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Plan of the course 

• The Cherenkov effect, theory and phenomenology 
• Timing and counting particles 

• The AUGER WCD as an example 

• Identifying particles 
– Threshold Cherenkov counters  

• NA9, BELLE 

– Ring Imaging Cherenkov detectors (RICH, DIRC) 
• DELPHI, LHCb, BaBar  

– Measuring charge 
• AMS, CREAM 

• VHE gamma rays 
• HESS, MAGIC, VERITAS… 

• Neutrino detectors 
• SK, Amanda, Antares, IceCube 
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THE CHERENKOV EFFECT 
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Cherenkov Radiation 
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Cherenkov Radiation 

RICH  
principle → 
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Cherenkov imaging (RICH) and charge measurement 

AMS 2 
Prototype 

→ 
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Transition radiation 
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Transition radiation (cont) 
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P.A. Čerenkov Letter to the editor Phys.Rev 53 (1937)  378 



Theory of the Cherenkov effect 

• Dielectric medium electrons polarized by a moving 
charged particle. 
 
 
 
 
 
 

 
• De-exitation gives rise to a coherent radiation.  
• Same basic process as energy loss (Bethe, Fermi). 

20
16

 

11 

+ 

+ 

- 

+ 

- 

+ 

- 

+ 
- 

+ 
- 

+ 

- 

+ 

- 

+ 

- 

+ 
- + 

- 



The Cherenkov effect  
• When a charged particle moves faster than the phase speed of light in a 

medium, electrons interacting with the particle can emit coherent photons 
while conserving energy and momentum. 
 

• This process can be viewed as a decay. 
 

• It is actually not the particle that emits light, but the bound electrons of the 
immediately surrounding (dielectric) medium. 
 

• Emission is coherent because in phase with the particle velocity. 
 

• Pavel A. Čerenkov and Vavilov discovered the radiation in 1934,  
Igor Tamm and Ilya Frank explained it in 1937. 
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Ref :  
P.A. Čerenkov Letter to the editor Phys.Rev 53 (1937)  378 
Frank and Tamm, C.R.Ac.Sci. U.S.S.R. 14, 109 (1937) 



The theory of the Cherenkov effect  
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Igor Tamm and Ilya Frank 
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The Cherenkov effect 



The Cherenkov effect 

• Cerenkov radiation consist of a shock wave 
• Similar to Doppler effect or Mach shock waves 
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Dielectrics 

• Simple model for dielectric materials 20
16
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The Cherenkov effect 

• Cerenkov radiation consist of a shock wave 
• Similar to Doppler effect or Mach shock waves 
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The Cherenkov effect 

• Cerenkov radiation consist of a shock wave 
• Similar to Doppler effect or Mach shock waves 
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Cherenkov effect 
• Relevant formulae: 
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Cherenkov effect 
• Relevant formulae: 
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• Dispersive material: 
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Cherenkov effect 

Important for timing of 
neutrino telescopes 



Radiators 

• Matching refractive index to the momentum range. 20
16
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Silica aerogel:  
SiO2 "foam" with  
nano-size structure ¿ ¸ 



Cherenkov angle vs mass and momentum 
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Cherenkov not only optical 
• Radio-wave Cherenkov emission (also called Askarian effect)  

by EM showers in dense dielectric materials  
(ice, salt, sand, lunar regolith …) 

• Coherent Cherenkov like emission for ¸ À shower size ¼ X0 
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TIMING AND COUNTING:  
THE AUGER DETECTOR EXAMPLE 
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Counting particles or timing measurements 

• Example : the Auger Water Cherenkov Tanks  20
16
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L’Observatoire Pierre Auger 
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Timing 
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From EAS footprint and LDF 
to primary CR energy estimator 

Idea from Hillas 1970 (pioneered by Haverah Park and Agasa) 
• energy estimator: signal @ fixed (large) core distance S(R) 
• small shower-to-shower fluctuations, depends on primary E only 
• Determination of particle density -> LDF -> S(R) 
• Largest uncertainty: converting estimator to energy (see later) 

AUGER 

29 
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The surface array detectors 

Communication 
antenna 

GPS 

Solar panel 
Electronics 

40 MHz FADC  

Batteries 

3 
PMTs Plastic tank 

12 tons of water 

Radio  
waves 

Central DAQ 

Local trigger 

Self-calibration: 
1 VEM = average signal from 
vertical through going muons.  

Light 
diffusing 

inner liner 
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~20 tanks/week 

Assembly 

Moving to the field 
Water filling 

Installing electronics 

Installing the world 
largest particle detector 



Pierre Auger Observatory  
surface detectors 
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An UHECR event 
20

16
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From EAS longitudinal profile 
to primary CR energy 

PROGRESS: 
Calibration of SD energy 

estimator through FD 

S1000 

Ne 

The Hybrid “image” of the same shower, pioneered by Auger, 
increases as well the accuracy of the profile measurement. 

34 



20
16

 

Improving measurements 
Fluorescence vs Hybrid techniques : 

Hybrid SD only FD only 

Angular 
resolution 

0.2° 1-2° 3-5°  
(0.5° stereo) 

Aperture Independent on 
E, mass, 
models. 

Independent on 
E, mass, 
models. 

Dependent on 
E, mass, 
models, 

spectral shape. 

Energy Independent on 
mass, models. 

Dependent on 
mass, models. 

Independent on 
mass, models. 

35 
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From EAS longitudinal profile 
to primary CR mass composition 

Average depth of shower maximum <Xmax> ; 
 
Width of distribution RMS(Xmax) at a certain E 
                  
                                  sensitive to primary composition 

36 
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From EAS longitudinal profile 
to primary CR mass 

PROGRESS: 
Fly’s Eye showed experimental access to Xmax  through fluorescence  
High precision now possible through higher resolution + stereo and hybrid 
measurements (around 20-25 g/cm2) 
Delicate issues: great care in event selection (possible biases) 
Important drawback: strong need for models in the interpretation 

Fly's Eye 

Auger 

37 
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From EAS longitudinal profile 
to primary CR energy 

PROGRESS: 
Calorimetric measurement of E with : 
• Fluorescence technique 
• Validated by Fly’s Eye 
• Largest uncertainty: fluorescence 

yield, 
• Atmosphere, “missing” energy 
• No hadronic model dependence 
Fly's Eye 300 EeV 

E resolution ≈ 25% 

38 



20
16

 

39 

FD at 4 sites: 
each 6 telescopes 30°x30° field of view each 

440 PMTs / telescope 1.4°x1.4° pixels 
                        (Photonis XP 3062) 



Pierre Auger Observatory  
fluorescence detectors 
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Pierre Auger Observatory  
fluorescence detectors 

20
16

 

41 



IDENTIFYING PARTICLES 
MEASURING PARTICLE VELOCITY 
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Threshold Cherenkov counters 
20
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• Hundredth of examples on fix target experiments, 
where different threshold cherenkov can be used to 
separate particle masses over a large range of 
momentum and over large solid angles. 

• for example NA9: 



Threshold Cherenkov 

• NA9: 20
16
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Threshold Cherenkov 

• NA9: 20
16
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Threshold Cherenkov 

• NA9: 20
16

 

46 



Threshold Cherenkov 

• NA9: 20
16
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Threshold detectors 

• A more recent example BELLE at KEKB 
• CP violation in B mesons at e+e- collider. 
• Current design: threshold aerogel Cherenkov counters 

to help discriminate ¼ from K 
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Threshold detectors 

• A more recent example BELLE at KEKB 20
16
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5 aerogel tiles 
inside a boxed 
lined with 
white reflector 



Threshold detectors 

• A more recent example BELLE at KEKB 20
16
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IDENTIFYING PARTICLES 
MEASURING THE CHERENKOV ANGLE: 
DIFFERENTIAL, RICH, DIRC,  
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Differential Cherenkov Counters  

• Used along beam lines to discriminate masses. 
• Mesons beams (¼§, K§), hyperon beams etc… 
• Example: CEDAR at CERN 
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RICH detectors 

• Ring Imaging Cherenkov detectors 
• First used on a fix target experiment, the OMEGA spectrometer at CERN  

(J. Séguinot & T. Ypsilantis) 
• Major breakthrough with the DELPHI RICH 
• Liquid and gas fluorocarbon radiators (2 detectors in //) 
• Optimized for ¼ / K / p separation up to 30 GeV/c 
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RICH detectors 

• Ring Imaging Cherenkov detectors: measure both µC and Nph 20
16
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RICH also for astroparticles 
20
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LHCb RICH 
20
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LHCb RICH 
20
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LHCb RICH 
20

16
 

58 



LHCb RICH 
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LHCb RICH 
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LHCb RICH 
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LHCb RICH 
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LHCb RICH 
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LHCb RICH 
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LHCb RICH 
20
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A strange idea: the DIRC 

• Detector of Internally Reflected Cherenkov light 
• DIRC used at BaBar 
• Turned out to be successful and robust for ¼ – K separation. 
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A strange idea: the DIRC 

• Detector of Internally Reflected Cherenkov light 
• DIRC used at BaBar 
• Turned out to be successful and robust for ¼ – K separation. 
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A strange idea: the DIRC 

• Detector of Internally Reflected Cherenkov light 20
16
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A strange idea: the DIRC 

• Improving  the DIRC concept: super-BELLE  ?  20
16
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IDENTIFYING PARTICLES 
CHARGE MEASUREMENT 
OF PRIMARY CR 
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How to characterize the primary particle? 



20
16

 

72 

How to characterize the primary particle? 
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Two important radiations  
for particle identification 
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Cherenkov imaging (RICH) and charge measurement 

AMS 2 
Prototype 

→ 

RICH  
principle → 
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                            PAMELA 



AMS-2 On Board ISS 
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Mission Number: STS-134 
Launch: May 19, 2011 
Orbiter: Endeavour 
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Space spectrometers 
AMS-1 

(June 1998) 
PAMELA 

(June 2006 - …) 
AMS-2 

(May 2011 - …) 

Spectrometer 
Acceptance  0.82 m2 sr 20.5 cm2 sr 0.82 m2 sr 

Spectrometer 

Permanent magnet Nd Fe B 

0.15 T 
BL2 = 0,15 T m2 

6 plans (Si) 

Permanent magnet Nd Fe B 

0.48 T 
BL2 = 0,10 T m2 

6 plans (Si) 

Permanent magnet Nd Fe B 

0.15 T 
BL2 = 0,15 T m2 

6 plans (Si) 

Time of Flight yes yes yes 

Cherenkov Aerogel 
(threshold) 

- Ring Imaging Ch. 

Transition rad - yes yes 

Neutrons det. - 3He - 

Anticoincidence - yes yes 

Calorimeter 
- 16,3 X0  

W+22 plans (Si) 

16 X0  

Pb+fibers sc. 



A precision, multipurpose spectrometer up to TeV 
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7-8 

3-4 

9 

5-6 

TRD  
Identify e+, e- 

Silicon Tracker 
 Z, P 

ECAL  
E of e+, e-, γ 

RICH  
 Z, E 

TOF 
 Z, E 

 Z, P are measured independently by the  
Tracker, RICH, TOF  and ECAL 

 Magnet 
±Z 



AMS charge identification 
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Full coverage of anti-matter & CR physics 

He,Li,Be,..Fe P e– He, C P, D e+ 

TRD 

TOF 

Tracker 

RICH 

ECAL 

– – – – 

Physics 
example Antimatter Cosmic Ray Physics Dark matter 

γ 20
16

 

80 



AMS Nuclei Measurement on ISS 

Entries 
H 

He 

Li 
Be 

B C 
N 

O 

F 
Ne 

Na 
Mg 

Al 
Si 

Cl Ar K Ca Sc Ti V Cr 
P S 

Fe 

Ni 

108 

107 

106 

105 

104 

103 

102 

10 

  1 
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CREAM 

Ultra Long Duration Balloon  
ULDB Proj., Adv.Sp.Res33,1633(2004) : 
NASA project to develop  
- Flight of < 100 days  
- Payload · 2 tons 
- Alt 33000 meter 
- CREAM n° 1 : 2006 (2005/LDB)  

McMurdo 
(Antarctique) 
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CREAM  
Cosmic Ray Energetics and Mass 

• Objectives :  
CR composition and spectrum of the  
different elements  
(from TeV to ~500 TeV) 

• Acceptance : 2,2 m2 sr 
• Energy measurement: 

– Calorimeter 20 X0 (W + scint. fibres) 
– Transition Radiation Detector 

• Identification : 
– TRD 
– Cherenkov detector "CHERCAM" 

similar to AMS-2  
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CREAM experiment 

• At TeV energies, the interaction of CR in the calorimeter induces many  
backscattered secondary particles that one have to veto. 
 

• The "CHERCAM" cherenkov  solves this problem by measuring accurately the 
time of any through going particle as well as achieving a precise charge 
measurement (± 0,3 e) 
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CREAM experiment  



ATMOSPHERIC GAMMA-RAY 
SHOWERS BY CHERENKOV 
TELESCOPES 
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10 γ 
  300 GeV 

10 protons 
300 GeV 

Simulations de  

M. de Naurois 
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Electromagnetic showers 
(e± or γ primary) 

• Radiation processes: 
– Bremsstrahlung of e±  
– Pair production (>MeV) pairs e+e- 

 
• Multiple scattering  

(small angular deflections) of e± 
 

• Energy losses by e±  

– ionization 
– Atoms excitation 

Dominating phenomena 

In the coulombian 
field of nuclei 
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γ  induced  
shower  300 GeV 

proton induced 
shower 300 GeV 

Small transverse 
dispersion  

(multiple scattering) 

(almost) no muons 
unless E0>1 PeV 

Essentially  

e+ e-  and γ 
secondaries 

Large transverse 
momentum  

 

Muon component 
(from mesons decays) 

 

A hadronic shower 
does contain 

 EM sub-showers  

Roughly 
symmetric  

around the axis 

km 

m m 

km 
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Optical photon emission by showers 

• Showers charged particles emit light: 
– Cherenkov light : very collimated along the shower axis (Cherenkov 

angle at 1 Atm. ≈ 1°) threshold depending on the altitude : at ground 
22 MeV for e± et 4.5 GeV for μ± 

      (20 photons per m per β≈1 charged particle at 1 atm) 

    Essentially used for gamma-ray astronomy  
– Nitrogen fluorescence: isotropic emission   
    (¼ 4 photons per electron per m)  
    Essentially used at UHE ≥ 1017eV. 

• This light detected by ground telescopes provides very rich 
information on the 3D development of the showers.   
It give a quasi calorimetric reliable measurement of the energy. 

… but optical detectors can only work during moonless clear sky 
nights (≈ 10% duty cycle).  
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Cherenkov light from VHE gamma rays showers 
Shower front ¼ conical at energies > TeV, 
very well defined in time (few nanoseconds) 
 
… ground enlightened area of  150 m radius  
at 1800m asl for TeV showers. 
 
Any large acceptance telescope in this area 
receive enough photons  
 → effective detection area ~ 105 m2 
 

With an array of such telescopes,  
3D reconstruction  of showers (stereoscopy) 
→ total number of Cherenkov photons as an 
energy estimator). 
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Showers Cherenkov light 

• Longitudinal profile: similar to the particle density profile with a slight shift 
towards ground of 0.3 X0 due to the variation of the Cherenkov  threshold 
with altitude. 

• Transverse profile: much narrower than that of charged particles  
(σT ≈ 10 to 15 m at 10 km altitude), threshold effect + energy of particles 
decreasing further away from axis. 

• The Cherenkov « photosphere » 
(origin of photons distribution of EM showers)  
can be approximated by a 3D gaussian distribution, 
with axial symmetry for EM showers. 

• The measurement of the transverse  
standard deviation σT  allows  
distinguishing narrow EM showers 
from much wider hadronic showers,  
(transverse momentum of nuclear interactions À QED radiative processes). 
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Cherenkov transverse profiles: 
EM versus hadronic showers 

  
• « OFF » data: showers detected 

by 3 or 4 telescopes in a zone 
without ° sources  
→ ¾T distribution for hadronic 
showers 
 

• « ON » data : showers detected 
by 3 or 4 telescopes in the 
direction of the ° source 
PKS2155-304 (a blazar). 

 
• « ON-OFF » distribution :  

→ ¾T distribution for ° showers  
as seen by 3 or 4 telescopes.  

H.E.S.S 

← « OFF » = hadrons 

← « ON-OFF » = γ 
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VHE gamma-ray observation 

• ACT, detection principle: 
– Imagers : WHIPPLE, CANGAROO, HEGRA,CAT 

   Hess, Magic, Veritas  
– Samplers :ASGAT,THEMISTOCLE, 

  HEGRA-AIROBICC, CELESTE, SOLAR2 

source 

α 
Shower pointing 
back at the 
source 
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Gamma-ray astronomy above 100 GeV 
• Atmospheric Cerenkov Detectors (ACTs) 

– Limited field of view instruments (5° for H.E.S.S.), 
)  must follow the source apparent displacement on the sky. 

– Can follow only one source at the time.  
– Only work at clear sky moonless nights. 
– Great °-hadron discriminating power → most of the TeV sources 

discoveries. 
 

• Surface detectors (charged particles and ° secondaries at ground level) 
– Large field of view (¼ steradian)  instrument 
– High duty cycle  
– Low ° - hadron discrimination power  → limited sensitivity.  
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Atmospheric Cerenkov Detectors 

        Imagers               Samplers 

Form the shower image in the 
focal plane 

Arrival time + amplitudes on a 
large number of stations 



ACTs in stereoscopic mode 
20
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Former ACT 

WHIPPLE CAT 
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ACTs:  
Lowering the energy threshold  

 

• Increase the photons collection area ≈  reflector area Acol  
 

• Increase the photon detection efficiency ² (mirror reflectivity, light 
funnels, PMTs quantum efficiency) 
 

• The coincidence time gate Δt should not exceed by much the Cherenkov 
characteristic time (¿ ¼ 3 ns) → isochrones mirror, fast triggering 

 
• The solid angle ΔΩ within which the photon signal is integrated should not 

exceed much the angular size of the shower Ωg 
     → small pixels, triggering by fraction of the field of view or using nearby 

pixel patterns. 
 

Sky background ~ 1012 photons m-2 sr-1 s-1 
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Current ACTs 

Observatory # of telescopes Reflector 
diameter (m) Site 

CANGAROO III 4 10 Australia 

HESS I 4 → 4+1 12 (28) Namibia 

MAGIC 1→2 17 Canaries 

VERITAS 2→ 4 12 Arizona 
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VERITAS 
CANGAROO III 

MAGIC HESS I 
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Hess 2004 :  x4 telescopes 
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Imaging telescopes: the cameras 

Experiment # pixels Pixels size Field of view 

CANGAROO III 552 0.115° 3° 

HESS I 960 0.16° 5° 

MAGIC 396+180 0.08°-0.12° 4° 

VERITAS 499 0.15° 3.5° 
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Imaging telescopes: high resolution cameras 

VERITAS MAGIC 
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Imaging telescopes: high resolution cameras 
(H.E.S.S.) 

• 960 phototubes equipped  
   with light funnels 
   (Winston cones). 
 
• On board trigger electronics  

(partially overlapping sectors) 
 

• On board continuous analog  
memory and fast (Ghz) 
sampling   
(Analog Ring Sampler) + 
integrated signal 12 ns → ADC 
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An effective detector monitoring:  
muon rings 

• Muons through the mirror produce a 
perfect ring image whose light content is 
completely computable. 

• Comparing measured signals with 
estimations )  global efficiency including 
effects  such as : 
– near atmosphere absorption; 
– mirror reflectivity; 
– light collection; 
– PMTs quantum efficiency . 

• The detector monitoring  is then 
automatically taken into account in the data 
analysis. 
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Stereoscopic ACTs 

• Each showers is seen by many telescopes 
 

• Very high hadron shower rejection 
factor  
(> 1000) 

     axial symmetry + narrow 3D width   
      + punctual source pointing 
 
• Much improved angular resolution  

wrt 1 telescope  
     (≈ 4' avec 4 telescopes) 
 
• Better energy resolution 
     (≈15%) 
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Stereoscopic ACTs 

• Direct measurement of the origin of the gamma-ray in the field of view 
(important for extended sources) 

• Direct measurement of the ground impact point  
(important for the determination of the energy) 
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Sensitivity to gamma-ray sources: H.E.S.S. 

Extended sources capability  e.g. 
Vela Junior  (2° in diameter) 

More than hundred TeV-sources 

M. Lemoine-Goumard 2006 
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HESS: many impressive results 
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Energy threshold 
• The threshold depends on the zenith angle  

 
• Typically 120 GeV  
    at the zenith for H.E.S.S.  
    and comparable stereoscopic systems.  
• MAGIC II (2 identical large telescopes) 

     down to 50 GeV. 
• Starting now: H.E.S.S. II 

– 50 GeV with a very large telescope 
+ les 4xHESS I  in stereo 
– 20 GeV expected  in  « mono »  

with HESS II large telescope 
and a second level trigger. 

H.E.S.S. 
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Sensitivity of current imaging telescopes 
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Down to 20 et 50 GeV with H.E.S.S. II 



HESS II 

• First light July 2012  20
16
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The FERMI,  MAGIC , H.E.S.S. II   and CTA era  
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Toward a large array of ATCs : CTA 
• Goal : a milli-Crab sensitivity at the TeV 
• This could be achieved with 20 to 30 imaging telescopes (HESS-I type) 
• The sensitivity is not only increased because of the covered area, but also 

due to improved stereoscopic quality (improved hadron rejection factors 
and angular resolution) : 56% of the showers seen by at least 4 tel with 16 
in total, up to 2/3 with 36 tel. 

• International consortium HESS-MAGIC-VERITAS, 2 sites one north one 
south:  CTA = Cherenkov Telescope Array. 



20
16

 

118 

A (once favored) alternative solution:  
sampling arrays  

• To lower threshold, benefit of the very large  
mirror area from solar power plants  
~ 2000 - 6000 m2 

 
• Need to split the beam from the  

different heliostats 
      → Secondary optics 
 
• One PMT per heliostat. 
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CELESTE (France)  

53 ×54 m2 

STACEE (USA) 

64 × 40 m2 

 

CACTUS (USA) 

160 × 40 m2 
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Large field of view gamma-ray detectors 

• Detect the shower particle reaching ground (at high 
altitude) (scintillateurs, RPCs or water Cherenkov 
detectors) 

• Large duty cycle ≈ 90% 
• Large solid angle ~ steradian 
• Well suited to look for unpredictable transient 

phenomena   (ex: gamma-ray burst) 
• … BUT small sensitivity (~0.5 Crabe) because of rather 

poor hadron shower rejection factor and limited 
angular resolution (0.5° to 1°) ; (measured from timing in 
different detectors). 

• … as well as rather high threshold (~ 1 TeV) 
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Large field of view gamma-ray shower detectors 

Tibet  
Scintillators 

« water pool »  

(water Cherenkov detectors) 
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Hadronic background rejection by MILAGRO 
• Cherenkov light in the deeper PMTs → hadrons 
     (cf. muons that traverses completely the pool). 
• Hadronic showers: irregular light distribution → less PMTs hit but larger 

signal each 
• EM showers: more regular light distribution → many more PMTs hit with 

small signal each PMT. 

Proton 
rejection 

factor  
~ 10 
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ARGO-Yang Ba Jing (2006) 

 

sensitivity (× 3) 
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300 tanks completed in Dec.2014 

Sierra Negra volcano near Puebla, Mexico.  
at an altitude of 4100 meters 



Gamma/Hadron rejection 
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proton gamma 
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Old and current generation  
of space and ground °-telescopes 



New and future generation of space and ground  
°-telescopes 

CTA 
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NEUTRINO TELESCOPES 
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The cosmic neutrino spectrum,  
from MeV to EeV 

• MeV-GeV: Solar neutrinos & super Novæ, atmospheric 
neutrinos: various detectors but mostly a water 
Cherenkov domain with SuperKamiokande 
 

• GeV-TeV: Cherenkov in natural water or ice, neutrinos 
atmospheric neutrinos and beyond.   
ICECUBE, ANTARES. 
 

• TeV-PeV: the same but extended to 1 km3 size.  
ICECUBE so far the only one. 
 

• EeV: arrays foreseen for UHECR detection proved to be 
very efficient for UHEº's. Observe quasi horizontal 
showers with AUGER. 
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Neutrino cross sections 

• ν-matter cross sections: 

HERA 

Extrapolation  
uncertainty at UHE 
× 2.4 

Glashow resonance 
× 1000 enhancement 
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Neutrino detectors 
… super heavy weight category ! 

ex. the WBB of CERN : 

 1013  400 GeV protons per extraction 

 ⇒ φν ≈ 106 ν cm-2    <Eν> ≈ 20 GeV 

with: 

 σν,N = 0.6×10-38 (E/GeV) cm2 GeV-1  

 NA= 6.02 ×1023 mol-1 

 

With a 100 tons detector, one gets: 

 Nevt =  Nnucl × φν × σν,N  

        =  6.02 ×1023 ×108 ×106 × 0.6×10-38 ×20 

        =  7,2 events / extraction 
238
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GeV detection with SuperKamiokande 

1122~ −−−φ srscm

( )xnxxP σ
λ

−−=





 −

−= exp1exp1)(

( ) cm1413823 107.1~10106~ −−××λ

13106
1

~)( −×







m
LLP

( ) ( ) ( )
 waterof /mevents/day  102.1

10.610.8410.2
)(

32

1341124

−

−−−−

×≈

××××≈

Ω=

Vssrssrm
LPSN

π

φ

Atmospheric neutrino flux: 

Interaction probability: 

Interaction length λ: 

thus : 

Number of events per day in a detector of volume V=S×L 

nσ
=λ

1

ANn ρ=



20
16

 

135 

Super Kamiokande 
• Super-Kamiokande, détecteur souterrain au Japon,  

 50000 tonnes d’eau, 12000 PM de Ø=50cm. 

• Water Cherenkov type Detector 
• 22.5 kton Fid. Volume 
• Concentric Cylindrical Shape 
• 11146 PMTs for Inner Detector 
• 1885 PMTs for Outer Detector 
• Run from Apr. 1996 to Jul. 2001 
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After rebuilt in 2006 

Super Kamiokande 
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Super Kamiokande 
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Super Kamiokande 
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Event patterns in Super-Kamiokande 

Fully Contained (FC) event Partially Contained (PC) event 

Upward-going muons (Up-mu) 

  All visible particles are  
   contained in the detector 
  both νμ、νe    
   via NC or CC interaction 
 Typically Eν = 1 GeV 
 Particle ID 

 At least 1 charged particle 
 escapes from detector 

 νμCC (97%) 
 Typically Eν=10 GeV 

 Entering muon from below 
 νμ CC only 
 Eν= 10 GeV( stopping ), 
         100 GeV( through-going) 

Super-Kamiokande covers Eν = 100 MeV ~ over 1 TeV 
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– Atmosphere : 
• ~1000 g/cm² 
• ~20 km 
• 11 nuclear λint  

 
–   ν dominated by : 

 
 
 
       

 
 

– Kinematics : 
 

 
 
 
 
 

 
– 1 GeV sea level neutrino fux:  

  
  

 

π+ 

π− 

µ− 

e− 

νµ 

νe 

νµ 

π− 

µ− 

νµ 
π0→γγ 

EM 

p,N 

Atmospheric neutrinos 
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Atmospheric neutrinos 

• Flavor ratio    

• top down symmetry 
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Survival probability 

Half of upgoing νµ  
are lost. 
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Half of νµ disappeared ! 
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neutrino 

 muon Cherenkov  
cone 

Detector interaction 

Matrix of PMTs:  
“Optical Modules”  

Muon trace:  
Direction:  from precise timing 
      < θν −θµ > ≈ 0.7o / E0.6(TeV) 

Muon energy: very rough lower limit using EM energy 
losses (pair production, small showers etc…) along the 
muon track. 
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Neutrino cross sections 

• ν-matter cross sections: 

HERA 

Extrapolation  
uncertainty at UHE 
× 2.4 

Glashow resonance 
× 1000 enhancement 
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Particle Ranges 
R

an
ge

  (
m

 o
f w

at
er

) 



20
16

 

147 

Earth opacity 

Zenith angle (o)  

Transmission 
   probability 
     in Earth 

The earth is transparent to νµ 
< 100 TeV 

νµ absorbed via cc, or regenerated via nc 

ντ regenerated via cc because τ→ντ before 
interacting or significant energy loss. 
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Detection principles 

– The effective target volume is / the muon range 

Veff (Eµ) = Aeff(Eµ) . Rµ (Eµ) 

Effective  
Surface  

 

µ detector  

Effective Volume >> Detection Volume 

Rµ 

µ 

ν 

Rµ  = 2 km  @ 1 TeV 

Rµ  = 10 km  @ 100 TeV 

Rµ
max

  = 50 km  @ 1 EeV 
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PeV νµ  in IceCube 

θ 

Min(Rµ,hcosθ) 

S 

h 

Target volume for upgoing >1EeV ν 
assuming no attenuation in earth 

Target volume accounting for Eµ>1 PeV  range  
and an ν initial energy of 1EeV ~ 1013 tons of  ice. 
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50 km 

Eµ>100 GeV effective target 
volume for an initial ν energy 
of  10 TeV 

1,8 km 
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Neutrino Telescope Projects 
ANTARES     La-Seyne-sur-Mer, France 

NEMO  Catania, Italy, KM3NET ? 
BAIKAL:  

Lake Baikal, Siberia 

DUMAND, Hawaii 
 (cancelled 1995) 

 AMANDA, ICECUBE  
South Pole, Antarctica 

NESTOR : Pylos, Greece 
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South Pole: glacial ice 
 
1993  First strings AMANDA A 
1998  AMANDA B10 ~ 300 Optical Modules  
 
2000              ~ 700 Optical Modules 
 
→ ICECUBE 8000 Optical Modules 

AMANDA 
ν > 50GeV 

AMANDA 
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AMANDA: Drill Holes in ice with Hot Water 
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Reconstruction d'événement dans Amanda 
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Future in ν telescopes: ANTARES 
1996               Started  
1996 - 2000   Site exploration and demonstrator line 
2001 - 2004   Construction of 10 line detector, area ~0.1km2 on Toulon site 

 future            1 km3 in Mediterranean  

Angular resolution <0.4° for E>10 TeV 
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2500m 

300m 
active 

Electro-optic 
submarine cable 
        ~40km 

Junction box 

Readout cables 

Shore station 

anchor 

float 

Electronics containers 

~60m 
Compass, 
tilt meter 

hydrophone 

Optical module 

Acoustic beacon 

 ANTARES 0.1km2 Detector 

~100m 

13 strings 
12 m between storeys 
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Detection principle 

Energy of all µ’s 
as produced 

Production energy of µ’s 
reaching the detector 

Energy  of µ’s as 
they reach the 
detector 

Mean Eµ/Eν 
ratio versus Eν 
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∆E/E  =  3  ( < 10TeV) 
           =  2  ( > 10TeV) 

100 GeV µ 10 TeV µ 
(Seuls les photons atteignant un PM sont dessinés) 

No real neutrino energy measurement, instead possibility to cut on the muon 
deposited energy hence on the muon energy (for ex: 1 PeV) and hence to 
reject muon neutrinos with lower energy. 

Energy measurement 
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ICECUBE atmospheric flux 
20

16
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ICECUBE atmospheric flux 
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ICECUBE atmospheric flux 
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ICECUBE atmospheric flux 
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Premiers résultats d'Antares 12 lignes 
(sur 120 jours actifs) 

µatm 

νatm 
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UHE Neutrinos: Horizontal air showers 

Background is:  
 Thousands events per year 
 EM poor, muon rich, flat and thin front 
 Prompt signal 

Shower front Shower core 
hard muons EM shower 

1000 g/cm2 3000 g/cm2 
Shower front 

EM shower 

3000 g/cm2 

ν : “new” showers hadrons: “old” showers 

Signal is:  
 Few events per year 
 EM rich, curved and thick front 
 Broad signals 



20
16

 

168 

AUGER limits 
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