

Using new digital SiPM from Philips with AX-PET a new geometrical concept for PET

Matthieu Heller CERN - PH/DT Marie Curie network MC-PAD Matthieu.heller@cern.ch

On behalf of the AX-PET collaboration^l

https://twiki.cern.ch/twiki/bin/view/AXIALPET

Workshop on Digital Counting Photosensors For Extreme Low Light Level 19-20th April 2012, Lisboa

- Introduction to Positron Emission Tomography
- <u>AX-PET</u>
 - The AX-PET concept
 - Detector components
 - Module characterisation
 - Results of tomographic reconstructions
- <u>AX-PET as an application of digital SiPM from</u>
 <u>Philips</u>
 - Energy resolution
 - Time resolution
 - Future

19th-20th April 2012

CERN

Positron Emission Tomography

PET detector principle : coincidence of 2 photons of defined energy (511 keV) and emitted on the same line

- (1) Inject the radiotracer into the body
- (2) Wait for uptaking period
- (3) Start the acquisition (i.e. detection of coinc. events)
- (4) Feed the data into the reconstruction algorithms
 - (5) image of the activity concentration
 - PET: "in-vivo" functional imaging technique
 - get a (quantitative) image of the radio-tracer concentration

Standard PET scanners

Short crystals radially oriented Block readout

19th-20th April 2012

Short crystals radially oriented Block readout

<u>solution</u> : add depth of interaction information

19th-20th April 2012

Standard PET scanners

AX-PET geometry proposal

Short crystals radially oriented Block readout

Long crystals axially oriented Single crystal readout

19th-20th April 2012

Standard PET scanners

AX-PET geometry proposal

Short crystals radially oriented Block readout

Long crystals axially oriented Single crystal readout

19th-20th April 2012

3D measurement of the photon interaction point

- Transaxial coordinate and energy measurement with thin elongated scintillator LYSO crystals
 - The hit crystals gives the transaxial coordinate (x, y)

3D measurement of the photon interaction point

- Transaxial coordinate and energy measurement with thin elongated scintillator LYSO crystals
 - The hit crystals gives the transaxial coordinate (x, y)
- Axial coordinates measured with Wave Length Shifter (WLS) strips

3D measurement of the photon interaction point

- Transaxial coordinate and energy measurement with thin elongated scintillator LYSO crystals
 - The hit crystals gives the transaxial coordinate (x, y)
- Axial coordinates measured with Wave Length Shifter (WLS) strips

Detector components

Scintillator crystals and WLS strips

• LYSO (Lu_{1.8}Y_{0.2}SiO₅:Ce), Prelude 420 from Saint Gobain

• WLS strips, Type EJ-280-10x,

from Eljen Technologies

- Light Yield LY=32 photons/keV
- High density : 7.1 g.cm⁻³
- Attenuation length $\lambda_{511} = 12 \text{ mm} \otimes 511 \text{keV}$
- Intrinsic energy resolution : 8.3 ± 0.5% (FWHM) @ 511keV

19th-20th April 2012

Detector components

<u>Arrays of Geiger-Avalanche photo-diode : MPPC – Hamamatsu</u>

• LYSO readout :

Туре S10362-33-050С 📗

WLS strips readout : OCTAGON-SMD

Expected LYSO light output for 511 keV event : ~ 1000 photons

- 3 x 3 mm² area, 3600 cells 50 x 50 um²
- PDE ~ 40%
- Gain : 5.7 10⁵
- Bias voltage ~ 70 V

Advantages of a Si sensor :

- ► high QE
- ► compactness
- Insensitive to magnetic field (MRI comb.)

Expected WLS light output : ~ 50 photons

- 3. 22 x 1.19 mm² area, 782 cells of 70 x 70 um²
- PDE ~ 40%
- Gain : 4 10⁵
- Bias voltage ~ 70 V

Drawbacks of a Si sensor:

- temperature dependent
- ► dark rate (~ 1 MHz @ thr = 0.5 pe)

Module assembly

Assembled module

Module housing and services

- Each module is composed by six layers
- Each layer is made of 8 LYSOs and 26 WLS both staggered to enable the readout
 - → 204 channels per module individually biased
- All layers are optically decoupled

- The two modules are mounted on top of a portable platform, which houses also the electronics, power supply, etc...
- A rotating motor can move the source or phantom positioned in the field of view
- \bullet One of the modules can rotate wrt 180° position by ±60°

Demonstrator performance

For more explanations see publication : doi:10.1016/j.nima.2011.06.059

face-to-face

• Energy resolution :

 Average value of the energy resolution of all the LYSO crystals for both modules is 11.8% FWHM at 511 keV

Spatial resolution

- Axial :
 - Single module
 - Module 1 : 1.75 mm FWHM
 - Module 2 : 1.83 mm FWHM
 - Module in coincidences
 - F2F, OBL : 1.35mm FWHM
- Transaxial
 - F2F, OBL : 2 mm FWHM
- <u>Efficency/Sensitivity</u> :
 - Can always be improved by increasing the number of layers
- Time resolution : 1.9 ns FWHM

Results from tomographic reconstruction

- Contrast region
- Homogenous region
- Spatial resolution region

Resolve 1 mm rod with 1.6 mm FWHM

19th-20th April 2012

Using Philips digital SiPM as alternative photodetectors

Web site : http://www.research.philips.com/initiatives/digitalphotoncounting/

Sensitivity

- Lower dark count level compared to analog devices

Speed

- Excellent timing resolution → Time Of Flight PET

Robustness

- Against electromagnetic interference (Compatibility with MRI scanner)

- Low sensitivity to temperature variations

• **High production yield** due to the possibility of disabling individual cells

Why going from analog to digital SiPM

Characteristic	dSiPM	aSiPM	APD	РМТ
Sensitivity (PDE)	Max. ~70 % tbp	Max ~ 70% tbp	~ 70%	~ 35%
Intrinsic timing res.	~ 50 ps	> 150 ps	~ 1 ns	~ 400 ps
CRT on system level (depends also on scintillator)	Pot. ~ 150 ps 250 ps proven	~ 500 ps in literature	> 1 ns	~ 500 ps
voltage	35 V	35-70V	Up to 1500V	400-800V

•Advantages of dSiPM wrt aSiPM

- Lower DCR
- Better CRT (triggering on the first photon) \rightarrow TOF PET
- Afterpulses does not affect the digital sum thanks to active quenching
- No custom electronics needed

Technical Evaluation Kit

32 mm

- Our evaluation kit is made of :
 - 2 DLS 3200 sensor with 3200 cells per pixel
 - 2 DLS 6400 sensor with 6400 cells per pixel
 - 4 kapton cables

CÉRN

- One base to connect the tiles
- One power supply
- One computer for detector configuration and data acquisition

Few characteristics	DLS 6400	DLS3200	
Cell size [µm²]	30 x 50	59.4 x 64	
Fill factor [%]	54	78 (→ 84)	
PDE [%] @ 420 nm	30	43 (→ 47)	
DCR [MHz/pixel] @20°C	<5	<10	
Op. voltage [V]	< 35		
Temp. dep of PDE [% / K]	- 0.33		

Seen from top (glass position)

DSiPM state machine

19th-20th April 2012

CÉRN

AX-PET

PHILIPS

19th-20th April 2012

Towards Time Of Flight PET

AX-PET

PHILIPS

Time resolution with the DLS 3200

time difference between the two tiles for photopeak coincident events (coincidence window = 5 ns, Peltier cooling @ 10°C)

- 2 LYSO scintillator crystals non AX-PET standard (3x3x3) mm³
- Reflective white paint
- coupling done with optical grease

CÉRN AX-PET Use of the DSiPM timing performance PHILIPS Time difference Energy spectrum correlation [keV] tile 3 2005 [keV] tile 3 1800 علي 1800 للم 1600 لل PPeak **PPeak** 25 Entries 14059 -11.68 Config. 1 Mean 5.709 RMS шÈ 1400 Config. 2 Confia1 20 Entries 6765 1200 Mean -16.67 400 9.474 RMS 1000 Config2 15 Entries 4716 300 Mean -6.444800 RMS 10.9 600 10 200 400 5 200 100 0 -40 -30 -20 -10 0 10 20 30 Δt (Tile 3 – Tile 1) [tck = 19.5 ps] 100 200 300 400 500 600 E_v [keV] tile 1 Back scattering y not detected y not detected TILE 3 TILE 1 TILE 1 TILE 3 Config 2 $\rightarrow \Delta t = t_3 - t_1 > 0$ Config 1 $\rightarrow \Delta t = t_3 - t_1 < 0$

19th-20th April 2012

AX-PET future activities using Philips DSiPM

- AX-PET performance demonstration with dSiPM
- light yield and $\Delta E/E$ from LYSO crystals ?
- axial coordinate reconstruction: does it work?
- axial resolution through WLS readout ?
- time resolution (long crystals) ?

Thanks for your attention The AX-PET collaboration

Instituto Nazionale di Fisica Nucleare (INFN) Sezione di Bari, I-70122 Bari, Italy

> Università and INFN Cagliari Cagliari, Italy

> Ohio State University (OSU) Columbus, Ohio 43210, USA

European Organization for Nuclear Research (CERN) PH Department, CH-1211 Geneva, Switzerland

> University of Michigan Ann Arbor, MI 48109 USA

University of Oslo NO-0316 OSLO, Norway

Instituto Nazionale di Fisica Nucleare (INFN) Sezione di Roma, University of Rome, La Sapienza, 00185, Italy

> Instituto de Fisica Corpuscular (IFIC) University of Valencia, 46071, Spain

Tampere University of Technology FI-33100 Tampere, Finland

EidgenössischeTechnische Hochschule (ETH) Laboratory for High Energy Physics, CH-8093 Zurich, Switzerland

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

19th-20th April 2012

dSiPM Photon detection efficiency

Photon Detection Efficiency

Analog vs. Digital SiPM concept

Analog Silicon Photomultiplier Detector

Digital Silicon Photomultiplier Detector

dSiPM Trigger probability

19th-20th April 2012

dSiPM Trigger logic

dSiPM Trigger logic

dSiPM Trigger logic

dSiPM DC and afterpulse

Time differences of two consecutive dark counts in a single diode.

Afterpulsing: deviation from the Poisson distribution in the first few µs.

Many diodes show afterpulsing probabilities of less than 0.1%, few are in the 2-3% range.

- The variation of the MPPC gain with the temperature is corrected to uniformize the response of all the LYSO and WLS
- WLS and LYSO are read out on one side, the other extremity being covered with a Al coating. Thus the light collected by the MPPCs depends on the position of the photoelectric interaction : Attenuation and reflexions
- This can be corrected using the spatial information from the WLS and LYSO

MPPC saturation correction and Energy calibration

- In order to correct the MPPC saturation, two calibration sets are needed :
 - Photoelectric peak at 511 keV, acquired with the ²²Na source
 - "Integrated calibration source": Two of the peaks of the ¹⁷⁶Lu decay spectrum at 202 and 307 keV (natural radioactivity of LYSO) and the Lutetium K_a escape line at 63 keV
- The four data points are fitted to take into account the saturation effect in the MPPCs

Energy Calibration and Resolution

Even if the number of incoming photons is lower than the number of cells in the MPPC, the probability that two photons hit the same pixel is not zero → Saturation effect

• The average value of the energy resolution of all the LYSO crystals for both modules is 11.8% FWHM at 511 keV

CÉRN

AX-PET

Spatial resolution with point-like source

19th-20th April 2012

Spatial resolution with point-like source

CERN

Time resolution

- measure delay of coincidence wrt Mod2
- measurement from the scope [Lecroy Waverunner LT584 L 1GHz]

Measured time resolution : FWHM ~1.9 ns