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Abstract9

The technology of CMOS pixel sensors, or MAPS, is offering a new optimiza-10

tion between pixel granularity, readout speed, power dissipation and material11

budget compared to technologies employed so far in high energy physics experi-12

ments. Consequently, new approaches are emerging to integrate such detectors.13

One of them consists in building double-sided detection layers which provide two14

real-2D points whereas standard single-sided layers provides only one.15

In this note, we explore the potential benefits of such double-sided layers for the16

specific problem of associating hits with tracks. Indeed, large experiments usu-17

ally dedicate separate sub-detectors for the tracking and the vertexing. In such18

a case, reconstructed tracks need to be matched with their corresponding hits in19

the, usually discrete, layers of the vertex detector. The efficiency of this matching20

step for a given layer depends on the hit density, the uncertainty on the track21

parameters at this layer -wich embeds the geometry and spatial resolution of the22

previous layers- and, of course, on the spatial accuracy of the layer itself.23
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1 Introduction24

An essential step of any tracking algorithm consists in associating hits together25

to form a track. In this note, we consider the specific case of the association26

of hits measured in a vertex detector, with tracks that have been already27

reconstructed by a tracker surrounding the vertex detector. This is the typical28

case of experiments like STAR, ALICE or ILD where tracking proceeds in two29

steps. Firstly, a time projection chamber (TPC) allows to individualize tracks.30

Then those tracks are extrapolated toward the primary collision vertex with the31

help of several inner layers. The extrapolation goes from one layer to the other,32

starting at the largest radius. The hit associated at each layer is used to update33

the track parameters. The track extrapolation accuracy toward the next layer34

increases with decreasing radius which helps to fight against the increasing hit35

density.36

37

For the purpose of optimizing the design of new detectors, it is extremely38

useful to predict the efficiency of the hit-track association for a given detector39

configuration. We define the matching efficiency at a given layer as the prob-40

ability to associate the track reconstructed for a particle trajectory to the hit41

generated by this same particle in the layer.42

One source of inefficiency is due to the detection efficiency ǫdet of the layer43

not being 100 %. If considering a double-sided layer the probability to get at44

least one measurement point is (1 − (1 − ǫdet)
2) to be compared to ǫdet for a45

single-sided layer. The gain obtained with the double-sided layer quantifies to46

ǫdet × (1 − ǫdet) which is about 2% and 5% for ǫdet = 98% and 95% respectively.47

We shall not discuss further this point.48

The other part of the inefficiency for matching a track with the corresponding hit49

stems from the presence on the layer of other hits than the one looked for. One50

easily understands that, if the hit is searched for in a given area, the probability51

depends on the hit density, the surface of the search area, the accuracy of the52

hit location and the criteria to select a hit. The exact expression for single-sided53

layers was derived analytically in [1] in the framework of the STAR Heavy Flavor54

Tracker design [2] study.55

56

This work generalizes the computation of the matching efficiency for a57

double-sided layer. Such a layer provides two independent measurements with a58

radii difference of about 2 mm [3]. This set of two points allows to estimate the59

direction of the propagating track and not only its position at the layer radius.60

It is expected that the additional constraint improves the matching efficiency.61

However, the number of so-called mini-vectors built from the combination of any62

of the hits present on the two sides of the layer increases like the square of the63

hit density. This fact tends to decrease the probability to match the correct hit.64

In other words, the single-sided case corresponds to a two dimensional problem65
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whereas the double-sided case is a problem in four dimensions. Our goal is to66

investigate in which domain of the parameter space the double-sided approach67

is beneficial or detrimental.68

69

The next section establishes the probability expression in the general case,70

then comparative results for the single-sided and double-sided layer cases are71

discussed in the last section.72

2 General formula for the matching efficiency73

2.1 Matching procedure74

Before deriving a formula for the efficiency, we shall describe the matching75

procedure. It is based on the χ2 approach as introduced in [1].76

We define the typical collider geometry where the z axis is parallel to the beam77

axis and the Rφ plane is perpendicular to it. We localize a point in the local78

planar geometry of a given layer at a radius r with the coordinates (x, z) where79

the x axis is perpendicular to the beam and the radius.80

81

A track, with a given direction is extrapolated inward on a layer at a known82

radius (r) with a pointing accuracy σext,Rφ(r) in the transverse plane and σext,z(r)83

along the beam axis. The layer itself features an intrinsic spatial resolution in84

both directions respectively σint,Rφ(r) and σint,z(r). The following χ2 provides a85

quantitative estimation of the matching quality between the track extrapolation86

crossing the layer at xt, zt and a hit located at position xp, zp on this layer:87

χ2(xp, zp) =
(xt − xp)

2

σ2
eff,Rφ

+
(zt − zp)

2

σ2
eff,z

. (1)

The standard deviations used in the previous equation are defined as the88

quadratic sum of the extrapolated and intrinsic spatial resolution in both89

directions: σ2
eff = σ2

ext + σ2
int. Usually σext ≫ σint, so we denote the overall σeff90

as an effective spatial resolution in the following. The hit with the lowest χ2 is91

chosen for the association.92

93

When matching simultaneously two layers at different radii r1 and r2, the94

χ2 properties authorize a simple sum of both χ2 corresponding to a couple of95

points ((x1,p, z1,p), (x2,p, z2,p)) associated with effective uncertainties for each layer,96

respectively ((σeff1,Rφ, σeff1,z), (σeff2,Rφ, σeff2,z)):97

χ2(x1,p, z1,p, x2,p, z2,p) =
(x1,t − x1,p)

2

σ2
eff1,Rφ

+
(z1,t − z1,p)

2

σ2
eff1,z

+
(x2,t − x2,p)

2

σ2
eff2,Rφ

+
(z2,t − z2,p)

2

σ2
eff2,z

.

(2)
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The mini-vector, which can be built out of the two points, does not appear98

explicitly in the previous equation. Indeed, no angle is computed that can be99

compared to the track parameters. However, equation 2 implicitly contains this100

comparison since the track projections in both layers ((x1,t, z1,t), (x2,t, z2,t)) and101

their uncertainties are taken into account simultaneously. This approach also102

copes naturally with non-straight tracks.103

104

We observe that the χ2 dimension, or number of parameters, increases from105

2 with a single-sided layer to 4 with a double-sided layer. Generalizing, trying106

to match n 2D measurements simultaneously would lead to a 2n dimensional107

problems. Mathematically the matrix formalism is best suited to deal with any108

number of dimensions. So we define the following 2n-vector and 2n× 2n-matrix:109

~X = [x1,t − x1,p, z1,t − z1,p, ..., xn,t − xn,p, zn,t − zn,p], (3)

Σ−1 =

















1
σ2

eff1,Rφ

0 ... 0 0

0 1
σ2

eff1,z

... 0 0

... ... ... ... ...
0 0 ... 1

σ2

effn,Rφ

0

0 0 ... 0 1
σ2

effn,z

















. (4)

The vector ~X contains the two coordinates of each 2D vector joining a hit and110

the track on a given side. The weight matrix Σ−1 is the usual inverse of the111

covariance matrix which allows to obtain the general χ2 expression:112

χ2( ~X) = ~XT Σ−1 ~X. (5)

The set of n hits related to the track is searched as the one with the minimal113

χ2 of all the sets of nhits located in a 2n-volume (noted V2n in the following)114

centered on the track extrapolation and extended in each dimension by ±f ×σeff115

where f is usually above 3. Indeed, lower values of f would limit the matching116

efficiency due to an insufficient search area.117

2.2 Computing the matching efficiency118

Computing the matching efficiency is equivalent to the estimation of the proba-119

bility Pn,match that the real set of n hits generated by the particle is present in120

the searched 2n-volume V2n and has the minimal χ2 of all the sets of n hits in121

this volume. The latter writes as an 2n-dimensional integral over the volume V2n122

Pn,match =

∫

V2n

Pnh( ~X) × dPh( ~X)

d ~X
d2n ~X, (6)

where123
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• dPh( ~X)

d ~X
d2n ~X is the probability that the true set of hits generated by the124

particle is located in an elementary volume d ~X around the position ~X,125

• Pnh( ~X) is the probability that no other set of n hits has a χ2 lower than126

the true hit.127

The probability density that the correct set of n hits lies at the position ~X is128

simply a 2n-dimensional normal distribution:129

dPh( ~X)

d ~X
=

1

(2π)n/2
√

detΣ
exp[ − 1

2
~XT Σ−1 ~X] (7)

130

131

The probability Pnh( ~X) that no other set of n hits has a lower χ2 than a fixed132

limit is given by the value of the Poisson distribution evaluated at 0, exp(−νh( ~X)),133

where the expected number of hit sets νh( ~X) corresponds to the average number134

of n-tuplets of hits with a χ2 lower than the limit defined by χ2( ~X).135

In order to estimate this average number νh( ~X) we would need to know the136

distribution of the hits on the different measurement layers and their correlation.137

To simplify our computation we assume those hit distributions to be uncorrelated,138

uniform in 2D and equal to ρ1. The no-correlation hypothesis is not realistic139

because hits are generated by tracks. However it certainly represents a worst140

case and leads to uniform density ρn in the 2n-dimensional space generated by141

the n measurements.142

Because of this uniformity, the average number of hits, νh( ~X) is the density of hits143

in 2nD multiplied by the 2n-volume E2n( ~X) defining all the points ~Xp verifying144

the inequality:145

χ2( ~Xp) < χ2( ~X), (8)

~Xp

T
Σ−1 ~Xp < ~XT Σ−1 ~X, (9)

~Xp

T Σ−1

~XT Σ−1 ~X
~Xp < 1. (10)

The latter form defines an ellipsoid in 2n dimensions which volume E2n( ~X) is146

given by:147

E2n( ~X) =
πn

Γ(1 + n)

√

det
Σ−1

~XT Σ−1 ~X
, (11)

E2n( ~X) =
πn

Γ(1 + n)
( ~XT Σ−1 ~X)n

√
detΣ. (12)

1Here, we assume that the hit density does not change from one side of the layer to the
other side because the layer thickness is small enough (one or two millimeters).
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So we get148

νh( ~X) = ρn × E2n( ~X), (13)

and finally149

Pnh( ~X) = exp
[

− ρn πn

Γ(1 + n)
( ~XT Σ−1 ~X)n

√
detΣ

]

. (14)

We can find the general expression of the matching efficiency or probability150

Pn,match in the following integral form:151

Pn,match =
1

(2π)n
√

detΣ
×

∫

2nD−area

d ~X

exp
[

− ρn πn

Γ(1 + n)
( ~XT Σ−1 ~X)n

√
detΣ − 1

2
~XTΣ−1 ~X

]

. (15)

2.3 Expression for a single-sided layer152

For a single-sided layer, we have a 2 dimensional problem, n = 1 for which153

Γ(1+n) = 1,
√

detΣ = σeffRφσeffz and the search volume V2n is simply a rectangle154

of size 2fσeffRφ × 2fσeffz. Thus, the formula 15 can be computed as:155

P1,match =

∫ fσeffRφ

−fσeffRφ

dx

∫ fσeffz

−fσeffz

dz
1

2πσeffRφσeffz
×

exp
[

− ρπσeffRφσeffz
~XT Σ−1 ~X − 1

2
~XT Σ−1 ~X

]

, (16)

P1,match =

∫ fσeffRφ

−fσeffRφ

exp
[

− (2ρπσeffRφσeffz + 1)
x2

2σ2
Rφ

]

dx

×
∫ fσeffz

−fσeffz

exp
[

− (2ρπσeffRφσeffz + 1)
z2

2σ2
z

]

dz, (17)

P1,match =
erf2(f

√

1+2πσeffRφσeffzρ

2
)

1 + 2πσeffRφσeffzρ
. (18)

These results were already obtained in [1]. If the search area is sufficiently large,156

f ≫ 3, the error function can be approximated by 1 and we get the infinite search157

area efficiency:158

P1,match =
1

1 + 2πσeffRφσeffzρ
. (19)

This equation clearly demonstrates that, in the single-sided case, the figure of159

merit for the matching efficiency is the product σeffRφσeffzρ where each term, the160

two effective resolutions and the density, contribute equally to the power of 1.161

We also infer from equation 19 that lines with constant probability P1,match are162

hyperbolae in the planes (σeffRφ, σeffz) or (σ, ρ).163
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2.4 Expression for a double-sided layer164

For a double-sided layer, we have a 4 dimensional problem, n = 2 for which165

Γ(1 + n) = 2,
√

detΣ = σeff1,Rφσeff1,z × σeff2,Rφσeff2,z and the search volume V2n is166

a 4D rectangle. Thus, the formula 15 can be computed as:167

P2,match =
1

(2π)2σeff1,Rφσeff1,zσeff2,Rφσeff2,z

∫ fx1

−fx1

∫ fz1

−fz1

∫ fx2

−fx2

∫ fz2

−fz2

dx1 dz1 dx2 dz2

exp
[

− π2

2
( ~XTΣ−1 ~X)2 ρ2 σeff1,Rφσeff1,zσeff2,Rφσeff2,z −

1

2
~XT Σ−1 ~X

]

. (20)

Contrary to the 2D case (single measurement), a second order term168

( ~XT Σ−1 ~X)2 appears which prevents the easy breakdown of the 4D integral into169

a product of four 1D integrals. Thus, we relied on a numerical computation170

(Monte-Carlo integration) in this case. Similarly we observe that the density ρ171

appears at the power of 2 in the formula.172

3 Results173

In this section, we present computation results in order to compare the two174

layer types: single-sided and double-sided. We remind the reader that we have175

assumed the hit distribution to be uncorrelated on both sides of the double-sided176

layer case. Our results shall then be taken as the worst matching efficiency for177

the latter.178

As depicted in the introduction, the two sides of the double layer case are179

spaced only by a millimeter or two, so that we can approximate that the180

extrapolation of the track has the same accuracy on both sides. We also consider181

that the measurements on the two sides have the same uncertainty so that182

σeff1,Rφ ≈ σeff2,Rφ = σeffRφ and σeff1,z ≈ σeff2,z = σeffz. Consequently, for both183

cases, single-sided or double-sided, there are only three parameters on which the184

matching efficiency depends: the hit density ρ and the two resolutions σeffRφ and185

σeffz. In order to represent graphically the 3D function Pn,match(ρ, σeffRφ, σeffz) we186

will use 1D and 2D plots with respectively two or one parameters fixed and 3D187

surfaces of fixed probability.188

189

For a first glimpse of the behavior of the matching efficiency we start with190

plotting in figure 1 the efficiency only with respect to the resolution σeffz for a191

fixed hit density ρ and resolution σeffRφ. While the superiority of the double-sided192

approach is clearly observable in most of the represented conditions, a limit in hit193

density and effective resolution seems to appear, beyond which, the single-sided194

layer offers a better matching efficiency.195

196
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Figure 1: The matching efficiencies with respect to the effective resolution in z
for a hit density varying from 50 to 300 particles/cm2 and an effective resolution
in Rφ varying from of 50 to 100 µm; in red solid for the double-sided layer case
and in blue dashed line for the single-sided layer case.
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To gain a better insight on this limit, the efficiency difference is computed197

with respect to the effective resolutions in the two directions (Rφ and z) for198

two fixed hit densities 90 and 300 particles/cm2, see respectively figures 2 and 3199

where both resolutions are varied from 50 to 500 µm. Our choice of these ranges200

of parameters, is driven by the ALICE case [4]. The expected hyperbolic shape201

for constant matching efficiency lines is observed for the single-sided layer. The202

matching efficiency for the double-sided case exhibits a similar behavior but with203

a different curvature due to the higher order terms present in formula 20.204

Thus the area for the double-sided layer, where the matching efficiency stays205

above2 90 %, extends to worst effective resolutions by 100 µm or in some places206

by 200 µm. Although the absolute gain in matching efficiency never exceeds207

about 5 % in favour of the double-sided geometry, the extension of the 90 %208

efficiency domain by O(100 µm) is particularly relavant for the overall tracking209

performance.210

Beyond some limits, the single-sided layer reaches better matching efficiency211

(with absolute difference exceeding 15 %) but this domain corresponds to rather212

marginal matching efficiency values, below 60 %. On the other hand, whenever213

the effective resolutions are excellent, below 80 µm for 90 particles/cm2 or 50 µm214

for 300 particles/cm2, in both directions (Rφ and z), the two geometries display215

no difference in efficiency.216

We explore further the impact of the hit density by fixing the ratio between217

the two effective resolutions σeffz/σeffRφ to 1 or 3 and plotting the matching218

efficiency versus the hit density ρ and resolution σeffRφ in figures 4 and 5. All219

our previous observations hold with these new curves.220

When the conditions correspond to low hit densities combined with excellent221

effective resolution, the two geometries provide similar results. Performances of222

the two geometries depart whenever either the effective resolution or the density223

gets worse. The double-sided layer extents the domain where the matching224

efficiency stays above a given threshold. This is illustrated in the table 1 which225

lists the maximum densities allowed to reach significant matching efficiency226

thresholds with fixed effective pointing resolution conditions. We note again227

that the single-sided layer exhibits a better efficiency only when the absolute228

efficiency is quite low.229

230

A final comparison between the two layer architectures is made through the231

display of the surface, in the 3D space (ρ, σeffRφ, σeffz), corresponding to a fixed232

matching probablity, see figure 6. Any point below the surface corresponds to an233

efficiency above the limit. The plot clearly demonstrates how much the double-234

sided layer extends the satisfactory operation domain.235

2This is of course an arbitrary threshold, nevertheless considering lower matching efficiency
seems of little interest.
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Efficiency
Effective resolution (µm) Maximum hit density (cm−2)
Rφ z Single Double

90%
50 50 705 1265
50 150 235 425

95%
50 50 335 860
50 150 110 285

98%
50 50 130 530
50 150 45 175

99%
50 50 65 370
50 150 20 125

Table 1: Comparison of maximum hit densities (provided with a ±5 cm−2 un-
certainty) to reach the 90, 95, 98 and 99 % matching efficiency levels with some
fixed effective pointing resolutions in both directions for the single-sided layer
and the double-sided layer.

4 Conclusion236

In this note, we have followed an approach proposed in [1] to derive a general237

formula for the efficiency to match a track extrapolated to a detection layer with238

its corresponding hit. We have specifically explored the case of a double-sided239

layer which provides two equivalent measurements points separated only by one240

or two millimeters. We have computed the efficiency when the two measure-241

ments are considered simultaneously to better constrain the matching, under242

the assumption that the distribution of the hits on both layers are uncorrelated.243

This hypothesis certainly decreases the efficiency and hence our computation has244

to be considered as a worst case for the double-sided layer case. A future work245

based on a Monte-Carlo simulation will evaluate the impact of our assumption.246

Within this approach the matching is done with the hit presenting the best χ2,247

computed from the quadratic sum of ratios of the hit to track distance in some248

direction over a resolution which combines the layer spatial accuracy and the249

tracking extrapolation uncertainty on that layer. We found that the matching250

efficiency depends on an equal footing on three prominent parameters: the hit251

density on the layer and the two resolutions in the detection plane. From 2D252

graphical representations of the matching efficiency we separated the parameter253

space in three domains.254

255

When all parameters are favorable, i.e. low hit density and excellent spatial256

accuracy, the double-sided layer and single-sided layer present equivalently good257

efficiency close to 100 %. When at least two parameters are disadvantageous258

for the matching, the efficiency for both geometries drops severly down, though259

the single-sided layer matches the correct hit more often. This last observa-260
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tion partly stems from our simplifying hypothesis that the hit distributions261

are independent for the two measurements of the double-sided case. In the262

intermediate situation where only one of the three parameters makes the match-263

ing difficult, the double-sided layer always exhibits better results for the efficiency.264

265

The study shows that the double-sided layer allows to maintain good266

matching-efficiency (above 90 %), in comparison to the single-layer approach,267

in cases where either the hit density or the track pointing uncertainty in one of268

the two directions is getting large. In other cases, when both parameters are269

degraded, two solutions can be employed. The first one consists in decreasing270

the integration time of the layer to lower the hit density; it is the traditional271

way. Our computation clearly demonstrates that there is another way, as effi-272

cient, consisting in improving the spatial resolution of the outer layers in order273

to decrease the track extrapolation uncertainty on the present layer.274
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Figure 2: Top left plot shows the matching efficiency for a single-sided layer
as a function of the effective resolutions in Rφ and z for a fixed hit density of
90 particles/cm2. Top right plot shows the same quantity but for a double-sided
layer. Bottom plot shows the difference between the efficiencies for the double-
sided and single-sided layers.
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Figure 3: Top left plot shows the matching efficiency for a single-sided layer
as a function of the effective resolutions in Rφ and z for a fixed hit density of
300 particles/cm2. Top right plot shows the same quantity but for a double-
sided layer. Bottom plot shows the difference between the efficiencies for the
double-sided and single-sided layers.
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Figure 4: Top left plot shows the matching efficiency for a single-sided layer as
a function of the hit density and the effective resolution in Rφ for a fixed ratio
σeffZ/σeffrφ = 1. Top right plot shows the same quantity but for a double-sided
layer. Bottom plot shows the difference between the efficiencies for the double-
sided and single-sided layers.
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Figure 5: Top left plot shows the matching efficiency for a single-sided layer as
a function of the hit density and the effective resolution in Rφ for a fixed ratio
σeffZ/σeffrφ = 3. Top right plot shows the same quantity but for a double-sided
layer. Bottom plot shows the difference between the efficiencies for the double-
sided and single-sided layers.
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Figure 6: Surface of constant matching efficiency, here 99.95 %, for a single-sided
layer on the left and for a double-sided layer on the right as a function of the
effective resolutions in Rφ and in z, and the hit density.
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