Experimental particle. physics

European School of Instrumentation in Particle & Astroparticle Physics

examples of particle experiment design

The ATLAS detector

[expected perfomance]

The CMS detector

The ATLAS detector

The CMS detector

Main Design Parameters Comparison

TABLE 2 Main design parameters of the ATLAS and CMS detectors

Parameter	ATLAS	CMS
Total weight (tons)	7000	12,500
Overall diameter (m)	22	15
Overall length (m)	46	20
Magnetic field for tracking (T)	2	4
Solid angle for precision measurements $(\Delta \phi \times \Delta \eta)$	$2\pi \times 5.0$	$2\pi \times 5.0$
Solid angle for energy measurements $(\Delta \phi \times \Delta \eta)$	$2\pi \times 9.6$	$2\pi imes 9.6$
Total cost (million Swiss francs)	550	550

This table (and others) from: Daniel Froidevaux and Paris Sphicas, "GENERAL-PURPOSE DETECTORS FOR THE LARGE HADRON COLLIDER", Annu. Rev. Nucl. Part. Sci. 2006. 56:375–440

ATLAS vs. CMS

	ATLAS	CMS
Magnetic field	2 T solenoid + toroid (0.5 T barrel; I T end-cap)	4T solenoid + return yoke
Tracker	Si pixels and strips +TRT σ/p _T ≈ 5 × 10 ⁻⁴ p _T + 0.01	Si pixels and strips σ/p _T ≈ 1.5 × 10 ⁻⁴ p _T + 0.005
EM calorimeter	LAr + Pb σ/ E ≈ 10%/νE ⊕ 0.007	PbWO ₄ crystals σ/ E ≈ 2-6%/√E ⊕ 0.005
Hadronic calorimeter	Scint. + Fe / LAr + Cu (10 λ) σ/ E ≈ 50%/vE ⊕ 0.03 GeV	Scint. + Cu (5.8 λ + catcher) σ/ E ≈ 100%/vE ⊕ 0.05 GeV
Muon spectrometer	σ/p _T ≈ 2% @ 50 GeV – 10% @ 1 TeV (ID + MS)	σ/p _T ≈ 1% @ 50 GeV – 5% @ I TeV (ID + MS)
Trigger σ _m / m _H (Η → γγ)	LI + RoI-based HLT (L2 + EF) I.2 GeV @ m _H = I20 GeV	LI + HLT (L2 + L3) 0.7 GeV @ m _H = I20 GeV

- G.Aad et al (ATLAS Collaboration). J. Instrum. 3. s08003 (2008)
- S.Chatrchysn (CMS Collaboration), J. Instrum. 3. s08004 (2008)

Main design choices

ATLAS

 Invested much in three superconducting toroid magnets and a set of precise muon chambers

- "This system provides a stand-alone muon momentum measurement"
- Transition detector in the tracking system (electron vs. pions)
- ✓ Sampling calorimeter
 - Mediocre energy resolution, longitudinal segmentation, fine lateral segmentation
- ✓ Good HAD calorimeter

• CMS

- Invested in highest possible magnetic field (4T)
- Inner tracker consisting of all silicon detectors
- Homogeneous EM
 Calorimeter
 - Excellent energy resolution, no longitudinal segmentation, coarse lateral segmentation
- ✓ Mediocre HAD calorimeter

Magnet systems

ATLAS

Driven by the goal to achieve a high-precision stand-alone momentum measurement of muons "achieved using an arrangement of a small-radius thin-walled solenoid integrated into the cryostat of the barrel ECAL, surrounded by a system of three large air-core toroids, situated outside the ATLAS calorimeter systems, and generating the magnetic field for the muon spectrometer."

CMS

A single magnet with "a high magnetic field in the tracker volume for all precision momentum measurements, and a high enough return flux in the iron outside the magnet to provide a muon trigger and a second muon momentum measurement."

CMS magnet

Magnet systems

TABLE 3 Main parameters of the CMS and ATLAS magnet systems

	CMS		ATLAS	
Parameter	Solenoid	Solenoid	Barrel toroid	End-cap toroids
Inner diameter	5.9 m	2.4 m	9.4 m	1.7 m
Outer diameter	6.5 m	2.6 m	20.1 m	10.7 m
Axial length	12.9 m	5.3 m	25.3 m	5.0 m
Number of coils	1	1	8	8
Number of turns per coil	2168	1173	120	116
Conductor size (mm ²)	64×22	30×4.25	57×12	41×12
Bending power	$4 \mathrm{T} \cdot \mathrm{m}$	$2 \mathrm{T} \cdot \mathrm{m}$	$3 \mathrm{T} \cdot \mathrm{m}$	6 T · m
Current	19.5 kA	7.7 kA	20.5 kA	20.0 kA
Stored energy	2700 MJ	38 MJ	1080 MJ	206 MJ

Inner tracking systems

TABLE 4 Main parameters of the ATLAS and CMS tracking systems (see Table 6 for details of the pixel systems)

Parameter	ATLAS	CMS
Dimensions (cm) -radius of outermost measurement -radius of innermost measurement -total active length	101–107 5.0 560	107–110 4.4 540
Magnetic field B (T) BR ² (T \cdot m ²)	2 2.0 to 2.3	4 4.6 to 4.8
Total power on detector (kW)	70	60
Total weight in tracker volume (kg)	≈4500	≈3700
Total material (X/X_0) -at $\eta \approx 0$ (minimum material) -at $\eta \approx 1.7$ (maximum material) -at $\eta \approx 2.5$ (edge of acceptance)	0.3 1.2 0.5	0.4 1.5 0.8
Total material (λ/λ_0 at max)	0.35	0.42
Silicon microstrip detectors -number of hits per track -radius of innermost meas. (cm) -total active area of silicon (m ²) -wafer thickness (microns) -total number of channels -cell size (μ m in $R\phi \times cm$ in z/R) -cell size (μ m in $R\phi \times cm$ in z/R)	8 30 60 280 6.2×10^{6} 80 × 12	14 20 200 320/500 9.6 \times 10 ⁶ 80/120 \times 10 and 120/180 \times 25
Straw drift tubes (ATLAS only) -number of hits per track ($ \eta < 1.8$) -total number of channels -cell size (mm in $R\phi \times \text{cm in } z$)	35 350,000 4 × 70 (barrel) 4 × 40 (end caps)	-

Pixel detectors

	ATLAS	CMS
Number of hits per track	3	3
Total number of channels	80 10 ⁶	66 10 ⁶
Pixel size (μ m in $R\phi \times \mu$ m in z/R)	50×400	100×150
Lorentz angle (degrees), initial to end	12 to 4	26 to 8
Tilt in $R\phi$ (degrees)	20 (only barrel)	20 (only end cap)
Total active area of silicon (m ²)	1.7 (n^+/n)	$1.0 (n^+/n)$
Sensor thickness (μ m)	250	285
Total number of modules	1744 (288 in disks)	1440 (672 in disks)
Barrel layer radii (cm)	5.1, 8.9, 12.3	4.4, 7.3, 10.2
Disk layer min. to max. radii (cm)	8.9 to 15.0	6.0 to 15.0
Disk positions in z (cm)	49.5, 58.0, 65.0	34.5, 46.5
Signal-to-noise ratio for minimum ionizing particles (day 1) Total fluence at L = 10^{34} (n_{eq} /cm ² /year) at radius of 4–5 cm (innermost layer)	120 3×10^{14}	130 3×10^{14}
Signal-to-noise ratio (after $10^{15} n_{eq}/\text{cm}^2$)	80	80
Resolution in $R\phi$ (µm)	≈ 10	≈ 10
Resolution in z/R (µm)	≈ 100	≈ 20

TABLE 6Main parameters of the ATLAS and CMS pixel systems

Inner tracking systems

ATLAS

- Solenoidal field: 2 T
- Silicon (strips and pixels) + TRT
 - high granularity and resolution close to interaction region
 - "continuous" tracking at large radii

CMS

- Solenoidal filed: 4 T
- Full silicon strip and pixel detectors
 - high resolution

Main performance of tracking systems

	ATLAS	CMS
Reconstruction efficiency for muons with $p_T = 1 \text{ GeV}$	96.8%	97.0%
Reconstruction efficiency for pions with $p_T = 1 \text{ GeV}$	84.0%	80.0%
Reconstruction efficiency for electrons with $p_T = 5 \text{ GeV}$	90.0%	85.0%
Momentum resolution at $p_T = 1$ GeV and $\eta \approx 0$	1.3%	0.7%
Momentum resolution at $p_T = 1$ GeV and $\eta \approx 2.5$	2.0%	2.0%
Momentum resolution at $p_T = 100 \text{ GeV}$ and $\eta \approx 0$	3.8%	1.5%
Momentum resolution at $p_T = 100 \text{ GeV}$ and $\eta \approx 2.5$	11%	7%
Transverse i.p. resolution at $p_T = 1$ GeV and $\eta \approx 0 \ (\mu m)$	75	90
Transverse i.p. resolution at $p_T = 1$ GeV and $\eta \approx 2.5$ (µm)	200	220
Transverse i.p. resolution at $p_T = 1000$ GeV and $\eta \approx 0 \ (\mu m)$	11	9
Transverse i.p. resolution at $p_T = 1000$ GeV and $\eta \approx 2.5$ (µm)	11	11
Longitudinal i.p. resolution at $p_T = 1$ GeV and $\eta \approx 0$ (µm)	150	125
Longitudinal i.p. resolution at $p_T = 1$ GeV and $\eta \approx 2.5 (\mu m)$	900	1060

- Momentum resolution on average superior in CMS
- Similar vertexing and b-tagging performances are similar
- Impact of material and B-field already visible on efficiencies

Amount of material in inner trackers

- Active sensors and mechanics account each only for ~10% of material budget
- Need to bring ~70 kW power into tracker and to remove similar amount of heat
 - Very distributed set of heat sources and power-hungry electronics inside volume
 - Complex layout of services, most of which are difficult to properly implement in detector simulation (calorimeter calibration!)

Electromagnetic calorimeter

ATLAS

- EM calorimeter is outside inner solenoidal field
 - More material in front, energy losses, photon conversions
- Sampling calorimeter
 - Liquid argon + Pb
 - Worse energy resolution
 - High granularity and segmentation (eta, phi, longitudinally)
 - better PID and rejection
 - position measurement for photons
- Electrical signals
 - High stability in calibration and radiation resistant

• CMS

- EM calorimeter is bathed in magnetic field
 - Shower shape distortion
- Homogenous calorimeter
 - PbWO4 crystal calorimeter
 - Higher intrinsic resolution
 - Poorer segmentation
 - Light signals
 - Crystal light response vary with radiation, calibration vs. time complicated

ATLAS electromagnetic calorimeter

LAr hadronic // end-cap (HEC)

LAr electromagnetic end-cap (EMEC)

LAr electromagnetic barrel (EMB)

////////

CMS electromagnetic calorimeter

Electromagnetic calorimeters

 TABLE 8
 Main parameters of the ATLAS and CMS electromagnetic calorimeters

http://www.annualreviews.	org ATL	AS	(CMS
Technology	Lead/LAr	Lead/LAr accordion		tillating crystals
Channels	Barrel	End caps	Barrel	End caps
	110,208	63,744	61,200	14,648
Granularity	$\Delta\eta$ ×	$\Delta \phi$	Δr	$\eta imes \Delta \phi$
Presampler	0.025×0.1	0.025×0.1		
Strips/ Si-preshower	0.003 × 0.1	0.003×0.1 to 0.006×0.1		32 × 32 Si-strips per 4 crystals
Main sampling	0.025×0.025	0.025×0.025	0.017 × 0.017	0.018×0.003 to 0.088×0.015
Back	0.05×0.025	0.05×0.025		
Depth	Barrel	End caps	Barrel	End caps
Presampler (LAr)	10 mm	$2 \times 2 \text{ mm}$		
Strips/ Si-preshower	\approx 4.3 X ₀	\approx 4.0 X ₀		3 X ₀
Main sampling	$\approx 16 X_0$	$\approx 20 X_0$	26 X ₀	$25 X_0$
Back	$\approx 2 X_0$	$\approx 2 X_0$		
Noise per cluster	250 MeV	250 MeV	200 MeV	600 MeV
Intrinsic resolution	Barrel	End caps	Barrel	End caps
Stochastic term a	10%	10 to 12%	3%	5.5%
Local constant term b	0.2%	0.35%	0.5%	0.5%

Marco Delmastro

Electromagnetic calorimeters

CMS

Performance of electromagnetic calorimeters

Marco Delmastro

Experimental Particle Physics

ATLAS hadronic calorimeters

CMS hadronic calorimeter

http://cms.web.cern.ch/news/using-russian-navy-shells

Experimental Particle h

*

1

ANT ANT

Hadronic calorimeters

TABLE 10 Main performance parameters of the different hadronic calorimeter components

 of the ATLAS and CMS detectors, as measured in test beams using charged pions in both

 stand-alone and combined mode with the ECAL

		ATI	LAS			
	Barrel	Barrel LAr/Tile End-cap LA		End-cap LAr		IS
	Tile	Combined	HEC	Combined	Had. barrel	Combined
Electron/hadron ratio	1.36	1.37	1.49			
Stochastic term	$45\%/\sqrt{E}$	$55\%/\sqrt{E}$	$75\%/\sqrt{E}$	$85\%/\sqrt{E}$	$100\%/\sqrt{E}$	$70\%/\sqrt{E}$
Constant term	1.3%	2.3%	5.8%	<1%		8.0%
Noise	Small	3.2 GeV		1.2 GeV	Small	1 GeV

The measured electron/hadron ratios are given separately for the hadronic stand-alone and combined calorimeters when available, and the contributions (added quadratically except for the stand-alone ATLAS tile calorimeter) to the pion energy resolution from the stochastic term, the local constant term, and the noise are also shown, when available from published data.

Hadronic absorption length

ATLASs

CMS

Performance of calorimeters: jets

Figure 20 For ATLAS (*left*) and CMS (*right*), expected relative precision on the measurement of the energy of QCD jets reconstructed in the central region as a function of $1/\sqrt{E}$, where *E* is the jet energy for ATLAS, and as a function of E_T^{MC} , where E_T^{MC} is the jet transverse energy for CMS.

Performance of calorimeters: MET

Figure 21 For ATLAS (*left*) and CMS (*right*), expected precision on the measurement of the missing transverse energy as a function of the total transverse energy, ΣE_T , measured in the event.

Marco Delmastro

Muon spectrometers

ATLAS

 independent muon spectrometer with excellent stand-alone capabilities

CMS

- superior combined momentum resolution in the central region;
- limited stand-alone resolution and trigger capabilities
 - multiple scattering in the iron

Muon spectrometers

TABLE 11 Main parameters of the ATLAS and CMS muon cham	bers
---	------

	ATLAS	CMS
Drift Tubes	MDTs	DTs
-Coverage	$ \eta < 2.0$	$\eta < 1.2$
-Number of chambers	1170	250
-Number of channels	354,000	172,000
-Function	Precision measurement	Precision measurement, triggering
Cathode Strip Chambers		
-Coverage	$2.0 < \eta < 2.7$	$1.2 < \eta < 2.4$
-Number of chambers	32	468
-Number of channels	31,000	500,000
-Function	Precision measurement	Precision measurement, triggering
Resistive Plate		
Chambers		
-Coverage	$ \eta < 1.05$	$ \eta < 2.1$
-Number of chambers	1112	912
-Number of channels	374,000	160,000
-Function	Triggering, second coordinate	Triggering
Thin Gap Chambers		
-Coverage	$1.05 < \eta < 2.4$	—
-Number of chambers	1578	
-Number of channels	322,000	—
-Function	Triggering, second coordinate	—

Muon spectrometers

TABLE 12 Main parameters of the ATLAS and CMS muon measurement systems as well as a summary of the expected combined and stand-alone performance at two typical pseudorapidity values (averaged over azimuth)

Parameter	ATLAS	CMS
Pseudorapidity coverage		
-Muon measurement	$ \eta < 2.7$	$ \eta < 2.4$
-Triggering	$ \eta < 2.4$	$ \eta < 2.1$
Dimensions (m)		
-Innermost (outermost) radius	5.0 (10.0)	3.9 (7.0)
-Innermost (outermost) disk (z-point)	7.0 (21–23)	6.0–7.0 (9–10)
Segments/superpoints per track for barrel (end caps)	3 (4)	4 (3–4)
Magnetic field B (T)	0.5	2
-Bending power (BL, in T \cdot m) at $ \eta \approx 0$	3	16
-Bending power (BL, in T \cdot m) at $ \eta \approx 2.5$	8	6
Combined (stand-alone) momentum resolution at		
$-p = 10 \text{ GeV}$ and $\eta \approx 0$	1.4% (3.9%)	0.8% (8%)
$-p = 10 \text{ GeV}$ and $\eta \approx 2$	2.4% (6.4%)	2.0% (11%)
$-p = 100 \text{ GeV}$ and $\eta \approx 0$	2.6% (3.1%)	1.2% (9%)
$-p = 100 \text{ GeV}$ and $\eta \approx 2$	2.1% (3.1%)	1.7% (18%)
$-p = 1000 \text{ GeV}$ and $\eta \approx 0$	10.4% (10.5%)	4.5% (13%)
$-p = 1000 \text{ GeV}$ and $\eta \approx 2$	4.4% (4.6%)	7.0% (35%)

what would you 1.1

choose?