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Introduction to Monte Carlo 
methods

• What problems do we face? 

• What is simulation?  

• Why do we need Monte Carlo?
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Problems

• to design the apparatus (detector) to fulfil its role 

• to run it according to our needs 

• to understand the results 

• to observe new phenomena
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Solution

• SIMULATION 

• we need to simulate the detector before we build it 

• we need to simulate it when we run it 

• we need to simulate it when we analyse results
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What is simulation
• simulation = doing ‘virtual’ experiment  

• take all the known physics 

• start from your ‘initial condition’ (two protons colliding)  

• calculate the ‘final state’ of your detector to get the 
‘experimental’ results 

• solve equations of motion, etc 

• IMPOSSIBLE to be done analytically 
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Way to do it: Monte Carlo
• analytical solutions impossible due to 

• complexity of the problem 

• number of particles, etc 

• lack of analytical description 

• need of randomness like in nature 

• to pick among possible choices 

• quantum mechanics, fluctuations 

• … because Einstein was wrong: God does throw dice!  

• Quantum mechanics amplitudes = probabilities. Anything that 
possibly can happen, will. (but more or less often)
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Monte Carlo method
• repeated	random	sampling	to	find	the	result	
• used	for	

• numerical	integra5on,	calcula5on	
• genera5on	of	samples	from	probability	distribu5on	
• op5misa5on	
• etc	

• applications 
• Particle physics  
• Quantum field theory  
• Astrophysics  
• Molecular modelling  
• Semiconductor devices  
• Light transport calculations  
• Traffic flow simulations  
• Environmental sciences  
• Financial market simulations  
• Optimisation problems  
• … 
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we drop n needles and find that h of those needles are crossing lines

9



10



11



12



13



14



15



16



17



18



19



20



21



Monte Carlo in HEP
• Simulation is an essential tool in modern particle physics for: 

• prediction event rates and topologies 

• can estimate feasibility 

• evaluation of possible backgrounds 

• can devise analysis strategies  

• study detector requirements 

• optimisation detector/trigger design 

• studying detector imperfections 

• can evaluate acceptance corrections 

• analysing the data
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Monte Carlo in LHC 
experiments

• For the LHC experiments, the simulation is 
made of two distinct steps: 

1.  Simulation of the p-p collision  

• Monte Carlo event generators 

2. Simulation of the passage of the 
produced particles through the 
experimental apparatus 

• Monte Carlo radiation transportation, or 
simply “detector simulation” 

• The output of 1. is the input of 2.
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Monte Carlo radiation 
transportation codes

• The simulation of the p-p collision is the same for different experiments at the same 
collider, e.g. ATLAS and CMS 

• The detector simulation is different for each experiment. However, general codes 
exist that can be used for simulating any detector 

• An experimental apparatus can be modelled in terms of elementary 
geometrical objects 

• The physics processes are detector independent 

• These general codes, e.g. Geant4, are called “Monte Carlo radiation transportation 
codes” 

• Non-deterministic (e.g. do not solve equations); use random numbers to 
reproduce distributions 

• Transport particles through matter
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reconstruction

Simulation chain for HEP 
experiment

Generator Event 
record Detector Simulation

Detector 
Construction

‘Hits’ ‘Digits’
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How does detector 
simulation work?

• Treat one particle at the time 

• Treat a particle in steps 

• For each step 

• the step length is determined by the cross sections of the physics processes and the geometrical 
boundaries; if new particles are created, add them to the list of particles to be transported; 

• local energy deposit; effect of magnetic and electric fields; 

• if the particle is destroyed by the interaction, or it reaches the end of the apparatus, or its energy is 
below a (tracking) threshold, then the simulation of this particle is over; else continue with another 
step. 

• Output  

• new particles created (indirect) 

• local energy deposits throughout the detector (direct)

26



Digitization
• Besides the geometry, another experiment-specific aspect of the 

detector simulation is the “digitization” 

• It is not part of the general radiation transportation codes 

• It consists of producing the detector response in terms of electric 
current & voltage signals, as it would happen in the real experiment 

• The same reconstruction chain can be applied for both real and 
simulated data 

• The general radiation transportation code provides energy deposits 
in the whole detector; from these, the “digitization” simulates the 
electrical signals induced in the sensitive parts of the detector

27



Accuracy vs speed
• Huge samples (billions) of simulated events are needed by the experiments for their physics 

analyses 

• The number of simulated events is limited by CPU 

• The simulation time is dominated by the detector simulation 

• Tradeoff between accuracy and speed of the detector simulation 

• More precise physics models are slower and, more importantly, create more secondaries 
and/or steps 

• Smaller geometrical details slow down the simulation  

• Never model explicitly screws, bolts, cables, etc. 

• Continuous spectrum of types of detector simulations: 

• From full, detailed detector simulations 

• To very fast, fully parametrized detector simulations
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Application domains

• We are considering here mainly high-energy physics, but... There are other 
domains where the same radiation transportation codes are successfully used: 

• Nuclear physics  

• Accelerator science  

• Astrophysics 

• Space engineering  

• Radiation damage 

• Medical physics 

• Industrial applications 

• So, detector simulation is a multi-disciplinary field!
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Monte Carlo toolkits
• Geant4 (Geant3) 

• FLUKA 

• MCNP, MCNPX 

• MARS 

• GeantV - ongoing effort to explore parallelism and 
vectorisation 
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What is Geant4?
■ A software (C++) toolkit for the 

Monte Carlo simulation of the 
passage of particles through 
matter 
❑ ‘propagates’ particles through 

geometrical structures of 
materials, including magnetic 
field 

❑ simulates processes the particles 
undergo 
■ creates secondary particles 
■ decays particles 

❑ calculates the deposited energy 
along the trajectories and allows 
to store the information for further 
processing (‘hits’)

Simulated Higgs event in CMS
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Kernel I - M.Asai (SLAC)

Geant4 has been successfully 
employed for
■ Detector design 
■ Calibration / alignment 
■ First analyses

32Figures from CMS
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Simulation is needed to make discoveries

■ We need to 
understand the 
detector to do physics 

■ We need to know 
what to expect to 

❑ verify existing models 
❑ find new physics
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Kernel I - M.Asai (SLAC)
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Kernel I - M.Asai (SLAC)
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Kernel I - M.Asai (SLAC)
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Kernel I - M.Asai (SLAC)
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Harald Paganetti 

GEANT4 based proton dose calculation 
in a clinical environment: technical 
aspects, strategies and challenges



TOOLKIT ARCHITECTURE
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Geant4 Components

■ ‘kernel’, internals of the 
engine, no direct 
interaction with the user 
code 

■ ‘user interface’ 
❑ classes directly instantiated by 

the users with specific 
parameters 
■ box of dimension x, y, z 

❑ base classes for concrete 
users implementations 
■ ‘user actions’, sensitive detectors 
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Geant4 application
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implementation
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Primary 
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Geant4 kernel

‘Hits’ 
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deposition)
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Visualisation
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field

physics 
models



Geometry

■ how to implement 
(efficiently) this in 
your computer 
program? 

❑ you need ‘bricks’ 
■ ‘solids’, ‘shapes’ 
■ you need to position 

them 
■ you want to ‘reuse’ as 

much as possible the 
same ‘templates’
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Geometry construction

solid

materialdaughter 
volumesdaughter 

volumesdaughter 
volumesdaughter 

volumesdaughter 
volumes

logical 
volume

sensitive 
detector

physical 
volume

translation

rotation

logical 
volume

mother 
volume
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Advance geometry
■ replicas 
■ divisions 
■ reflections 
■ assemblies  
■ parameterizations

21
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Materials

■ In nature, materials (chemical compounds, 
mixtures) are made of elements, and elements are 
made of isotopes 

■ In Geant4: G4Isotope, G4Element, G4Material 
❑ users can ‘build’ their materials, instantiating elements 

and adding them with the right fractions 
■ Geant4 contains also National Institute of 

Standards (NIST) database of materials 
❑ materials can be instantiated directly from it 
❑ strongly recommended to be used
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Navigation and tracking

■ ‘navigator’ role is to 
provide geometry 
information to tracking 
mechanism 
❑ locates the point in the 

geometry structure 
■ which volume I am in? 

❑ calculates the distances 
to the boundaries (along 
specified direction)

■ non-trivial problem of simulation 
‘continuous’ physics (space-time) 
with discrete steps 
❑ steps cannot be infinitely small 

■ steps need to be limited by 
crossing geometrical boundaries, 
physics or kinetic energy going to 0 

■ accuracy of tracking on the 
surfaces defined by geometrical 
‘tolerance’
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Magnetic field

■ Geant4 can propagate in 
magnetic fields, electric 
fields, electromagnetic 
fields, and gravity fields, 
uniform or non-uniform 

■ the equation of motion of 
the particle in the field is 
integrated using Runge-
Kutta method 
❑ in particular cases analytical 

solutions can be used

■ curved trajectory broken up in 
linear cord segments 

■ parameter ‘miss distance’ sets 
how closely the curved path is 
approximated  

■ non trivial problem to avoid 
qualitatively wrong results
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User actions

■ how to control your simulation? 
■ ‘user actions’ 

❑ G4UserRunAction 
❑ G4UserEventAction 
❑ G4UserStackingAction 
❑ G4UserTrackingAction 
❑ G4UserSteppingAction 

■ fully customizable (empty by 
default) 

■ allow user to take actions 
depending on his specific case 
❑ simulated only relevant particles 
❑ save specific information, fill 

histograms 
❑ speed-up simulation by applying 

different limits
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Users actions – sensitive detectors

■ sensitive detectors are user 
actions attached to specific 
volumes 
❑ ProcessHits – invoked when a 

particle enters the ‘sensitive’ 
volume 
■ allows to create ‘hits’ 

❑ energy deposition, x, y, z coordinates, 
etc  

■ they simulate detector response 
to the particles passing through 
the sensors
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Physics…

■ what happens to 
when a particle 
traverses some 
matterial? 

■ we need to implement 
the physics we know
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Electromagnetic (1/2)

■ simulation of electromagnetic interactions of 
charged particles, gammas and optical photons 
❑ standard electromagnetic physics 
■ optimized for high and medium energy applications 

❑  energy range from 1keV to 1PeV 
❑ low energy electromagnetic physics 
■ down to eV 

❑ medical and biological application 
▪ Geant4-DNA project
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■ Gammas:  
❑ Gamma-conversion, Compton scattering, Photo-

electric effect 
■ Leptons(e, µ), charged hadrons, ions 

❑ Energy loss (Ionisation, Bremstrahlung), Multiple 
scattering, Transition radiation, Synchrotron 
radiation, e+ annihilation.  

■ Photons:  
❑ Cerenkov, Rayleigh, Reflection, Refraction, 

Absorption, Scintillation 
■ High energy muons 
■ A choice of implementations for most 

processes 
❑ “Standard”: performant, where relevant physics 

above 1 KeV 
❑ “Low Energy”: Extra accuracy, for application 

delving below 1 KeV

Electromagnetic (2/2)

50 MeV e- entering 
LAr-Pb calorimeter
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Need for production cuts

■ some electromagnetic processes have infrared 
divergences 
❑ threshold needed below which no secondaries are generated 

■ production threshold for gammas, electrons and positrons 
■ ‘cuts’ can be defined per region of the geometry 

❑ detailed simulation of the EM shower in the sensitive part, but no 
details needed in some ‘dead’ materials (support, etc)  

■ Geant4 uses ‘cut in range’ 
❑ converted to energy for each material 
❑ assures better coherency of the simulation that a cut in energy would 

do

52



Why cut in range

■ traditionally Monte Carlo simulations impose absolute cutoff in energy 
❑ particle are stopped when this energy is reached 
❑ remaining energy is dumped at that point 

■ this can lead to imprecise stopping location and deposition of energy 
■ there is a particle dependence 

– range of a 10 keV  γ in Si is a few cm 
– range of a 10 keV e- in Si is a few microns 

■ and a material dependence 
– suppose you have a detector made of alternating sheets of Pb and plastic 

scintillator 
– if the cutoff is OK for Pb it will likely be wrong for the scintillator which does the 

actual energy measurement
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Cut in range (production threshold) vs. energy cut
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          Geant3 (and others)

																	Geant4	 

						Production	range	=	1.5	mm

Example:	500	MeV	p	in	LAr-Pb	Sampling	Calorimeter

LAr Pb



Partial hadronic model inventory
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Multifragment
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Fritiof string

Quark Gluon string

Photo-nuclear, electro-nuclear

QMD (ion-ion)

Electro-nuclear dissociation
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Geant4 ‘Physics Lists’

■ set of physics models covering all the needed 
processes for the relevant particles and cross 
sections for them 

■ predefined physics lists for specific 
applications 

❑ general high energy physics 
❑ high precision high energy physics (detailed tracking 

of neutrons 
❑ low energy 
❑ etc
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Visualisation

■ visualize  
❑ geometry 
❑ tracks 
❑ hits 

■ available visualization 
drivers 
❑ OpenGL 
❑ OpenInventor 
❑ HepRep 
❑ DAWN 
❑ VRML 
❑ RayTracer 
❑ gMocren 
❑ ASCIITree
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What you need to make simulation?
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and to get something out of it…

UserActions

UserActions



Conclusion

■ Geant4 is a Monte Carlo simulation toolkit 
used in different domains like High Energy 
Physics, astrophysics, space research, 
medical physics, biology, etc 

❑ it allows you to simulate the passage of the particle 
through the matter, the process their undergo and 
the energy deposition they make 

■ the use of such a simulation is essential to 
build, understand and use your devices
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Resources for more information
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■ Geant4 web site 
❑ http://cern.ch/geant4/   

■ Geant4 Training Page 
❑ Material form several training courses 

■ http://cern.ch/geant4/support/  “Training” link, or directly 
■ http://geant4.web.cern.ch/geant4/support/training.shtml  

■ Geant4 Tutorials, Users Workshops and 
workshop presentations 
❑ 2011 Tutorial, CENBG Bordeaux 
❑ 2009 Users Wrkshp Catania (October 09) 

■ http://www.lns.infn.it/geant4/geant4ws2009/ 
❑ Look for Timetable 

❑ 2008 Kobe, 2007 UK, 2006 Lisbon 
❑ 2005 Bordeaux – several sessions focus on 

Medical applications 
■ http://geant4.in2p3.fr/2005/ 

❑ Workshops and Users Workshops links at 
■ http://geant4.web.cern.ch/geant4/collaboration/workshops.shtml

❚ Geant4 Physics Validation 
❙ EM https://twiki.cern.ch/twiki/bin/view/Geant4/

EMValidation 
❙ Hadronic http://geant4.fnal.gov/

hadronic_validation/validation_plots.htm 
❚ Working Group web sites 
❙ Electromagnetic: Standard &  Low-Energy, 

Hadronic, at 
❘ http://cern.ch/geant4/organisation/

working_groups.html  
❚ Many papers on Geant4 and its 

validation 
❙ First ‘reference’ paper 

❘ “Geant4: a simulation toolkit”, Nucl. Instr. and 
Methods A 506 (2003), 250-303. 

http://cern.ch/geant4/
http://cern.ch/geant4/support/
http://geant4.web.cern.ch/geant4/support/training.shtml
http://indico.cern.ch/conferenceTimeTable.py?confId=44566
http://www-conf.kek.jp/g4ws2008/
http://indico.cern.ch/conferenceDisplay.py?confId=10311
http://indico.cern.ch/conferenceDisplay.py?confId=3190
http://geant4.web.cern.ch/geant4/collaboration/workshops.shtml
http://geant4.web.cern.ch/geant4/results/results.shtml
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