

Density effect parameters

El.	Z	Z/A	I eV	ρ	$h u_p$ eV	S_0	S_1	a	md	δ_0
He	2	0.500	41.8	$1.66 \\ 10^{-4}$	0.26	2.202	3.612	0.134	5.835	0.00
Li	3	0.432	40.0	0.53	13.84	0.130	1.640	0.951	2.500	0.14
0	8	0.500	95.0	$1.33 \\ 10^{-3}$	0.74	1.754	4.321	0.118	3.291	0.00
Ne	10	0.496	137.0	$8.36 \\ 10^{-4}$	0.59	2.074	4.642	0.081	3.577	0.00
Al	13	0.482	166.0	2.70	32.86	0.171	3.013	0.080	3.635	0.12
Si	14	0.498	173.0	2.33	31.06	0.201	2.872	0.149	3.255	0.14
Ar	18	0.451	188.0	$1.66 \\ 10^{-3}$	0.79	1.764	4.486	0.197	2.962	0.00
Fe	26	0.466	286.0	7.87	55.17	-0.001	3.153	0.147	2.963	0.12
Cu	29	0.456	322.0	8.96	58.27	-0.025	3.279	0.143	2.904	0.08
Ge	32	0.441	350.0	5.32	44.14	0.338	3.610	0.072	3.331	0.14
Kr	36	0.430	352.0	$3.48 \\ 10^{-3}$	1.11	1.716	5.075	0.074	3.405	0.00
Ag	47	0.436	470.0	10.50	61.64	0.066	3.107	0.246	2.690	0.14
Xe	54	0.411	482.0	$5.49 \\ 10^{-3}$	1.37	1.563	4.737	0.233	2.741	0.0
Ta	73	0.403	718.0	16.65	74.69	0.212	3.481	0.178	2.762	0.14
W	74	0.403	727.0	19.30	80.32	0.217	3.496	0.155	2.845	0.14
Au	79	0.401	790.0	19.32	80.22	0.202	3.698	0.098	3.110	0.14
Pb	82	0.396	823.0	11.35	61.07	0.378	3.807	0.094	3.161	0.14
TT	02	0.387	890.0	18 95	77 99	0.226	3 372	0.197	2 817	0.1/

Data are from [Sternheimer, Berger and Seltzer (1984)]

m 11 0 1

** *

-dE/dx Fluctuations → Energy straggling

ΔE distribution

Stopping power of e[±] by ionization and excitation in matter

For **e[±]** the **Bethe-Bloch formula** must be **modified** since:

- 1) the change in direction of the particle was neglected; for e^{\pm} this approximation is not valid (scattering on particle with same mass)
- 2) Pauli Principle : the incoming and outgoing particles are the identical particles

$$\frac{dE}{dx} = 2 \pi N_A r_e^2 m_e c^2 \rho \frac{Z}{A} \frac{z^2}{\beta^2} \left[\ln \frac{\tau^2 (\tau + 2)}{(l^2 / m_e c^2)^2} + F(\tau) - \delta - 2 \frac{C}{Z} \right]$$

lectrons: $F(\tau) = 1 - \beta^2 + \frac{(\tau^2/8) - (2 \tau + 1) \ln 2}{(\tau + 1)^2} \qquad \tau = \frac{1}{\sqrt{1 - \beta^2}} - 1 = E_k / (mc^2)$

For positrons :

For e

 $F(\tau) = 2 \ln 2 - \frac{\beta^2}{12} \left(23 + \frac{14}{\tau+2} + \frac{10}{(\tau+2)^2} + \frac{4}{(\tau+2)^2} \right)$ e[±] loose more energy wrt heavier particles since they interact with particles of the

same mass

- When a positron comes to a rest it annihilates : $e^+ + e^- \rightarrow \gamma \gamma$ of 511 keV each
- A positron may also undergo $\int_{0}^{0} \sigma(Z, E) = \frac{Z\pi r_{e}^{2}}{\gamma+1} \left[\frac{\gamma^{2}+4\gamma+1}{\gamma^{2}-1} \ln(\gamma+\sqrt{\gamma^{2}-1}) - \frac{\gamma+3}{\sqrt{\gamma^{2}-1}} \right]$ an annihilation in flight: with a cross section : Lucia Di Ciaccio - ESIPAP IPM - February 2017

Heidelberg Ion-Beam Therapy Center (HIT)

~ 50 centers around the world

Lucia Di Ciaccio - ESIPAP IPM - February 2017

34

2. Bremsstrahlung, Mean radiative energy loss.

Momentum resolution

Multiple scattering effects impact the measurement of the momentum

$$Mv^{2}/R = q | \overrightarrow{v} \wedge \overrightarrow{B} | \qquad p_{t} = q B R$$

The momentum is measured from R, which is obtained from L and s

The precision on the momentum will depend on the precision on the track reconstruction and also on the multiple scattering that the particle undergoes

49

Lucia Di Ciaccio - ESIPAP IPM - February 2017

Cherenkov light emission

Cerenkov light emission

 $\frac{dN}{d\lambda}$ strongly peaked at short λ

n = refracting index

53

55

• Number of photons N emitted per unit path length and unit of wave length

$$\frac{dN}{dx d\lambda} = 2\pi \alpha \frac{1}{\lambda^2} \left(1 - \frac{1}{\beta^2 n^2(\lambda)}\right)^{z^2}$$

• Number of photons per unit path length is:

$$\frac{dN}{dx} = 2\pi \alpha z \int_{\beta n>1} \left(1 - \frac{1}{\beta^2 n^2}\right) \frac{d\lambda}{\lambda^2}$$

Assuming *n* ~ *const* over the wavelength region detected

$$\frac{dN}{dx} = 2\pi \alpha \sin^2 \theta \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2}\right) z^2$$

in λ range 350-500 nm (photomultiplier sensitivity range),

$$\frac{dN}{dx} = 390 \sin^2 \theta$$
 photons/cm

dE/dx due to Cherenkov radiation is small compared to ionization loss (< 1%) and much weaker than scintillating output. It can be neglected in energy loss of a particle, but is Important for particle detection

Lucia Di Ciaccio - ESIPAP IPM - February 2017

 When a particle crosses a boundary between media of different dielectric properties radiation mostly in the X- ray domain is emitted

- The radiation is emitted in a cone at an angle $\cos \theta = 1/\gamma$
- The probability of radiation per transition surface is low ~ $1/2 \alpha$ (fine structure constant)

54

Hadron collisions and interaction lengths

See M. Delmastro

The total cross section for very high energy hadrons is expressed as:

$\sigma_{T} = \sigma_{elastic} + \sigma_{inelastic}$

The inelastic part of the total cross-section is susceptible to induce a hadron shower (increase of particles multiplicity) ABSORBER

Two mean lengths are introduced

"nuclear collision length"

$$\lambda_T = \frac{A}{N_A \sigma_T} \mathrm{g} \mathrm{cm}^{-2}$$

E.M.

73

interaction length

$$\lambda_I = \frac{A}{N_A \sigma_{inelastic}} \text{g cm}^{-2}$$

95% containment of a hadronic shower is for a thickness of :

L 95% (in units of λ_i) ~ 1+1.35 ln (E(GeV))

 \rightarrow ~ 10 interaction lengths are needed to contain a 1 TeV hadronic shower

In high A materials $\lambda_i > X_n$ This explains why hadron calorimeters are deeper then electromagnetic

Lucia Di Ciaccio - ESIPAP IPM - February 2017

Nucl.coll. Nucl.inter. Rad.len. $dE/dx|_{min}$ Density Material $\langle Z/A \rangle$ Melting Boiling Refract ZA length λ_T length λ_I X_0 $\{ MeV \ \{g cm^{-3} \} \}$ point point index(@ Na D) $\{g cm^{-2}\} \{g cm^{-2}\} \{g cm^{-2}\} g^{-1}cm^2\} (\{g\ell^{-1}\})$ (K) (K) Air (dry, 1 atm) Shielding concre 0.49919 61.3 36.62 (1.815) 1.711 (1.205)78.80 90.1 0.5027465.197.5 26.572.300 Borosilicate glass (Pyrex) 0.49707 64.6 95.9 66.8 06.5 28.171.696 2.2300.42101 Lead glass Standard rock 158.0 $1.255 \\ 1.688$ 6.2207.8726.54 101.3 0.50000 2.650Methane (CH₄) 0.62334 54.0 73.8 46.47 (2.417)(0.667)90.68 111.7[444.] Ethane (C_2H_6) Butane (C_4H_{10}) 55.0 0.59861 75.9 45.66 (2 304) (1.263) 90.36 184.5 75.9 77.1 77.8 78.3 0.59497 55.5 45.23 (2.278)(2.489)134.9 272.6Octane (C_8H_{18}) Paraffin $(CH_3(CH_2)_{n\approx 23}CH_3)$ 55.8 56.0 45.00 44.85 0.577782.123 0 703 214.4 398.8 0.572752.0880.930 Nylon (type 6, 6/6) 0.54790 57.5 81.6 83.6 41.92 1.973 1.18 Polycarbonate (Lexan 0.5269758.3 $41.50 \\ 44.77$ 1.886 1.20 Polychrobate (Lexan) Polychylene ([CH₂CH₂]_n) Polychylene terephthalate (Mylar) Polymethylmethacrylate (acrylic) 56.1 58.9 0.57034 78.5 2.079 0.89 0.52037 84.9 39.95 1.848 1.40 58.9 58.1 56.1 57.5 82.8 78.5 0.53937 40.55 1.19 1.49 1.929 Polypropylene Polystyrene ([C₆H₅CHCH₂]_n) 0.55998 44.77 2 041 0.90 0.53768 81.7 43.79 1.06 1.936 1.59Polytetrafluoroethylene (Teflon) Polyvinyltoluene 63.5 57.3 94.4 81.3 0.47992 34.84 1.671 $2.20 \\ 1.03$ 0.54141 43.90 1.9561.58Aluminum oxide (sapphire) 65.5 27.940.49038 98.4 1 647 3 970 2327 3273 1 77 Barium flouride (BaF₂) 0.42207 90.8 149.0 9.91 1.303 4.893 1641. 2533. 1.47 Carbon dioxide gas (CO_2) Solid carbon dioxide (dry ice) 60.7 60.7 36.20 36.20 0.4998988.9 1.819 (1.842)[449.] Sublime 0.49989 88.9 1.7871.563 at 194.7 K Cesium iodide (CsI) 0.41569 100.6 171.5 8.39 1.243 4.510 1553. 1.79 894.2 Lithium fluoride (LiF) 0.46262 61.0 $\frac{88.7}{68.1}$ 39.26 1.614 2.6351121. 965. 1946. 1.39 Lithium huoride (LiF) Lithium hydride (LiH) Lead tungstate (PbWO₄) Silicon dioxide (SiO₂, fused quartz) 0.50321 50.8 79.62 1.897 0.820 0.41315 100.6 168.3 7.39 1 229 8 300 1403 2.20 0.49930 97.8 27.05 2.200 65.21.699 1986 3223. 1.46Sodium chloride (NaCl) 0.55509 71.2110.121.911.847 2.1701075 1738. 1577. 1.54Sodium iodide (NaI) 0.42697 154.6 93.1 9.49 1.3053.667933.21.77Water (H₂O) 0.55509 58.5 83.3 36.08 1.992 1.000(0.756)1.33 273.1373.1 65.0 Silica aerogel 0.50093 97.3 27.25(0.03 H₂O, 0.97 SiO₂) 1.740 0.200

6. ATOMIC AND NUCLEAR PROPERTIES OF MATERIALS

Table 6.1. Abridged from pdg.lbl.gov/AtomicNuclearProperties by D. E. Groom (2007). Quantities in parentheses are for NTP (20° C and 1 atm), and square brackets indicate quantities evaluated at STP. Boiling points are at 1 atm. Refractive indices n are evaluated at the sodium D line blend (589.2 nm); values $\gg 1$ in brackets are for $(n-1) \times 10^6$ (gases).

Material	Z	A	$\langle Z/A \rangle$	Nucl.coll.	Nucl.inter.	Rad.len.	$dE/dx _{\rm mi}$	in Density	Melting	Boiling	Refract.
				length λ_T	length λ_I	X_0	{ MeV	$\{g \ cm^{-3}\}$	point	point	index
				$\{g \ cm^{-2}\}$	$\{g \text{ cm}^{-2}\}$	$g \text{ cm}^{-2}$	$g^{-1}cm^2$	$\{ (\{g\ell^{-1}\}) \}$	(K)	(K)	(@ Na D)
H_2	1	1.00794(7)	0.99212	42.8	52.0	63.04	(4.103)	0.071(0.084)	13.81	20.28	1.11[132.]
D_2	1	2.01410177803(8)	0.49650	51.3	71.8	125.97	(2.053)	0.169(0.168)	18.7	23.65	1.11[138.]
He	2	4.002602(2)	0.49967	51.8	71.0	94.32	(1.937)	0.125(0.166)		4.220	1.02[35.0]
Li	3	6.941(2)	0.43221	52.2	71.3	82.78	1.639	0.534	453.6	1615.	
Be	4	9.012182(3)	0.44384	55.3	77.8	65.19	1.595	1.848	1560.	2744.	
C diamond	6	12.0107(8)	0.49955	59.2	85.8	42.70	1.725	3.520			2.42
C graphite	6	12.0107(8)	0.49955	59.2	85.8	42.70	1.742	2.210			
N_2	7	14.0067(2)	0.49976	61.1	89.7	37.99	(1.825)	0.807(1.165)	63.15	77.29	1.20[298.]
O_2	8	15.9994(3)	0.50002	61.3	90.2	34.24	(1.801)	1.141(1.332)	54.36	90.20	1.22[271.]
F ₂	9	18.9984032(5)	0.47372	65.0	97.4	32.93	(1.676)	1.507(1.580)	53.53	85.03	[195.]
Ne	10	20.1797(6)	0.49555	65.7	99.0	28.93	(1.724)	1.204(0.839)	24.56	27.07	1.09[67.1]
Al	13	26.9815386(8)	0.48181	69.7	107.2	24.01	1.615	2.699	933.5	2792.	
Si	14	28.0855(3)	0.49848	70.2	108.4	21.82	1.664	2.329	1687.	3538.	3.95
Cl ₂	17	35.453(2)	0.47951	73.8	115.7	19.28	(1.630)	1.574(2.980)	171.6	239.1	[773.]
Ar	18	39.948(1)	0.45059	75.7	119.7	19.55	(1.519)	1.396(1.662)	83.81	87.26	1.23[281.]
Ti	22	47.867(1)	0.45961	78.8	126.2	16.16	1.477	4.540	1941.	3560.	
Fe	26	55.845(2)	0.46557	81.7	132.1	13.84	1.451	7.874	1811.	3134.	
Cu	29	63.546(3)	0.45636	84.2	137.3	12.86	1.403	8.960	1358.	2835.	
Ge	32	72.64(1)	0.44053	86.9	143.0	12.25	1.370	5.323	1211.	3106.	
Sn	50	118.710(7)	0.42119	98.2	166.7	8.82	1.263	7.310	505.1	2875.	
Xe	54	131.293(6)	0.41129	100.8	172.1	8.48	(1.255)	2.953(5.483)	161.4	165.1	1.39[701.]
W	74	183.84(1)	0.40252	110.4	191.9	6.76	1.145	19.300	3695.	5828.	
Pt	78	195.084(9)	0.39983	112.2	195.7	6.54	1.128	21.450	2042.	4098.	
Au	79	196.966569(4)	0.40108	112.5	196.3	6.46	1.134	19.320	1337.	3129.	
Pb	82	207.2(1)	0.39575	114.1	199.6	6.37	1.122	11.350	600.6	2022.	
U	92	[238.02891(3)]	0.38651	118.6	209.0	6.00	1.081	18.950	1408.	4404.	

Lucia Di Ciaccio - ESIPAP IPM - February 2017

74

Neutron interactions

Electric charge of the neutron \mathbf{n} : $\mathbf{q}_n = \mathbf{0}$

 \implies The n interacts via « strong interaction » with nuclei (short range force ~ 10⁻¹³ cm)

Classification of neutrons:

Cold or ultracold neutrons	E _n < 0.025 eV
Thermal or slow neutrons	E _n ~ 0.025 eV
Intermediate neutrons	E _n ~ 0.025 eV ÷ 0.1 MeV
Fast neutrons	E _n ~ 0.1 ÷ 10-20 MeV
High energy neutrons	E _n > 20 MeV

Additional classification:

Slow neutrons (slow neutrons)	E _n < ~ 0.5 MeV	
Fast neutrons (fast neutrons)	E _n > ~ 0.5 MeV	E =0.5 MeV='cadmium cutoff'

Main interaction processes of n: scattering (elastic and inelastic), absorption, fission hadron shower production depending on the neutron energy

Lucia Di Ciaccio - ESIPAP IPM - February 2017

Lucia Di Ciaccio - ESIPAP IPM - February 2017

75

