
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Parameterised	Physical	Volumes

• User	written	functions		define:	
– the	size	of	the	solid	(dimensions)	

• Function	ComputeDimensions(…) 
– where	it	is	positioned	(transformation)	

• Function	ComputeTransformations(…) 

• Optional:	
– the	type	of	the	solid	

• Function	ComputeSolid(…) 
– the	material	

• Function	ComputeMaterial(…) 

• Limitations:	
– Applies	to	a	limited	set	of	solids	
– Daughter	volumes	allowed	only	for	special	cases	

• Very	powerful	
– Consider	parameterised	volumes	as	“leaf”	volumes
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Uses	of	Parameterised	Volumes

• Complex	detectors		
– with	large	repetition	of	volumes	

• regular	or	irregular	

• Medical	applications	
– the	material	in	animal	tissue	is	measured	

• cubes	with	varying	material
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G4PVParameterised
G4PVParameterised(const G4String& pName, 
                  G4LogicalVolume* pCurrentLogical, 
                  G4LogicalVolume* pMotherLogical, 
                  const EAxis pAxis, 
                  const G4int nReplicas, 
                  G4VPVParameterisation* pParam, 
                  G4bool pSurfChk=false); 

• Replicates	the	volume	nReplicas	times	using	the	parameterisation	pParam,	within	the	
mother	volume	

• The	positioning	of	the	replicas	is	dominant	along	the	specified	Cartesian	axis	
– If	kUndefined	is	specified	as	axis,	3D	voxelisation	for	optimisation	of	the	geometry	is	

adopted	
• Represents	many	touchable	detector	elements	differing	in	their	positioning	and	

dimensions.	Both	are	calculated	by	means	of	a	G4VPVParameterisation	object	
• Alternative	constructor	using	pointer	to	physical	volume	for	the	mother
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Parameterisation  
example	-	1

G4VSolid* solidChamber = new G4Box("chamber", 100*cm, 100*cm, 10*cm);  

G4LogicalVolume* logicChamber = 

   new G4LogicalVolume(solidChamber, ChamberMater, "Chamber", 0, 0, 0); 

G4double firstPosition = -trackerSize + 0.5*ChamberWidth; 

G4double firstLength = fTrackerLength/10; 

G4double lastLength  = fTrackerLength; 

G4VPVParameterisation* chamberParam = 

   new ChamberParameterisation( NbOfChambers, firstPosition, 

                                ChamberSpacing, ChamberWidth, 

                                firstLength, lastLength); 

G4VPhysicalVolume* physChamber = 

   new G4PVParameterised( "Chamber", logicChamber, logicTracker, 

                          kZAxis, NbOfChambers, chamberParam);

Use kUndefined for activating 3D voxelisation for optimisation 
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Parameterisation  
example	-	2

class ChamberParameterisation : public G4VPVParameterisation 

{  

  public: 

    ChamberParameterisation( G4int NoChambers, G4double startZ,  

                             G4double spacing, G4double widthChamber,  

                             G4double lenInitial, G4double lenFinal ); 

   ~ChamberParameterisation(); 

   void ComputeTransformation (const G4int copyNo, 

                               G4VPhysicalVolume* physVol) const; 

   void ComputeDimensions (G4Box& trackerLayer, const G4int copyNo, 

                           const G4VPhysicalVolume* physVol) const; 

}
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Parameterisation  
example	-	3

void ChamberParameterisation::ComputeTransformation 

(const G4int copyNo, G4VPhysicalVolume* physVol) const 

{ 

  G4double Zposition= fStartZ + (copyNo+1) * fSpacing; 

  G4ThreeVector origin(0, 0, Zposition); 

  physVol->SetTranslation(origin); 

  physVol->SetRotation(0); 

} 

void ChamberParameterisation::ComputeDimensions 

(G4Box& trackerChamber, const G4int copyNo, 

 const G4VPhysicalVolume* physVol) const 

{ 

  G4double  halfLength= fHalfLengthFirst + copyNo * fHalfLengthIncr; 

  trackerChamber.SetXHalfLength(halfLength); 

  trackerChamber.SetYHalfLength(halfLength); 

  trackerChamber.SetZHalfLength(fHalfWidth); 

}
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Replicated	Physical	Volumes

• The	mother	volume	is	sliced	into	replicas,	all	of	the	same	
size	and	dimensions.		

• Represents	many	touchable	detector	elements	differing	only	
in	their	positioning.	

• Replication	may	occur	along:	
– Cartesian	axes	(X,	Y,	Z)	–	slices	are	considered	perpendicular	to	the	
axis	of	replication	

• Coordinate	system	at	the	center	of	each	replica	
– Radial	axis	(Rho)	–	cons/tubs	sections	centered	on	the	origin	and	
un-rotated	

• Coordinate	system	same	as	the	mother	
– Phi	axis	(Phi)	–	phi	sections	or	wedges,	of	cons/tubs	form	

• Coordinate	system	rotated	such	as	that	the	X	axis	bisects	the	angle	
made	by	each	wedge

repeated
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G4PVReplica
G4PVReplica(const G4String& pName, 
            G4LogicalVolume* pCurrentLogical, 
            G4LogicalVolume* pMotherLogical, 
            const EAxis pAxis, 
            const G4int nReplicas, 
            const G4double width, 
            const G4double offset=0); 

• Alternative	constructor:	
– Using	pointer	to	physical	volume	for	the	mother	

• An	offset	can	be	associated	
– Only	to	a	mother	offset	along	the	axis	of	replication	

• Features	and	restrictions:	
– Replicas	can	be	placed	inside	other	replicas	
– Normal	placement	volumes	can	be	placed	inside	replicas,	assuming	no	intersection	or	overlaps	
with	the	mother	volume	or	with	other	replicas	

– No	volume	can	be	placed	inside	a	radial	replication	
– Parameterised	volumes	cannot	be	placed	inside	a	replica

mother volume

a daughter logical 
volume to be 
replicated
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Replica	–	axis,	width,	offset

• Cartesian	axes	-	kXaxis, kYaxis, kZaxis		

– offset	shall	not	be	used	

– Center	of	n-th	daughter	is	given	as	
-width*(nReplicas-1)*0.5+n*width 

• Radial	axis	-	kRaxis 

– Center	of	n-th	daughter	is	given	as	
width*(n+0.5)+offset 

• Phi	axis	-	kPhi 

– Center	of	n-th	daughter	is	given	as	
width*(n+0.5)+offset

offset

width

offset

width

width
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Replication  
example

G4double tube_dPhi = 2.* M_PI * rad; 

G4VSolid* tube = 

   new G4Tubs("tube",20*cm,50*cm,30*cm,0.,tube_dPhi); 

G4LogicalVolume * tube_log = 

   new G4LogicalVolume(tube, Air, "tubeL", 0, 0, 0); 

G4VPhysicalVolume* tube_phys = 

   new G4PVPlacement(0,G4ThreeVector(-200.*cm,0.,0.), 

            "tubeP", tube_log, world_phys, false, 0); 

G4double divided_tube_dPhi = tube_dPhi/6.; 

G4VSolid* div_tube = 

   new G4Tubs("div_tube", 20*cm, 50*cm, 30*cm, 

        -divided_tube_dPhi/2., divided_tube_dPhi); 

G4LogicalVolume* div_tube_log = 

   new G4LogicalVolume(div_tube,Pb,"div_tubeL",0,0,0); 

G4VPhysicalVolume* div_tube_phys = 

   new G4PVReplica("div_tube_phys", div_tube_log, 

   tube_log, kPhi, 6, divided_tube_dPhi);
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Divided	Physical	Volumes

• Implemented	as	“special”	kind	of	parameterised	volumes	
– Applies	to	CSG-like	solids	only	(box,	tubs,	cons,	para,	trd,	polycone,	polyhedra)	
– Divides	a	volume	in	identical	copies	along	one	of	its	axis	(copies	are	not	strictly	
identical)	

• e.g.	-	a	tube	divided	along	its	radial	axis	
• Offsets	can	be	specified	

• The	possible	axes	of	division	vary	according	to	the	supported	solid	type	
• Represents	many	touchable	detector	elements	differing	only	in	their	
positioning	

• G4PVDivision	is	the	class	defining	the	division	
– The	parameterisation	is	calculated	automatically	using	the	values	provided	in	input
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Divided	Volumes	-	2

• G4PVDivision	is	a	special	kind	of	parameterised	volume	

– The	parameterisation	is	automatically	generated	according	to	the	parameters	given	in	

G4PVDivision.	

• Divided	volumes	are	similar	to	replicas	but	…	

– Allowing	for	gaps	in	between	mother	and	daughter	volumes	
• Planning	to	allow	also	gaps	between	daughters	and	gaps	on	side	walls	

• Shape	of	all	daughter	volumes	must	be	same	shape	as	the	mother	volume	

– Solid	(to	be	assigned	to	the	daughter	logical	volume)	must	be	the	same	type,	but	different	

object.	

• Replication	must	be	aligned	along	one	axis	

• If	no	gaps	in	the	geometry,	G4PVReplica	is	recommended	

– For	identical	geometry,	navigation	in	pure	replicas	is	faster

mother volume
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nDivisions

Divided	Volumes	-	3

G4PVDivision(const G4String& pName,  
             G4LogicalVolume* pDaughterLogical,  
             G4LogicalVolume* pMotherLogical,  
             const EAxis pAxis, 
             const G4int nDivisions,    // number of division is given 
             const G4double offset);  

• The	size	(width)	of	the	daughter	volume	is	calculated	as	
( (size of mother) - offset ) / nDivisions

offset
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Divided	Volumes	-	4
G4PVDivision(const G4String& pName,  
             G4LogicalVolume* pDaughterLogical,  
             G4LogicalVolume* pMotherLogical,  
             const EAxis pAxis, 
             const G4double width,   // width of daughter volume is given 
             const G4double offset); 	
• The	number	of	daughter	volumes	is	calculated	as	

int( ( (size of mother) - offset ) / width ) 

• As	many	daughters	as	width	and	offset	allow

offset
width
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nDivisions

width

Divided	Volumes	-	5
G4PVDivision(const G4String& pName,  
             G4LogicalVolume* pDaughterLogical,  
             G4LogicalVolume* pMotherLogical,  
             const EAxis pAxis, 
             const G4int nDivisions,  // both number of divisions  
             const G4double width,    // and width are given 
             const G4double offset);  

• nDivisions	daughters	of	width	thickness	

offset
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Divided	Volumes	-	6

• Divisions	are	allowed	for	the	following	shapes	/	axes:	
– G4Box : kXAxis, kYAxis, kZAxis  
– G4Tubs : kRho, kPhi, kZAxis  
– G4Cons : kRho, kPhi, kZAxis  
– G4Trd : kXAxis, kYAxis, kZAxis  
– G4Para : kXAxis, kYAxis, kZAxis  
– G4Polycone : kRho, kPhi, kZAxis 
– G4Polyhedra : kRho, kPhi, kZAxis  

• kPhi	-	the	number	of	divisions	has	to	be	the	same	as	solid	sides,	(i.e.	numSides),	the	width	
will	not	be	taken	into	account	

• In	the	case	of	division	along	kRho	of	G4Cons, G4Polycone, G4Polyhedra,	if	width	is	
provided,	it	is	taken	as	the	width	at	the	-Z	radius;	the	width	at	other	radii	will	be	scaled	to	this	
one
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GDML

• 	Importing	and	exporting	detector	descriptions
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GDML	components

• GDML	(Geometry	Description	Markup	Language)	is	defined	
through	XML	Schema	(XSD)		

– XSD	=	XML	based	alternative	to	Document	Type	Definition	(DTD)		
– defines	document	structure	and	the	list	of	legal	elements	
– XSD	are	in	XML	->	they	are	extensible	

• GDML	can	be	written	by	hand	or	generated	automatically	in	
Geant4	

– 'GDML	writer'	allows	exporting	a	GDML	file	
• GDML	needs	a	“reader”,	integrated	in	Geant4	

– 'GDML	reader'	imports	and	creates	'in-memory'	the	
representation	of	the	geometry	description

GDML	
Schema GDML	file

user	application	(1)

GDML	writer

GDML	reader

user	application	(2)

Geant4
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GDML Schema
• defines document structure and the list of legal 

elements 
• materials 

- material, isotope, element, mixture 

• solids 
- box, sphere, tube, cone, polycone, parallepiped, trapezoid, torus, 

polyhedra, hyperbolic tube, elliptical tube, ellipsoid  
- boolean solids 

• volumes 
- assembly volumes and reflections  
- replicas and divisions 
- parameterised volumes (position, rotation and size) 

- first implementation
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<?xml version="1.0" encoding="UTF-8"?> 
<gdml xsi:noNamespaceSchemaLocation="GDMLSchema/gdml.xsd"> 
 <define> 
  … 
  <position name="TrackerinWorldpos" unit="mm" x="0" y="0" z="100"/> 
 </define> 
 <materials> 
  … 
  <element name="Nitrogen" formula="N"  Z="7.">   
  <atom value="14.01"/>  </element> 
  <material formula=" " name="Air" > 
   <D value="1.290" unit="mg/cm3"/> 
      <fraction n="0.7" ref="Nitrogen" /> 
      <fraction n="0.3" ref="Oxygen" /> 
    </material> 
 </materials> 
 <solids> 
  … 
  <box lunit="mm" name="Tracker" x="50" y="50" z="50"/> 
 </solids> 
 <structure> 
  … 
  <volume name="World" > 
   <materialref ref="Air" /> 
      <solidref ref="world" /> 
      <physvol> 
       <volumeref ref="Tracker" /> 
       <positionref ref="TrackerinWorldpos"/> 
       <rotationref ref="TrackerinWorldrot"/> 
      </physvol> 
  </volume> 
 </structure> 
 <setup name="Default" version="1.0" > 
   <world ref="World" /> 
  </setup> 
</gdml>

GDML document

positions, 
rotations

materials

solids

geometry tree

'world' 
volume
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GDML	–	Geant4	binding
• XML	schema	available	from	http://cern.ch/gdml	

– Also	available	within	Geant4	distribution	
• See	in	geant4/source/persistency/gdml/schema/ 

– Latest	schema	release	GDML_3_0_0	(as	from	9.2	release)	

• Requires	XercesC++	XML	parser	
– Available	from:	http://xerces.apache.org/xerces-c	
– Tested	with	versions	2.8.0	and	3.0.1	

• Optional	package	to	be	linked	against	during	build	
– G4LIB_BUILD_GDML	and	XERCESCROOT	variables	
– Examples	available:	geant4/examples/extended/persistency/gdml
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Geant4	CMS	geometry	imported	in	
Root	through	GDML

~19000	physical	volumes

CMS	detector	through	GDML
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Geant4 LHCb geometry 
imported in Root through 

GDML

~5000	physical	volumes

LHCb	detector	through	GDML
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to	write:	

	 #include "G4GDMLParser.hh" 

 G4GDMLParser parser; 
  
 parser.Write(“g4test.gdml”, pWorld, true, “path_to_schema/gdml.xsd”); 
	 	

to	read:	
	 parser.Read( “g4test.gdml”, true ); 

  
 pWorld = GDMLProcessor::GetInstance()->GetWorldVolume();

instantiate	GDML	parser

pass	the	'top'	volume	to	the	writer
Activate	or	de-activativate	schema	validation

get	pointer	to	'top'	world	
volume

Using	GDML	in	Geant4

Concatenate	or	not	pointers	to	entity	names
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• Any	geometry	tree	can	be	dumped	to	file		
– …	just	provide	its	physical	volume	pointer	(pVol):	
    parser.Write(“g4test.gdml”, pVol);	

• A	geometry	setup	can	be	split	in	modules	
– …	starting	from	a	geometry	tree	specified	by	a	physical	volume:	
    parser.AddModule(pVol); 
– …	indicating	the	depth	from	which	starting	to	modularize:	
    parser.AddModule(depth); 

• Provides	facility	for	importing	CAD	geometries	generated	through	STEP-Tools	
• Allows	for	easy	extensions	of	the	GDML	schema	and	treatment	of	auxiliary	
information	associated	to	volumes	

• Full	coverage	of	materials,	solids,	volumes	and	simple	language	constructs	
(variables,	loops,	etc…)

Using	GDML	in	Geant4	-	2
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• CAD	geometries	generated	through	STEP-Tools	(stFile.geom,	stFile.tree files)	
can	be	imported	through	the	GDML	reader:	
– parser.ParseST(“stFile”, WorldMaterial, GeomMaterial);	
– Example	provided	in	examples/extended/persistency/gdml/G02 

• Tools	like	FastRad	allow	for	importing	CAD	STEP	files	and	directly	convert	to	GDML

Importing	CAD	geometries	
with	GDML
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• GDML	reader/writer	tested	on		
– complete	LHCb	and	CMS	geometries	
– parts	of	ATLAS	geometry	

• full	ATLAS	geometry	includes	custom	solids	
• for	LHCb	geometry	(~5000	physical	volumes)	

– writing	out	~10	seconds	(on	P4	2.4GHz)	
– reading	in	~	5	seconds	
– file	size	~2.7	Mb	(~40k	lines)	

• for	CMS	geometry	(~19000	physical	volumes)	

– writing	out	~30	seconds	
– reading	in	~15	seconds	
– file	size	~7.9	Mb	(~120k	lines)

GDML	processing	performance
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• Linear	Collider	
– Linear	Collider	Detector	Description	(LCDD)	extends	GDML	with	
Geant4-specific	information	(sensitive	detectors,	physics	cuts,	
etc)	

– GDML/LCDD	is	generic	and	flexible	
• several	different	full	detector	design	concepts,	including	
SiD,	GLD,	and	LDC,	where	simulated	using	the	same	
application

SiD

GLD

LDC

GDML	as	primary	
geometry	source
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• Space	Research	@	ESA	
– Geant4	geometry	models	

• component	degradation	studies	
(JWST,	ConeXpress,...)	

• GRAS	(Geant4	Radiation	Analysis	for	
Space)	

– enables	flexible	geometry	configuration	
and	changes	

– main	candidate	for	CAD	to	Geant4	
exchange	format

ConeXpress

GDML	as	primary	
geometry	source	-	2
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• Anthropomorphic	Phantom	
– Modeling	of	the	human	body	and	
anatomy	for	radioprotection	
studies	

– no	hard-coded	geometry,	flexible	
configuration

GDML	as	primary	
geometry	source	-	3
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