
Boosted decision trees

Yann Coadou

CPPM Marseille

Archamps, 7 February 2017

Outline

PHYSICS OF PARTICLE AND
ASTROPARTICLE DETECTORS

23 January to 17 February 2017
4 week course

TECHNOLOGIES & APPLICATIONS
20 February to 17 March 2017

4 separate modules :

Module 1

Detector
Technologies &

Electronics
20 to 24
February

Module 2

Real Time
Computing &
Data Handling
27 February
to 3 March

Module 3

Mechanics
& Medical

Applications
 6 to 10 March

Module 4

Offline
Computing

13 to 17 March

www.esi-archamps.eu

ESI / ESIPAP - octobre 2016
Crédits photo : ESIPAP - Cern
www.indelebile-creation.com

P o r t e S u d d e G e n è v e

INTENSIVE PROGRAM
FOR MASTER & PhD STUDENTS

AND FELLOWS

 PRACTICAL
LABORATORY SESSIONS

 AT CERN

Accredited by
partner Universities (ECTS) :

APPLY
NOW

Fees
200/500€
per Module
(student/Pro)

1 Introduction
2 Growing a tree
3 Tree (in)stability
4 Boosting
5 BDT performance
6 Concrete examples
7 Other averaging techniques
8 BDTs in real physics cases
9 BDT systematics

10 Software
11 Conclusion
12 References

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 2/69

Before we go on...

!!! VERY IMPORTANT !!!

Understand your inputs well
before you start playing with multivariate techniques

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 3/69

Introduction

Decision tree origin

Machine-learning technique, widely used in social sciences.
Originally data mining/pattern recognition, then medical diagnostic,
insurance/loan screening, etc.
L. Breiman et al., “Classification and Regression Trees” (1984)

Basic principle

Extend cut-based selection

many (most?) events do not have all characteristics of signal or
background
try not to rule out events failing a particular criterion

Keep events rejected by one criterion and see whether other criteria
could help classify them properly

Binary trees

Trees can be built with branches splitting into many sub-branches

In this lecture: mostly binary trees
Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 4/69

Growing a tree

1 Introduction

2 Growing a tree

3 Tree (in)stability

4 Boosting

5 BDT performance

6 Concrete examples

7 Other averaging techniques

8 BDTs in real physics cases

9 BDT systematics

10 Software

11 Conclusion

12 References

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 5/69

Tree building algorithm

Start with all events (signal and background) = first (root) node

sort all events by each variable

for each variable, find splitting value with best separation between
two children

mostly signal in one child
mostly background in the other

select variable and splitting value with best separation, produce two
branches (nodes)

events failing criterion on one side
events passing it on the other

Keep splitting

Now have two new nodes. Repeat algorithm recursively on each node

Can reuse the same variable

Iterate until stopping criterion is reached

Splitting stops: terminal node = leaf

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 6/69

Algorithm example

Consider signal (si) and background
(bj) events described by 3 variables: pT
of leading jet, top mass Mt and scalar
sum of pT ’s of all objects in the event
HT

sort all events by each variable:

ps1
T ≤ pb34

T ≤ · · · ≤ pb2
T ≤ ps12

T

Hb5
T ≤ Hb3

T ≤ · · · ≤ Hs67
T ≤ Hs43

T

Mb6
t ≤ Ms8

t ≤ · · · ≤ Ms12
t ≤ Mb9

t

best split (arbitrary unit):

pT < 56 GeV, separation = 3
HT < 242 GeV, separation = 5
Mt < 105 GeV, separation = 0.7

split events in two branches: pass or
fail HT < 242 GeV

Repeat recursively on each node
Splitting stops: e.g. events with HT < 242 GeV and Mt > 162 GeV
are signal like (p = 0.82)

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 7/69

Algorithm example

Consider signal (si) and background
(bj) events described by 3 variables: pT
of leading jet, top mass Mt and scalar
sum of pT ’s of all objects in the event
HT

sort all events by each variable:

ps1
T ≤ pb34

T ≤ · · · ≤ pb2
T ≤ ps12

T

Hb5
T ≤ Hb3

T ≤ · · · ≤ Hs67
T ≤ Hs43

T

Mb6
t ≤ Ms8

t ≤ · · · ≤ Ms12
t ≤ Mb9

t

best split (arbitrary unit):

pT < 56 GeV, separation = 3
HT < 242 GeV, separation = 5
Mt < 105 GeV, separation = 0.7

split events in two branches: pass or
fail HT < 242 GeV

Repeat recursively on each node
Splitting stops: e.g. events with HT < 242 GeV and Mt > 162 GeV
are signal like (p = 0.82)

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 7/69

Algorithm example

Consider signal (si) and background
(bj) events described by 3 variables: pT
of leading jet, top mass Mt and scalar
sum of pT ’s of all objects in the event
HT

sort all events by each variable:

ps1
T ≤ pb34

T ≤ · · · ≤ pb2
T ≤ ps12

T

Hb5
T ≤ Hb3

T ≤ · · · ≤ Hs67
T ≤ Hs43

T

Mb6
t ≤ Ms8

t ≤ · · · ≤ Ms12
t ≤ Mb9

t

best split (arbitrary unit):

pT < 56 GeV, separation = 3
HT < 242 GeV, separation = 5
Mt < 105 GeV, separation = 0.7

split events in two branches: pass or
fail HT < 242 GeV

Repeat recursively on each node
Splitting stops: e.g. events with HT < 242 GeV and Mt > 162 GeV
are signal like (p = 0.82)

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 7/69

Algorithm example

Consider signal (si) and background
(bj) events described by 3 variables: pT
of leading jet, top mass Mt and scalar
sum of pT ’s of all objects in the event
HT

sort all events by each variable:

ps1
T ≤ pb34

T ≤ · · · ≤ pb2
T ≤ ps12

T

Hb5
T ≤ Hb3

T ≤ · · · ≤ Hs67
T ≤ Hs43

T

Mb6
t ≤ Ms8

t ≤ · · · ≤ Ms12
t ≤ Mb9

t

best split (arbitrary unit):

pT < 56 GeV, separation = 3
HT < 242 GeV, separation = 5
Mt < 105 GeV, separation = 0.7

split events in two branches: pass or
fail HT < 242 GeV

Repeat recursively on each node
Splitting stops: e.g. events with HT < 242 GeV and Mt > 162 GeV
are signal like (p = 0.82)

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 7/69

Algorithm example

Consider signal (si) and background
(bj) events described by 3 variables: pT
of leading jet, top mass Mt and scalar
sum of pT ’s of all objects in the event
HT

sort all events by each variable:

ps1
T ≤ pb34

T ≤ · · · ≤ pb2
T ≤ ps12

T

Hb5
T ≤ Hb3

T ≤ · · · ≤ Hs67
T ≤ Hs43

T

Mb6
t ≤ Ms8

t ≤ · · · ≤ Ms12
t ≤ Mb9

t

best split (arbitrary unit):

pT < 56 GeV, separation = 3
HT < 242 GeV, separation = 5
Mt < 105 GeV, separation = 0.7

split events in two branches: pass or
fail HT < 242 GeV

Repeat recursively on each node
Splitting stops: e.g. events with HT < 242 GeV and Mt > 162 GeV
are signal like (p = 0.82)

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 7/69

Algorithm example

Consider signal (si) and background
(bj) events described by 3 variables: pT
of leading jet, top mass Mt and scalar
sum of pT ’s of all objects in the event
HT

sort all events by each variable:

ps1
T ≤ pb34

T ≤ · · · ≤ pb2
T ≤ ps12

T

Hb5
T ≤ Hb3

T ≤ · · · ≤ Hs67
T ≤ Hs43

T

Mb6
t ≤ Ms8

t ≤ · · · ≤ Ms12
t ≤ Mb9

t

best split (arbitrary unit):

pT < 56 GeV, separation = 3
HT < 242 GeV, separation = 5
Mt < 105 GeV, separation = 0.7

split events in two branches: pass or
fail HT < 242 GeV

Repeat recursively on each node

Splitting stops: e.g. events with HT < 242 GeV and Mt > 162 GeV
are signal like (p = 0.82)

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 7/69

Algorithm example

Consider signal (si) and background
(bj) events described by 3 variables: pT
of leading jet, top mass Mt and scalar
sum of pT ’s of all objects in the event
HT

sort all events by each variable:

ps1
T ≤ pb34

T ≤ · · · ≤ pb2
T ≤ ps12

T

Hb5
T ≤ Hb3

T ≤ · · · ≤ Hs67
T ≤ Hs43

T

Mb6
t ≤ Ms8

t ≤ · · · ≤ Ms12
t ≤ Mb9

t

best split (arbitrary unit):

pT < 56 GeV, separation = 3
HT < 242 GeV, separation = 5
Mt < 105 GeV, separation = 0.7

split events in two branches: pass or
fail HT < 242 GeV

Repeat recursively on each node
Splitting stops: e.g. events with HT < 242 GeV and Mt > 162 GeV
are signal like (p = 0.82)

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 7/69

Decision tree output

Run event through tree

Start from root node

Apply first best cut

Go to left or right child node

Apply best cut for this node

...Keep going until...

Event ends up in leaf

DT Output

Purity (s
s+b , with weighted events) of leaf, close to 1 for signal and 0

for background

or binary answer (discriminant function +1 for signal, −1 or 0 for
background) based on purity above/below specified value (e.g. 1

2) in
leaf

E.g. events with HT < 242 GeV and Mt > 162 GeV have a DT
output of 0.82 or +1

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 8/69

Tree construction parameters

Normalization of signal and background before training

same total weight for signal and background events (p = 0.5,
maximal mixing)

Selection of splits

list of questions (variablei < cuti?, “Is the sky blue or overcast?”)

goodness of split (separation measure)

Decision to stop splitting (declare a node terminal)

minimum leaf size (for statistical significance, e.g. 100 events)

insufficient improvement from further splitting

perfect classification (all events in leaf belong to same class)

maximal tree depth (like-size trees choice or computing concerns)

Assignment of terminal node to a class

signal leaf if purity > 0.5, background otherwise

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 9/69

Splitting a node

Impurity measure i(t)

maximal for equal mix of
signal and background

symmetric in psignal and
pbackground

minimal for node with either signal
only or background only

strictly concave ⇒ reward purer
nodes (favours end cuts with one
smaller node and one larger node)

Optimal split: figure of merit

Decrease of impurity for split s of
node t into children tP and tF
(goodness of split):
∆i(s, t) = i(t)−pP ·i(tP)−pF ·i(tF)

Aim: find split s∗ such that:

∆i(s∗, t) = max
s∈{splits}

∆i(s, t)

Stopping condition

See previous slide

When not enough
improvement
(∆i(s∗, t) < β)

Careful with early-stopping
conditions

Maximising ∆i(s, t) ≡ minimizing overall tree impurity
Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 10/69

Splitting a node: examples

Node purity

Signal (background) event i with weight w i
s (w i

b)

p =

∑
i∈signal w

i
s∑

i∈signal w
i
s +

∑
j∈bkg w

j
b

Signal purity (= purity)
ps = p = s

s+b

Background purity
pb = b

s+b = 1− ps = 1− p

Common impurity functions

misclassification error
= 1−max(p, 1− p)

(cross) entropy
= −

∑
i=s,b pi log pi

Gini index
signal purity

0 0.2 0.4 0.6 0.8 1

ar
b

it
ra

ry
 u

n
it

0

0.05

0.1

0.15

0.2

0.25

Split criterion

Misclas. error

Entropy

Gini

Also cross section (− s2

s+b) and excess significance (− s2

b)

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 11/69

Splitting a node: Gini index of diversity

Defined for many classes

Gini =
∑i 6=j

i ,j∈{classes} pipj

Statistical interpretation

Assign random object to class i with probability pi .

Probability that it is actually in class j is pj

⇒ Gini = probability of misclassification

For two classes (signal and background)

i = s, b and ps = p = 1− pb

⇒ Gini = 1−
∑

i=s,b p
2
i = 2p(1− p) = 2sb

(s+b)2

Most popular in DT implementations

Usually similar performance to e.g. entropy

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 12/69

Variable selection I

Reminder

Need model giving good description of data

Playing with variables

Number of variables:

not affected too much by “curse of dimensionality”
CPU consumption scales as nN logN with n variables and N training
events

Insensitive to duplicate variables (give same ordering ⇒ same DT)

Variable order does not matter: all variables treated equal

Order of training events is irrelevant (batch training)

Irrelevant variables:

no discriminative power ⇒ not used
only costs a little CPU time, no added noise

Can use continuous and discrete variables, simultaneously

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 13/69

Variable selection I

Reminder

Need model giving good description of data

Playing with variables

Number of variables:

not affected too much by “curse of dimensionality”
CPU consumption scales as nN logN with n variables and N training
events

Insensitive to duplicate variables (give same ordering ⇒ same DT)

Variable order does not matter: all variables treated equal

Order of training events is irrelevant (batch training)

Irrelevant variables:

no discriminative power ⇒ not used
only costs a little CPU time, no added noise

Can use continuous and discrete variables, simultaneously

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 13/69

Variable selection II

Transforming input variables

Completely insensitive to the replacement of any subset of input
variables by (possibly different) arbitrary strictly monotone functions
of them:

let f : xi → f (xi) be strictly monotone
if x > y then f (x) > f (y)
ordering of events by xi is the same as by f (xi)
⇒ produces the same DT

Examples:

convert MeV → GeV
no need to make all variables fit in the same range
no need to regularise variables (e.g. taking the log)

⇒ Some immunity against outliers

Note about actual implementation

The above is strictly true only if testing all possible cut values

If there is some computational optimisation (e.g., check only 20
possible cuts on each variable), it may not work anymore.

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 14/69

Variable selection II

Transforming input variables

Completely insensitive to the replacement of any subset of input
variables by (possibly different) arbitrary strictly monotone functions
of them:

let f : xi → f (xi) be strictly monotone
if x > y then f (x) > f (y)
ordering of events by xi is the same as by f (xi)
⇒ produces the same DT

Examples:

convert MeV → GeV
no need to make all variables fit in the same range
no need to regularise variables (e.g. taking the log)

⇒ Some immunity against outliers

Note about actual implementation

The above is strictly true only if testing all possible cut values

If there is some computational optimisation (e.g., check only 20
possible cuts on each variable), it may not work anymore.

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 14/69

Variable selection III

Variable ranking

Ranking of xi : add up decrease of impurity each time xi is used

Largest decrease of impurity = best variable

Shortcoming: masking of variables

xj may be just a little worse than xi but will never be picked

xj is ranked as irrelevant

But remove xi and xj becomes very relevant
⇒ careful with interpreting ranking

Solution: surrogate split

Compare which events are sent left or right by optimal split and by
any other split

Give higher score to split that mimics better the optimal split

Highest score = surrogate split

Can be included in variable ranking

Helps in case of missing data: replace optimal split by surrogate

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 15/69

Tree (in)stability

1 Introduction

2 Growing a tree

3 Tree (in)stability

4 Boosting

5 BDT performance

6 Concrete examples

7 Other averaging techniques

8 BDTs in real physics cases

9 BDT systematics

10 Software

11 Conclusion

12 References

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 16/69

Tree instability: training sample composition

Small changes in sample can lead to very different tree structures

Performance on testing events may be as good, or not

Not optimal to understand data from DT rules

Does not give confidence in result:

DT output distribution discrete by nature
granularity related to tree complexity
tendency to have spikes at certain purity values (or just two delta
functions at ±1 if not using purity)

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 17/69

Pruning a tree I

Possible to get a perfect classifier on training events

Mathematically misclassification error can be made as little as wanted

E.g. tree with one class only per leaf (down to 1 event per leaf if
necessary)

Training error is zero

But run new independent events through tree (testing or validation
sample): misclassification is probably > 0, overtraining

Pruning: eliminate subtrees (branches) that seem too specific to
training sample:

a node and all its descendants turn into a leaf

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 18/69

Pruning a tree II

Pre-pruning

Stop tree growth during building phase

Already seen: minimum leaf size, minimum separation improvement,
maximum depth, etc.

Careful: early stopping condition may prevent from discovering
further useful splitting

Expected error pruning

Grow full tree

When result from children not significantly different from result of
parent, prune children

Can measure statistical error estimate with binomial error√
p(1− p)/N for node with purity p and N training events

No need for testing sample

Known to be “too aggressive”
Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 19/69

Pruning a tree III: cost-complexity pruning

Idea: penalise “complex” trees (many nodes/leaves) and find
compromise between good fit to training data (larger tree) and good
generalisation properties (smaller tree)

With misclassification rate R(T) of subtree T (with NT nodes) of
fully grown tree Tmax :

cost complexity Rα(T) = R(T) + αNT

α = complexity parameter

Minimise Rα(T):

small α: pick Tmax

large α: keep root node only, Tmax fully pruned

First-pass pruning, for terminal nodes tL, tR from split of t:

by construction R(t) ≥ R(tL) + R(tR)
if R(t) = R(tL) + R(tR) prune off tL and tR

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 20/69

Pruning a tree IV: cost-complexity pruning

For node t and subtree Tt :

if t non-terminal, R(t) > R(Tt) by construction
Rα({t}) = Rα(t) = R(t) + α (NT = 1)
if Rα(Tt) < Rα(t) then branch has smaller cost-complexity than single
node and should be kept
at critical α = ρt , node is preferable
to find ρt , solve Rρt (Tt) = Rρt (t), or: ρt =

R(t)− R(Tt)

NT − 1

node with smallest ρt is weakest link and gets pruned
apply recursively till you get to the root node

This generates sequence of decreasing cost-complexity subtrees

Compute their true misclassification rate on validation sample:

will first decrease with cost-complexity
then goes through a minimum and increases again
pick this tree at the minimum as the best pruned tree

Note: best pruned tree may not be optimal in a forest

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 21/69

Decision tree score card

Training is fast
Human readable (not a black box, can interpret tree as selection
rules or physics)

Deals with continuous and discrete variables simultaneously
No need to transform inputs
Resistant to irrelevant variables
Works well with many variables

Good variables can be masked

Very few parameters

Not that “original” in HEP anymore

Unstable tree structure

Piecewise nature of output

Need at least as many training examples as variations

in target function
Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 22/69

Tree (in)stability: distributed representation

One tree:
one information about event (one leaf)
cannot really generalise to variations not covered in training set (at
most as many leaves as input size)

Many trees:
distributed representation: number of intersections of leaves
exponential in number of trees
many leaves contain the event ⇒ richer description of input pattern

Partition 1

C3=0

C1=1

C2=1

C3=0

C1=0

C2=0

C3=0

C1=0

C2=1

C3=0

C1=1

C2=1

C3=1

C1=1

C2=0

C3=1

C1=1

C2=1

C3=1

C1=0

Partition 3
Partition 2

C2=0

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 23/69

Tree (in)stability solution: averaging

Build several trees and average the output

[Dietterich, 1997]

K-fold cross-validation (good for small samples)

divide training sample L in K subsets of equal size: L =
⋃

k=1..K Lk

Train tree Tk on L − Lk , test on Lk

DT output = 1
K

∑
k=1..K Tk

Bagging, boosting, random forests, etc.

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 24/69

Boosting

1 Introduction

2 Growing a tree

3 Tree (in)stability

4 Boosting

5 BDT performance

6 Concrete examples

7 Other averaging techniques

8 BDTs in real physics cases

9 BDT systematics

10 Software

11 Conclusion

12 References

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 25/69

A brief history of boosting

First provable algorithm by Schapire (1990)

Train classifier T1 on N events

Train T2 on new N-sample, half of which misclassified by T1

Build T3 on events where T1 and T2 disagree

Boosted classifier: MajorityVote(T1,T2,T3)

Then

Variation by Freund (1995): boost by majority (combining many
learners with fixed error rate)

Freund&Schapire joined forces: 1st functional model AdaBoost (1996)

When it really picked up in HEP

MiniBooNe compared performance of different boosting algorithms
and neural networks for particle ID (2005)

D0 claimed first evidence for single top quark production (2006)

CDF copied (2008). Both used BDT for single top observation

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 26/69

A brief history of boosting

First provable algorithm by Schapire (1990)

Train classifier T1 on N events

Train T2 on new N-sample, half of which misclassified by T1

Build T3 on events where T1 and T2 disagree

Boosted classifier: MajorityVote(T1,T2,T3)

Then

Variation by Freund (1995): boost by majority (combining many
learners with fixed error rate)

Freund&Schapire joined forces: 1st functional model AdaBoost (1996)

When it really picked up in HEP

MiniBooNe compared performance of different boosting algorithms
and neural networks for particle ID (2005)

D0 claimed first evidence for single top quark production (2006)

CDF copied (2008). Both used BDT for single top observation

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 26/69

A brief history of boosting

First provable algorithm by Schapire (1990)

Train classifier T1 on N events

Train T2 on new N-sample, half of which misclassified by T1

Build T3 on events where T1 and T2 disagree

Boosted classifier: MajorityVote(T1,T2,T3)

Then

Variation by Freund (1995): boost by majority (combining many
learners with fixed error rate)

Freund&Schapire joined forces: 1st functional model AdaBoost (1996)

When it really picked up in HEP

MiniBooNe compared performance of different boosting algorithms
and neural networks for particle ID (2005)

D0 claimed first evidence for single top quark production (2006)

CDF copied (2008). Both used BDT for single top observation

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 26/69

Principles of boosting

What is boosting?

General method, not limited to decision trees

Hard to make a very good learner, but easy to make simple,
error-prone ones (but still better than random guessing)

Goal: combine such weak classifiers into a new more stable one, with
smaller error

Algorithm

Training sample Tk of N
events. For i th event:

weight wk
i

vector of discriminative
variables xi
class label yi = +1 for
signal, −1 for
background

Pseudocode:

Initialise T1

for k in 1..Ntree

train classifier Tk on Tk

assign weight αk to Tk

modify Tk into Tk+1

Boosted output: F (T1, ..,TNtree)

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 27/69

AdaBoost

Introduced by Freund&Schapire in 1996

Stands for adaptive boosting

Learning procedure adjusts to training data to classify it better

Many variations on the same theme for actual implementation

Most common boosting algorithm around

Usually leads to better results than without boosting

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 28/69

AdaBoost algorithm

Check which events of training sample Tk are misclassified by Tk :
I(X) = 1 if X is true, 0 otherwise
for DT output in {±1}: isMisclassifiedk(i) = I

(
yi × Tk(xi) ≤ 0

)
or isMisclassifiedk(i) = I

(
yi × (Tk(xi)− 0.5) ≤ 0

)
in purity convention

misclassification rate:

R(Tk) = εk =

∑N
i=1 w

k
i × isMisclassifiedk(i)∑N

i=1 w
k
i

Derive tree weight αk = β × ln((1− εk)/εk)

Increase weight of misclassified events in Tk to create Tk+1:

wk
i → wk+1

i = wk
i × eαk

Train Tk+1 on Tk+1

Boosted result of event i :
T (i) =

1∑Ntree
k=1 αk

Ntree∑
k=1

αkTk(i)

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 29/69

AdaBoost by example

Assume β = 1

Not-so-good classifier

Assume error rate ε = 40%

Then α = ln 1−0.4
0.4 = 0.4

Misclassified events get their weight multiplied by e0.4=1.5

⇒ next tree will have to work a bit harder on these events

Good classifier

Error rate ε = 5%

Then α = ln 1−0.05
0.05 = 2.9

Misclassified events get their weight multiplied by e2.9=19 (!!)

⇒ being failed by a good classifier means a big penalty:

must be a difficult case
next tree will have to pay much more attention to this event and try to
get it right

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 30/69

AdaBoost error rate

Misclassification rate ε on training sample

Can be shown to be bound:
ε ≤

Ntree∏
k=1

2
√
εk(1− εk)

If each tree has εk 6= 0.5 (i.e. better than random guessing):

the error rate falls to zero for sufficiently large Ntree

Corollary: training data is over fitted

Overtraining?

Error rate on test sample may reach a minimum and then potentially
rise. Stop boosting at the minimum.

In principle AdaBoost must overfit training sample

In many cases in literature, no loss of performance due to overtraining

may have to do with fact that successive trees get in general smaller
and smaller weights
trees that lead to overtraining contribute very little to final DT output
on validation sample

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 31/69

Training and generalisation error

Clear overtraining, but still better performance after boosting

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 32/69

Cross section significance
(
s/
√
s + b

)

More relevant than testing error

Reaches plateau

Afterwards, boosting does not hurt (just wasted CPU)

Applicable to any other figure of merit of interest for your use case

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 33/69

Clues to boosting performance

First tree is best, others are minor corrections

Specialised trees do not perform well on most events ⇒ decreasing
tree weight and increasing misclassification rate

Last tree is not better evolution of first tree, but rather a pretty bad
DT that only does a good job on few cases that the other trees could
not get right

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 34/69

Concrete examples

1 Introduction

2 Growing a tree

3 Tree (in)stability

4 Boosting

5 BDT performance

6 Concrete examples

7 Other averaging techniques

8 BDTs in real physics cases

9 BDT systematics

10 Software

11 Conclusion

12 References

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 35/69

Concrete example

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 36/69

Concrete example

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 37/69

Concrete example

Specialised trees

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 38/69

Concrete example

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 39/69

Concrete example: XOR

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 40/69

Concrete example: XOR

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 40/69

Concrete example: XOR with 100 events

Small statistics

Single tree or Fischer
discriminant not so good

BDT very good: high
performance discriminant from
combination of weak classifiers

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 41/69

Circular correlation

Using TMVA and create circ macro from
$ROOTSYS/tmva/test/createData.C

($ROOTSYS/tutorials/tmva/createData.C in latest ROOT
versions) to generate dataset
Plots: TMVA::TMVAGui("filename")

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 42/69

Circular correlation

Boosting longer

Compare performance of Fisher discriminant, single DT and BDT
with more and more trees (5 to 400)

All other parameters at TMVA default (would be 400 trees)

Fisher bad (expected)

Single (small) DT: not
so good

More trees ⇒ improve
performance until
saturation

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 43/69

Circular correlation: decision contours

Fisher bad (expected)

Note: max tree depth = 3

Single (small) DT: not so
good. Note: a larger tree
would solve this problem

More trees ⇒ improve
performance (less step-like,
closer to optimal
separation) until saturation

Largest BDTs: wiggle a
little around the contour
⇒ picked up features of
training sample, that is,
overtraining

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 44/69

Circular correlation
Training/testing output

Better shape with more trees: quasi-continuous

Overtraining because of disagreement between training and testing?
Let’s see

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 45/69

Circular correlation
Performance in optimal significance

Best significance actually obtained with last BDT, 400 trees!

But to be fair, equivalent performance with 10 trees already

Less “stepped” output desirable? ⇒ maybe 50 is reasonable
Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 46/69

Circular correlation: control plots

Boosting weight decreases fast and stabilises

First trees have small error fractions, then increases towards 0.5
(random guess)

⇒ confirms that best trees are first ones, others are small corrections

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 47/69

Circular correlation

Separation criterion for node splitting

Compare performance of Gini, entropy, misclassification error, s√
s+b

All other parameters at TMVA default

Very similar performance (even
zooming on corner)

Small degradation (in this
particular case) for s√

s+b
: only

criterion that does not respect
good properties of impurity
measure (see earlier: maximal
for equal mix of signal and bkg,
symmetric in psig and pbkg ,
minimal for node with either
signal only or bkg only, strictly
concave)

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 48/69

Circular correlation

Performance in optimal significance

Confirms previous page: very similar performance, worse for BDT
optimised with significance!

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 49/69

Many small trees or fewer large trees?

Using same create circ macro but generating larger dataset to
avoid stats limitations

20 or 400 trees; minimum leaf size: 10 or 500 events

Maximum depth (max number of cuts to reach leaf): 3 or 20

Overall: very comparable performance. Depends on use case.

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 50/69

TMVA code example
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("../copy from macros/dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0;

double bkgWeight = 1.0;

factory->SetInputTrees(sig, bkg, sigWeight, bkgWeight);

factory->AddVariable("var0", ’F’);

factory->AddVariable("var1", ’F’);

TCut mycut = "";

factory->PrepareTrainingAndTestTree(mycut,"SplitMode=Random:NormMode=EqualNumEvents");

factory->BookMethod(TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:MinNodeSize=4%:

MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(TMVA::Types::kFisher, "Fisher", "H:!V:Fisher");

// Train MVAs using the set of training events

factory->TrainAllMethods();

// ---- Evaluate all MVAs using the set of test events

factory->TestAllMethods();

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

outputFile->Close();

delete factory;

TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 51/69

TMVA code example
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("../copy from macros/dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0;

double bkgWeight = 1.0;

factory->SetInputTrees(sig, bkg, sigWeight, bkgWeight);

factory->AddVariable("var0", ’F’);

factory->AddVariable("var1", ’F’);

TCut mycut = "";

factory->PrepareTrainingAndTestTree(mycut,"SplitMode=Random:NormMode=EqualNumEvents");

factory->BookMethod(TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:MinNodeSize=4%:

MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(TMVA::Types::kFisher, "Fisher", "H:!V:Fisher");

// Train MVAs using the set of training events

factory->TrainAllMethods();

// ---- Evaluate all MVAs using the set of test events

factory->TestAllMethods();

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

outputFile->Close();

delete factory;

TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 51/69

TMVA code example
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("../copy from macros/dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0;

double bkgWeight = 1.0;

factory->SetInputTrees(sig, bkg, sigWeight, bkgWeight);

factory->AddVariable("var0", ’F’);

factory->AddVariable("var1", ’F’);

TCut mycut = "";

factory->PrepareTrainingAndTestTree(mycut,"SplitMode=Random:NormMode=EqualNumEvents");

factory->BookMethod(TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:MinNodeSize=4%:

MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(TMVA::Types::kFisher, "Fisher", "H:!V:Fisher");

// Train MVAs using the set of training events

factory->TrainAllMethods();

// ---- Evaluate all MVAs using the set of test events

factory->TestAllMethods();

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

outputFile->Close();

delete factory;

TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 51/69

TMVA code example
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("../copy from macros/dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0;

double bkgWeight = 1.0;

factory->SetInputTrees(sig, bkg, sigWeight, bkgWeight);

factory->AddVariable("var0", ’F’);

factory->AddVariable("var1", ’F’);

TCut mycut = "";

factory->PrepareTrainingAndTestTree(mycut,"SplitMode=Random:NormMode=EqualNumEvents");

factory->BookMethod(TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:MinNodeSize=4%:

MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(TMVA::Types::kFisher, "Fisher", "H:!V:Fisher");

// Train MVAs using the set of training events

factory->TrainAllMethods();

// ---- Evaluate all MVAs using the set of test events

factory->TestAllMethods();

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

outputFile->Close();

delete factory;

TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 51/69

TMVA code example
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("../copy from macros/dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0;

double bkgWeight = 1.0;

factory->SetInputTrees(sig, bkg, sigWeight, bkgWeight);

factory->AddVariable("var0", ’F’);

factory->AddVariable("var1", ’F’);

TCut mycut = "";

factory->PrepareTrainingAndTestTree(mycut,"SplitMode=Random:NormMode=EqualNumEvents");

factory->BookMethod(TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:MinNodeSize=4%:

MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(TMVA::Types::kFisher, "Fisher", "H:!V:Fisher");

// Train MVAs using the set of training events

factory->TrainAllMethods();

// ---- Evaluate all MVAs using the set of test events

factory->TestAllMethods();

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

outputFile->Close();

delete factory;

TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 51/69

TMVA code example
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("../copy from macros/dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0;

double bkgWeight = 1.0;

factory->SetInputTrees(sig, bkg, sigWeight, bkgWeight);

factory->AddVariable("var0", ’F’);

factory->AddVariable("var1", ’F’);

TCut mycut = "";

factory->PrepareTrainingAndTestTree(mycut,"SplitMode=Random:NormMode=EqualNumEvents");

factory->BookMethod(TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:MinNodeSize=4%:

MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(TMVA::Types::kFisher, "Fisher", "H:!V:Fisher");

// Train MVAs using the set of training events

factory->TrainAllMethods();

// ---- Evaluate all MVAs using the set of test events

factory->TestAllMethods();

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

outputFile->Close();

delete factory;

TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 51/69

TMVA code example
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("../copy from macros/dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0;

double bkgWeight = 1.0;

factory->SetInputTrees(sig, bkg, sigWeight, bkgWeight);

factory->AddVariable("var0", ’F’);

factory->AddVariable("var1", ’F’);

TCut mycut = "";

factory->PrepareTrainingAndTestTree(mycut,"SplitMode=Random:NormMode=EqualNumEvents");

factory->BookMethod(TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:MinNodeSize=4%:

MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(TMVA::Types::kFisher, "Fisher", "H:!V:Fisher");

// Train MVAs using the set of training events

factory->TrainAllMethods();

// ---- Evaluate all MVAs using the set of test events

factory->TestAllMethods();

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

outputFile->Close();

delete factory;

TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 51/69

TMVA code example
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("../copy from macros/dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0;

double bkgWeight = 1.0;

factory->SetInputTrees(sig, bkg, sigWeight, bkgWeight);

factory->AddVariable("var0", ’F’);

factory->AddVariable("var1", ’F’);

TCut mycut = "";

factory->PrepareTrainingAndTestTree(mycut,"SplitMode=Random:NormMode=EqualNumEvents");

factory->BookMethod(TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:MinNodeSize=4%:

MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(TMVA::Types::kFisher, "Fisher", "H:!V:Fisher");

// Train MVAs using the set of training events

factory->TrainAllMethods();

// ---- Evaluate all MVAs using the set of test events

factory->TestAllMethods();

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

outputFile->Close();

delete factory;

TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 51/69

TMVA code example
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("../copy from macros/dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0;

double bkgWeight = 1.0;

factory->SetInputTrees(sig, bkg, sigWeight, bkgWeight);

factory->AddVariable("var0", ’F’);

factory->AddVariable("var1", ’F’);

TCut mycut = "";

factory->PrepareTrainingAndTestTree(mycut,"SplitMode=Random:NormMode=EqualNumEvents");

factory->BookMethod(TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:MinNodeSize=4%:

MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(TMVA::Types::kFisher, "Fisher", "H:!V:Fisher");

// Train MVAs using the set of training events

factory->TrainAllMethods();

// ---- Evaluate all MVAs using the set of test events

factory->TestAllMethods();

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

outputFile->Close();

delete factory;

TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 51/69

TMVA code example
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("../copy from macros/dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0;

double bkgWeight = 1.0;

factory->SetInputTrees(sig, bkg, sigWeight, bkgWeight);

factory->AddVariable("var0", ’F’);

factory->AddVariable("var1", ’F’);

TCut mycut = "";

factory->PrepareTrainingAndTestTree(mycut,"SplitMode=Random:NormMode=EqualNumEvents");

factory->BookMethod(TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:MinNodeSize=4%:

MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(TMVA::Types::kFisher, "Fisher", "H:!V:Fisher");

// Train MVAs using the set of training events

factory->TrainAllMethods();

// ---- Evaluate all MVAs using the set of test events

factory->TestAllMethods();

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

outputFile->Close();

delete factory;

TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 51/69

Other boosting algorithms

ε-Boost (shrinkage)

reweight misclassified events by a fixed e2ε factor

T (i) =
∑Ntree

k=1 εTk(i)

ε-LogitBoost

reweight misclassified events by logistic function e−yi Tk (xi)

1+e−yi Tk (xi)

T (i) =
∑Ntree

k=1 εTk(i)

Real AdaBoost

DT output is Tk(i) = 0.5× ln pk (i)
1−pk (i) where pk(i) is purity of leaf on

which event i falls

reweight events by e−yiTk (i)

T (i) =
∑Ntree

k=1 Tk(i)

ε-HingeBoost, LogitBoost, Gentle AdaBoost, GradientBoost, etc.

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 52/69

Other averaging techniques

Bagging (Bootstrap aggregating)

Before building tree Tk take random sample of N events from
training sample with replacement

Train Tk on it

Events not picked form “out of bag” validation sample

Random forests

Same as bagging

In addition, pick random subset of variables to consider for each node
split

Two levels of randomisation, much more stable output

Trimming

Not exactly the same. Used to speed up training

After some boosting, very few high weight events may contribute

⇒ ignore events with too small a weight

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 53/69

Other averaging techniques

Bagging (Bootstrap aggregating)

Before building tree Tk take random sample of N events from
training sample with replacement

Train Tk on it

Events not picked form “out of bag” validation sample

Random forests

Same as bagging

In addition, pick random subset of variables to consider for each node
split

Two levels of randomisation, much more stable output

Trimming

Not exactly the same. Used to speed up training

After some boosting, very few high weight events may contribute

⇒ ignore events with too small a weight

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 53/69

Other averaging techniques

Bagging (Bootstrap aggregating)

Before building tree Tk take random sample of N events from
training sample with replacement

Train Tk on it

Events not picked form “out of bag” validation sample

Random forests

Same as bagging

In addition, pick random subset of variables to consider for each node
split

Two levels of randomisation, much more stable output

Trimming

Not exactly the same. Used to speed up training

After some boosting, very few high weight events may contribute

⇒ ignore events with too small a weight

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 53/69

BDTs in real life

1 Introduction

2 Growing a tree

3 Tree (in)stability

4 Boosting

5 BDT performance

6 Concrete examples

7 Other averaging techniques

8 BDTs in real physics cases

9 BDT systematics

10 Software

11 Conclusion

12 References

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 54/69

Single top production evidence at D0 (2006)

Three multivariate techniques:
BDT, Matrix Elements, BNN

Most sensitive: BDT

σs+t = 4.9± 1.4 pb
p-value = 0.035% (3.4σ)

SM compatibility: 11% (1.3σ)

σs = 1.0± 0.9 pb
σt = 4.2+1.8

−1.4 pb

Phys. Rev. D78, 012005 (2008)

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 55/69

http://dx.doi.org/10.1103/PhysRevD.78.012005

Decision trees — 49 input variables

Object Kinematics Event Kinematics
pT (jet1) Aplanarity(alljets,W)
pT (jet2) M(W ,best1) (“best” top mass)
pT (jet3) M(W ,tag1) (“b-tagged” top mass)
pT (jet4) HT (alljets)
pT (best1) HT (alljets−best1)
pT (notbest1) HT (alljets−tag1)
pT (notbest2) HT (alljets,W)
pT (tag1) HT (jet1,jet2)
pT (untag1) HT (jet1,jet2,W)
pT (untag2) M(alljets)

M(alljets−best1)
Angular Correlations M(alljets−tag1)

∆R(jet1,jet2) M(jet1,jet2)
cos(best1,lepton)besttop M(jet1,jet2,W)
cos(best1,notbest1)besttop MT (jet1,jet2)
cos(tag1,alljets)alljets MT (W)
cos(tag1,lepton)btaggedtop Missing ET
cos(jet1,alljets)alljets pT (alljets−best1)
cos(jet1,lepton)btaggedtop pT (alljets−tag1)
cos(jet2,alljets)alljets pT (jet1,jet2)
cos(jet2,lepton)btaggedtop Q(lepton)×η(untag1)

cos(lepton,Q(lepton)×z)besttop

√
ŝ

cos(leptonbesttop,besttopCMframe) Sphericity(alljets,W)
cos(leptonbtaggedtop,btaggedtopCMframe)
cos(notbest,alljets)alljets
cos(notbest,lepton)besttop
cos(untag1,alljets)alljets
cos(untag1,lepton)btaggedtop

Adding variables
did not degrade
performance

Tested shorter
lists, lost some
sensitivity

Same list used for
all channels

Best theoretical
variable:
HT (alljets,W).
But detector not
perfect ⇒ capture
the essence from
several variations
usually helps
“dumb” MVA

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 56/69

Decision trees — 49 input variables

Object Kinematics Event Kinematics
pT (jet1) Aplanarity(alljets,W)
pT (jet2) M(W ,best1) (“best” top mass)
pT (jet3) M(W ,tag1) (“b-tagged” top mass)
pT (jet4) HT (alljets)
pT (best1) HT (alljets−best1)
pT (notbest1) HT (alljets−tag1)
pT (notbest2) HT (alljets,W)
pT (tag1) HT (jet1,jet2)
pT (untag1) HT (jet1,jet2,W)
pT (untag2) M(alljets)

M(alljets−best1)
Angular Correlations M(alljets−tag1)

∆R(jet1,jet2) M(jet1,jet2)
cos(best1,lepton)besttop M(jet1,jet2,W)
cos(best1,notbest1)besttop MT (jet1,jet2)
cos(tag1,alljets)alljets MT (W)
cos(tag1,lepton)btaggedtop Missing ET
cos(jet1,alljets)alljets pT (alljets−best1)
cos(jet1,lepton)btaggedtop pT (alljets−tag1)
cos(jet2,alljets)alljets pT (jet1,jet2)
cos(jet2,lepton)btaggedtop Q(lepton)×η(untag1)

cos(lepton,Q(lepton)×z)besttop

√
ŝ

cos(leptonbesttop,besttopCMframe) Sphericity(alljets,W)
cos(leptonbtaggedtop,btaggedtopCMframe)
cos(notbest,alljets)alljets
cos(notbest,lepton)besttop
cos(untag1,alljets)alljets
cos(untag1,lepton)btaggedtop

Adding variables
did not degrade
performance

Tested shorter
lists, lost some
sensitivity

Same list used for
all channels

Best theoretical
variable:
HT (alljets,W).
But detector not
perfect ⇒ capture
the essence from
several variations
usually helps
“dumb” MVA

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 56/69

Cross-check samples

Validate method on data in no-signal region

“W+jets”: = 2 jets,
HT (lepton,/ET ,alljets) <
175 GeV

“ttbar”: = 4 jets,
HT (lepton,/ET ,alljets) >
300 GeV

Good agreement

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 57/69

Boosted decision tree event characteristics

DT < 0.3 DT > 0.55 DT > 0.65

High BDT region = shows masses of real t and W ⇒ expected
Low BDT region = background-like ⇒ expected

Above does NOT tell analysis is ok, but not seeing this could be a sign of a
problem

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 58/69

Boosted decision tree event characteristics

DT < 0.3 DT > 0.55 DT > 0.65

High BDT region = shows masses of real t and W ⇒ expected
Low BDT region = background-like ⇒ expected
Above does NOT tell analysis is ok, but not seeing this could be a sign of a
problem

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 58/69

Comparison for D0 single top evidence

ayesian NN, ME

Cannot know a priori which method
will work best

⇒ Need to experiment with different
techniques

Power curve

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 59/69

BDT in HEP

ATLAS tau identification

Now used both
offline and online

Systematics:
propagate various
detector/theory
effects to BDT
output and
measure variation

ATLAS Wt production evidence

Phys.Lett. B716 (2012) 142-159

BDT output used in final fit to
measure cross section

Constraints on systematics from
profiling

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 60/69

http://dx.doi.org/10.1016/j.physletb.2012.08.011

BDT in HEP: ATLAS tt̄ → e/µ + τ+jets

Phys.Lett. B717 (2012) 89-108

BDT for tau ID: one to reject
electrons, one against jets

Fit BDT output to get tau
contribution in data

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 61/69

http://dx.doi.org/10.1016/j.physletb.2012.09.032

BDT in HEP: CMS H → γγ result

CMS-PAS-HIG-13-001

Hard to use more BDT in an analysis:

vertex selected with BDT

2nd vertex BDT to estimate probability to be within 1cm of
interaction point

photon ID with BDT

photon energy corrected with BDT regression

event-by-event energy uncertainty from another BDT

several BDT to extract signal in different categories

 (GeV)
γγ

Tp
0 50 100 150 200 250

| <
 1

0
m

m
tr

ue
fr

ac
tio

n
|z

 -
 z

0

0.2

0.4

0.6

0.8

1

<PU>=19.9
CMS Preliminary Simulation

 = 125 GeVHm
γγ→H

Photon ID MVA
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

E
ve

nt
s/

0.
02

0

200

400

600

800

1000

1200

 MCγµµ→Z
8TeV Data

 -1 = 8 TeV, L = 19.6 fbsCMS preliminary,

Barrel

 (GeV)γγm
110 120 130 140 150S

/(
S

+
B

)
W

ei
gh

te
d

E
ve

nt
s

/ 1
.5

 G
eV

0

1000

2000

3000

4000

5000
Data
S+B Fit
Bkg Fit Component

σ1 ±
σ2 ±

 (MVA)-1 = 8 TeV, L = 19.6 fbs

 (MVA)-1 = 7 TeV, L = 5.1 fbs

CMS Preliminary

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 62/69

http://cds.cern.ch/record/1530524

BDT in HEP: ATLAS b-tagging in Run 2

ATL-PHYS-PUB-2015-022

Run 1 MV1c: NN trained from output of other taggers

Run 2 MV2c20: BDT using feature variables of underlying algorithms
(impact parameter, secondary vertices) and pT, η of jets

Run 2: introduced IBL (new innermost pixel layer)
⇒ explains part of the performance gain, but not all

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 63/69

http://cdsweb.cern.ch/record/2037697

BDT and systematics

No particular rule
BDT output can be considered as any other cut variable (just more
powerful). Evaluate systematics by:

varying cut value
retraining
calibrating, etc.

Most common (and appropriate, I think): propagate other
uncertainties (detector, theory, etc.) up to BDT ouput and check how
much the analysis is affected

More and more common: profiling.
Watch out:

BDT output powerful
signal region (high BDT output) probably low statistics
⇒ potential recipe for disaster if modelling is not good

May require extra systematics, not so much on technique itself, but
because it probes specific corners of phase space and/or wider
parameter space (usually loosening pre-BDT selection cuts)

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 64/69

BDT and systematics

 

Events
BDTs ­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

E
v
e
n
ts

 /
 0

.0
8

20

40

60

80

100

120

140

160

180

200

220
Data 2012

=1.0)µVH(bb) (
Diboson
tt

Single top
Multijet
W+hf
Z+hf
Uncertainty
Pre­fit background

20×VH(bb)

ATLAS

­1

Ldt = 20.3 fb∫ = 8 TeV s

1 lep., 2 jets, 2 Tight tags

>120 GeVV

T
p

VH
Untransformed BDT

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

D
a
ta

/P
re

d

0

0.5

1

1.5

2

Nominal

Sys Up

Sys Down

S. Hageböck

Hope: seeing
systematics-affected events
during training may make the
BDT less sensitive to
systematic effects

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 65/69

BDT and systematics

  Use systematically shifted events in training

BDTs ­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

E
v
e
n
ts

 /
 0

.0
8

20

40

60

80

100

120

140

160

180

200

220
Data 2012

=1.0)µVH(bb) (
Diboson
tt

Single top
Multijet
W+hf
Z+hf
Uncertainty
Pre­fit background

20×VH(bb)

ATLAS

­1

Ldt = 20.3 fb∫ = 8 TeV s

1 lep., 2 jets, 2 Tight tags

>120 GeVV

T
p

VH
Untransformed BDT

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

D
a
ta

/P
re

d

0

0.5

1

1.5

2

Nominal

Sys Up

Sys Down

S. Hageböck

Hope: seeing
systematics-affected events
during training may make the
BDT less sensitive to
systematic effects

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 65/69

BDT and systematics

  Use systematically shifted events in training

BDTs ­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

E
v
e
n
ts

 /
 0

.0
8

20

40

60

80

100

120

140

160

180

200

220
Data 2012

=1.0)µVH(bb) (
Diboson
tt

Single top
Multijet
W+hf
Z+hf
Uncertainty
Pre­fit background

20×VH(bb)

ATLAS

­1

Ldt = 20.3 fb∫ = 8 TeV s

1 lep., 2 jets, 2 Tight tags

>120 GeVV

T
p

VH
Untransformed BDT

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

D
a
ta

/P
re

d

0

0.5

1

1.5

2

Nominal

Sys Up

Sys Down

S. Hageböck

Hope: seeing
systematics-affected events
during training may make the
BDT less sensitive to
systematic effects

addingJES

avgNomUpDo

medianNomUpDo

nominalTraining

onlyJES

S
ig
n
if
ic
a
n
c
e

3

3.5

4

4.5

5

5.5

Fit configuration

100Bins

40Bins

20Bins

TrafoF

TrafoD

Stat. only

Stat. + Syst.

default

Toy study

between nominal and smeared/shifted

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 65/69

(Boosted decision tree) software

Go for a fully integrated solution
use different multivariate techniques easily
spend your time on understanding your data and model

Examples:
Weka. Written in Java, open source, very good published manual. Not
written for HEP but very complete http://www.cs.waikato.ac.nz/ml/weka/

StatPatternRecognition http://statpatrec.sourceforge.net/

TMVA (Toolkit for MultiVariate Analysis)
Integrated in ROOT, complete manual http://tmva.sourceforge.net

scikit-learn (python) http://scikit-learn.org

pylearn2 (python) https://github.com/lisa-lab/pylearn2

Dedicated to BDT: XGBoost arXiv:1603.02754 https://github.com/dmlc/xgboost

Now also specifically for Deep Learning:
Theano (python) http://deeplearning.net/software/theano/

TensorFlow https://www.tensorflow.org/

Torch (lua) http://www.torch.ch/

. . . and generic training interfaces like Keras https://keras.io/

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 66/69

http://www.cs.waikato.ac.nz/ml/weka/
http://statpatrec.sourceforge.net/
http://tmva.sourceforge.net
http://scikit-learn.org
https://github.com/lisa-lab/pylearn2
http://arxiv.org/abs/1603.02754
https://github.com/dmlc/xgboost
http://deeplearning.net/software/theano/
https://www.tensorflow.org/
http://www.torch.ch/
https://keras.io/

Conclusion

Decision trees have been around for some time in social sciences

Natural extension to cut-based analysis

Greatly improved performance with boosting (and also with bagging,
random forests)

Has become rather fashionable in HEP

Even so, expect a lot of scepticism: you will have to convince people
that your advanced technique leads to meaningful and reliable results
⇒ ensemble tests, use several techniques, compare to random grid
search, show them useless plots like BDT output on training and
testing, etc.

As with other advanced techniques, no point in using them if data are
not understood and well modelled

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 67/69

References I

L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone, Classification and
Regression Trees, Wadsworth, Stamford, 1984

J.R. Quinlan, “Induction of decision trees”, Machine Learning, 1(1):81–106, 1986

J.R. Quinlan, “Simplifying decision trees”, International Journal of Man-Machine
Studies, 27(3):221–234, 1987

R.E. Schapire, “The strength of weak learnability”, Machine Learning,
5(2):197–227,1990

Y. Freund, “Boosting a weak learning algorithm by majority”, Information and
computation. 121(2):256–285, 1995

Y. Freund and R.E. Schapire, “Experiments with a New Boosting Algorithm” in
Machine Learning: Proceedings of the Thirteenth International Conference, edited
by L. Saitta (Morgan Kaufmann, San Fransisco, 1996) p. 148

Y. Freund and R.E. Schapire, “A short introduction to boosting” Journal of
Japanese Society for Artificial Intelligence, 14(5):771-780 (1999)

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 68/69

References II

Y. Freund and R.E. Schapire, “A decision-theoretic generalization of on-line
learning and an application to boosting”, Journal of Computer and System
Sciences, 55(1):119–139, 1997

J.H. Friedman, T. Hastie and R. Tibshirani, “Additive logistic regression: a
statistical view of boosting”, The Annals of Statistics, 28(2), 377–386, 2000

L. Breiman, “Bagging Predictors”, Machine Learning, 24 (2), 123–140, 1996

L. Breiman, “Random forests”, Machine Learning, 45 (1), 5–32, 2001

B.P. Roe, H.-J. Yang, J. Zhu, Y. Liu, I. Stancu, and G. McGregor, Nucl. Instrum.
Methods Phys. Res., Sect.A 543, 577 (2005); H.-J. Yang, B.P. Roe, and J. Zhu,
Nucl. Instrum.Methods Phys. Res., Sect. A 555, 370 (2005)

V. M. Abazov et al. [D0 Collaboration], “Evidence for production of single top
quarks,”, Phys. Rev. D78, 012005 (2008)

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’17, Archamps, 7 February 2017 69/69

