Overview of the gravitational waves search programs

- Gravitational Waves
- Ground detectors
- GWI50914

Þ

- Space detector
- The pulsar timing arrays

Benoit Mours (LAPP – Annecy) ESIPAP January 23rd, 2017

Gravitational waves?

General relativity:

- Mass curve space
- Gravitational force: effect of space curvature

- J.A.Wheeler : "Space tells matter how to move and matter tells space how to curve"
- Extreme case: black hole
- GW: fluctuations of space time deformations that propagate
 - Ripples in the curvature of space-time

Gravitational waves effect and generation

• GW Effect

- Change the distance between freely-falling test masses: $h=2\delta L/L$
 - Small perturbation to a flat space (away from source...)
- Quadrupolar emission; two polarizations
- Accelerated mass \rightarrow Gravitational waves
 - $h \approx \underbrace{\frac{G}{c^4}}_{\sim} \underbrace{\frac{E_{ns}}{r}}_{\sim} \operatorname{dist}^{\sim} \operatorname{dist}^{\sim}$

"Non spherical" kinetic energy

distance to the source

- No way for lab generation
- Astrophysical sources:
 - two orbiting objects as typical source
- Small effect \rightarrow requires large instruments

Astrophysical sources of GW

- Binary system
 - Need to be compact to be observed by ground based detectors
 - Neutron stars, black holes
 - Signal well modeled by rates not well known
- Spinning neutron stars
 - Nearly monotonic signals
 - Long duration
 - Strength not well known
- Asymmetric explosion
 - Like supernovae core collapse
 - "burst" transient
 - Not well modeled
- Cosmic gravitational wave background
 - Residual of the big bang/inflation
 - Stochastic background
 - Could be overlapped by superposition of transients

Casey Reed, Penn State

Casey Reed, Penn State

Credit: Chandra X-ray Observatory

NASA/WMAP Science Team

Indirect evidence: PSR 1913+16

- Binary system of neutron stars
- One neutron star is a radio pulsar
- Discovered in 1975 by Hulse and Taylor
- Studied by Taylor, Weisberg and co.
- Decay of the orbital period compatible with GW emission

Why searching for GW?

Gravitation Sources Universe
GW generated by powerful mass acceleration
Very energetic events in the Universe

> Gravitational waves probe event dynamics

General Relativity

□ Gravitation only clue to 96% of Universe contents

> Gravitational waves probe gravitation in new regime

Astrophysics

Cosmology

GW: a bit of history

- Joseph Weber invents the bar detector
 - First claim for detection in 1969... but contested
 - Triggered large interest, at least 18 bars in 8 countries
- Evolve to cryogenic resonant bars ('80-'90)
- Bar not enough sensitivity:
 - h : few 10⁻²¹ l/sqrt(Hz) @ 900Hz
- ▶ ITF started in the 70's (Germany, Rai Weiss)

LIGO-Virgo : a worldwide network

- Detectors have wide beam antenna
 - Network for signal validation, source localization, duty cycle...
- LIGO and Virgo agreement for joint data analysis and collaboration since 2007
- Common runs with initial detectors

Why building *large* interferometer to detect GW?

- GW: very weak effect on earth:
 Sensitivity : h = δL/L ≤ 10⁻²¹
 Need to measure small displacements over large distances
 - Large interferometers and challenging technologies \rightarrow

Getting motionless mirrors...

- The mirrors are our test masses
 - Mirror are suspended:
 - "free" test masses above pendulum frequency
- The ground motion ("seimic noise") is large
- The earth is curved
 - Need isolation in all degrees of freedom
 - Horizontal to vertical coupling > 2.10⁻⁴
- Need complex isolation system
- Mirrors thermal noise becomes an issue
 - Low loss material
 - Large beams

LIGO and Virgo are complex detectors

Initial to Advanced detector: example detection

Detection bench role:

- Filters and conditions dark fringe light to eliminate contaminating noise
- Moved from classical optical table to in-vacuum suspended bench with ultra-low scatter, high efficiency

Higher laser power

Thermal compensation

Larger beam size

14

Advanced LIGO OI run

- Similar sensitivities for H1 and L1
 - 3-4 times better than in 2010
 in 100 Hz 300 Hz band
- OI: Sep 2015 Jan 2016
 - Preceded by engineering run from Aug 17
 - Stable data taking from Sep 12
 - OI scheduled to start on Sep 18
 - When fully ready with calibration / hardware injections / EM follow-up alerts / computing

| |5

- Over 0.2 s, frequency and amplitude increase from 35 Hz to 150 Hz (~ 8 cycles)
 - GW-driven of two orbiting masses
 - Inspiral evolution characterized by chirp mass

$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}} = \frac{c^3}{G} \left[\frac{5}{96} \pi^{-8/3} f^{-11/3} \dot{f} \right]^{3/5}$$
$$\mathcal{M} \simeq 30 M_{\odot} \qquad M = m_1 + m_2 \gtrsim 70 M_{\odot}$$

- Modulation of amplitude gives nonaligned spin components
- Keplerian separation gets close to Schwarzschild radius
- Very close and very compact objects
 - BNS too light,
 - NSBH would merge at lower frequencies
- Decay of waveform after peak consistent with damped oscillations of BH relaxing to final stationary Kerr configuration
 - But SNR too low to claim observation of quasi normal modes

Evidence for BBH merger

 $R_S = 2GM/c^2 \gtrsim 210 \text{ km}$

| 17

Compact Binary Coalescence Search: BBH result

Generic Transient Search

- Identifies coincident excess power in time-frequency representation of h(t)
 - Frequency < I kHz</p>
 - Duration < a few seconds</p>
- Detection statistic based on the coherent signal energy
 - Obtained by cross-correlation
- Signal divided into 3 search classes
 - Based on their time-frequency morphology
 - C3: events with frequency increasing with time
 - CBC like
- GWI50914 loudest event in C3 search
 - Significance measured from time slides

Environment vetting

- Monitoring of detectors physical environment performed with array of sensors
 - Seismometers, accelerometers, microphones, magnetometers, radio receivers, weather sensors, AC-power line monitors, cosmic ray detector
 - $\sim 10^5$ channels for each detector
 - Used to characterize couplings and identify / veto transient disturbances
 - Special attention to possible correlated sources of noise
 - Global electromagnetic noise
- Environmental origin for GW150914 ruled out
 - Excess power in any auxiliary channel too small by factor > 17 to account for GW150914 amplitude
 - Would not match signal morphology anyway

GWI50914 Parameter Estimation: Intrinsic Parameters

Encoded in GW signal

- Inspiral
 - Leading order: chirp mass
 - Next to leading order: mass ratio, spin components // orbital angular momentum
 - Higher orders: full spin DOF
- Additional spin effect
 - If not // orbital angular momentum: orbital plane precession
 - Amplitude and phase modulation
- Merger and ringdown
 - Primarily governed by final black hole mass and spin
 - Masses and spins of binary fully determine mass and spin of final black hole in general relativity

Masses

- Spins $a_{\rm f} = 0.67^{+0.05}_{-0.07}$
- Weak/tight constraints on individual/final
- Radiated energy
- Peak luminosity $3.6^{+0.5}_{-0.4} \times 10^{56} \text{ erg s}^{-1} = 200^{+30}_{-20} \text{ M}_{\odot}c^2/\text{s}$

 $3.0^{+0.5}_{-0.5} \mathrm{M}_{\odot}c^2$

Source-frame total mass $M^{\rm source}/{\rm M}_{\odot}$ Source-frame chirp mass $\mathcal{M}^{\rm source}/{\rm M}_{\odot}$ Source-frame primary mass $m_1^{\rm source}/{\rm M}_{\odot}$ Source-frame secondary mass $m_2^{\rm source}/{\rm M}_{\odot}$ Source-fame final mass $M_{\rm f}^{\rm source}/{\rm M}_{\odot}$ $\begin{array}{c} 64.8^{+4.6\pm1.0}_{-3.9\pm0.5}\\ 27.9^{+2.1\pm0.4}_{-1.7\pm0.2}\\ 35.7^{+5.4\pm1.1}_{-3.8\pm0.0}\\ 29.1^{+3.8\pm0.2}_{-4.4\pm0.5}\\ 61.8^{+4.2\pm0.9}_{-3.5\pm0.4} \end{array}$

Astrophysical Implications

• Relatively heavy stellar-mass black holes (> 25 M_{\odot}) exist in nature

- Implies weak massive-star winds
- Formation in environment with low metallicity

Binary black holes form in nature

- GW150914 does not allow to identify formation path
- From isolated binaries vs dynamical capture in dense star clusters
 - Spin information may be able to tell in the future

BBHs merge within age of Universe at detectable rate

> Inferred rate consistent with higher end of rate predictions

Rate of BBH mergers

- Previous rate estimates based on EM observations and population modelling
 R ~ 0.1 300 Gpc⁻³ yr⁻¹
- Previous LIGO-Virgo rate upper limits
 - R < 140 Gpc⁻³ yr⁻¹ for GW150914 parameters
- Astrophysical rate inference involves
 - Counting signals in experiment
 - Estimating sensitivity to population of sources
 - Depends on (hardly known) mass distribution
- Low statistics and variety of assumptions yield broad rate range

• $R \sim 2 - 400 \text{ Gpc}^{-3} \text{ yr}^{-1}$

 Can project expected number of highly significant events as a function of surveyed time-volume

24

GWI50914 Extrinsic Parameters

- A mix of things we can measure and things we can guess
 - Amplitude depends on masses, distance, and geometrical factors
 - Distance inclination degeneracy
 - Distant sources with favorable orientations are preferred

$$D_{\rm L} = 410^{+160}_{-180} \,\,{\rm Mpc} \qquad z = 0.09^{+0.03}_{-0.04}$$

- Source location inferred primarily from time of flight 6.9^{+0.5}_{-0.4} ms, amplitude and phase consistency
 - Limited accuracy with two detector network
 - Sky locations with good detector response are preferred
 - 2-D 90% credible region is 590 deg²
 - ▶ 3-D uncertainty volume is 10⁷ Mpc³
 - ~ 10⁵ Milky Way equivalent galaxies

Electromagnetic follow-up

- LVC called for EM observers to join a followup program
 - LIGO and Virgo share promptly interesting triggers
 - 70 MoUs, 160 instruments covering full spectrum
 - from radio to very high energy gamma-rays
- 25 teams reported follow-up observation of GW150914

High-Energy Neutrino Follow-up

- Search for coincident high energy neutrino candidates in IceCube and ANTARES data
 - HEN v expected in (unlikely) scenario of BH + accretion disk system
 - Search window ± 500 s

- No v candidate in both temporal and spatial coincidence
 - \succ 3 v candidates in IceCube
 - \succ 0 v candidate in ANTARES
 - Consistent with expected atmospheric background
 - None of v candidates directionally coincident with GWI50914
- Derive direction dependent v fluence upper limit
- \Box Derive constraint on total energy emitted in v by the source

>
$$E_{\nu,tot}^{ul} \sim 10^{52} - 10^{54} \left(\frac{D_{gw}}{410 \,\mathrm{Mpc}}\right)^2 \,\mathrm{erg}$$

Testing GR with GWI50914 (I)

- Most relativistic binary pulsar known today
 - J0737-3039, orbital velocity: v/c ~ 2 × 10⁻³
- GWI50914
 - Strong field, non linear, high velocity regime: $v/c \sim 0.5$
- Loud-ish SNR allows some coarse tests
 - Check residuals after subtraction of best-fit waveform are consistent with instrumental noise
 - Waveform internal consistency check
 - Evidence for deviation from General Relativity in waveform ?
 - Bound on graviton mass

Testing GR with GWI50914 (II)

No evidence for deviation from GR in waveform

No evidence for dispersion in signal propagation

$$\left(\frac{v}{c}\right)^2 = 1 - \left(\frac{hc}{\lambda_g E}\right)^2 \qquad \lambda_g > 10^{13} \text{ km}$$

$$m_g \leq 1.2 \times 10^{-22} \text{ eV/c}^2$$

More constraining than bounds from Solar System and binary pulsar observations

²⁹ Less constraining than model dependent bounds from large scale dynamics of galactic clusters and weak gravitational lensing observations

Events Observed During Ol

Census of Black Holes in the Universe

Previously known black holes (X-ray binary systems)

Courtesy Caltech/MIT/LIGO Laboratory

Frequency dependence of 3 events compared to the LIGO sensitivity

https://arxiv.org/abs/1606.04856

Outlook: Future Data

Virgo installation in progress: expect to take data this year

Epoch			2015 - 2016	2016 - 2017	2017 - 2018	2019 +	2022+ (India)
Estimated run duration			4 months	6 months	9 months	(per year)	(per year)
Burst range/Mpc		LIGO	40 - 60	60 - 75	75 - 90	105	105
		Virgo		20 - 40	40 - 50	40 - 80	80
BNS range/Mpc		LIGO	40 - 80	80 - 120	120 - 170	200	200
		Virgo		20 - 60	60 - 85	65 - 115	130
Estimated BNS detections			0.0005 - 4	0.006 - 20	0.04 - 100	0.2 - 200	$0.4\!-\!400$
90% CR	% within	$5 \mathrm{deg}^2$	< 1	2	> 1 - 2	> 3-8	> 20
		$20 \mathrm{deg}^2$	< 1	14	> 10	> 8 - 30	> 50
	$ m median/ m deg^2$		480	230			_
searched area	% within	$5 \mathrm{deg}^2$	6	20	_	_	
		$20 \mathrm{deg}^2$	16	44			
	$ m median/deg^2$		88	29			—

New large interferometers in construction

- KAGRA:
 - 3km underground in Japan
 - Infrastructure completed
 - Science data around 2020-2021

LIGO-India:

- Third LIGO interferometer installed in India
- Site acquisition in progress
- Science data around 2024

Ground-based GW detectors

Ist generation interferometric detectors Initial LIGO, Virgo, GEO600 Improved sensitivity Enhanced LIGO, Virgo+

Unlikely detection

Science data taking First rate upper limits Set up network observation

Laid ground for multi-messenger astronomy

2nd generation detectors

> Advanced LIGO, Advanced Virgo, **GEO-HF, KAGRA**

First detection Toward routine observation GW astronomy

Thorough observation of Universe with GW

- **3rd** generation detectors
 - Einstein Telescope, Cosmic Explorer

TUNNEL Ø~5 m

eLISA LISA pathfinder

- Super-massive black holes and large structure formation
- White-dwarf binary systems in the Galaxy
- Cosmology, ultra-strong gravity tests

LISA Pathfinder

- LISA Pathfinder is a mission that will demonstrate the possibility of "Free Fall" in space at the level of ≈ 10⁻¹⁴ m s⁻², around 1 mHz
- The 2 "Test Masses" of LPF are protected from solar pressure by the satellite.
- A set of µ-thrusters allows to keep the SC centered on the TMs
- A number of effects have to be minimized:
 - The static gravitational potential between the TMs and the SC,
 - Residual links of the TMs w.r.t the SC via the residual vacuum,
 - Cross talk between various electrostatic actuators,
 - TM charging by Cosmic rays that is eliminated by UV illumination,
 - Temperature fluctuations ,
 - Magnetic field fluctuations,

• • • •

LisaPathfinder : A technological demonstrator

Goal of LISA Pathfinder

→ LISA PATHFINDER EXCEEDS EXPECTATIONS

Spacecraft: ESA/ATG medialuli; data: ESA/LISA Pathlinder Callaboration

European Space Agency

Pulsar Timing Arrays

- North American
 Nanohertz Observatory
 for Gravitational Waves
 (NANOGrav,
 North America)
- European Pulsar
 Timing Array
 (EPTA, Europe)
- Parkes Pulsar Timing Array (PPTA, Australia)

A wider range

Examples of 2015 EPTA results

FIG. 2: 95% upper limits on the GW strain amplitude in each pixel. These limits are obtained by mapping from the Bayesian MCMC-sampled cross-correlation values to a pixelated ORF basis ($N_{\rm pix} = 12288$). White stars show the pulsar locations.

- Limits on continuous GW from Individual Supermassive Black Hole Binaries
- Limits on anisotropy in the nanohertz stochastic GW background

Pulsar timing arrays: what next...

46

Conclusion

- Second generation ground-based GW detectors came back online, with amazing sensitivity
 - The LIGO detectors observed the beautifully clear and loud signal GW150914 and GW151226
 - This discovery opens up two new paths
 - Testing gravitation in uncharted territory
 - Gravitational wave astronomy
 - Eagerly waiting for and striving for –Advanced Virgo to join the network and the fun
- LISA Pathfinder: very good results
- Pulsar timing array: the next surprise?
- ... Primordial GW from CMB polarization?

