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What	are	we	going	to	learn?	

•  Planck	main	features	
•  Cosmic	Microwave	Background	(CMB)	basics	
•  (Some	of	the)	2015	Planck	results	
				Focus	on	early	universe	and	infla1on	
•  	Future	perspec1ves	
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The	Planck	Mission	
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3rd	CMB	space	mission	-	1st	ESA	in	
collabora:on	with	European,	US	and	
Canadian	scien:fic	community	
	
Mass 	2˙000	kg	
Power 	1˙600	W	
Size										4.2	×	4.2	m	
Cost	 	600×106	€	
	
50˙000	Electronic	components	
36˙000	l	4He	
12˙000	l	3He	
11˙400	Documents	
	
20	yrs	between	project	&	results	
	
2	instruments	&	consor:a	
16	countries	
400	researchers	



The	launch	of	ESA	Planck	
satellite	on	14th	May	2009	

Switched	off	on	the	23rd	October	2013	



The	Planck	mission:	a	very	short	summary	

•  3rd	genera1on	space	mission	aler	COBE	
a n d	 WMAP	 t o	 m e a s u r e	 CMB	
anisotropies	

•  Two	 instruments:	 Low	 Frequency	
Instrument	(LFI)	radiometers	(30,	44,	70	
GHz.)	 High	 Frequency	 Instrument	 (HFI)	
bolometers	(100,	143,	217,	353,	545	and	
857	GHz).	

•  Planck	 carries	 a	 scien1fic	 payload	
consis1ng	 of	 an	 array	 of	 74	 detectors	
sensi1ve	 to	 a	 range	 of	 frequencies	
between	∼25	and	∼1000	GHz,	which	scan	
the	sky	simultaneously	and	con1nuously	
with	 an	 angular	 resolu1on	 varying	
between	 ∼30	 arcminutes	 at	 the	 lowest	
frequencies	and	∼5’	at	the	highest.		

		
h_p://www.sciops.esa.int/index.php?project=planck&page=Planck_Collabora1on	



The	Planck	mission:	a	very	short	summary	



The	Planck	mission:	a	very	short	summary	

•  Unprecedented	 combina1on	 o f	
sensi1vity,	 angular	 resolu1on,	 and	
frequency	 coverage.	 E.g.	 the	 Planck	
detector	 array	 at	 143	 GHz	 has	
instantaneous	 sensi1vity	 and	 angular	
resolu1on	 25	 and	 3	 1mes	 be_er,	
respec1vely,	 than	 the	 WMAP	 V	 band	
(Benne_	 et	 al.	 2003;	 Hinshaw	 et	 al.	
2012a).	Max.	resolu1on	of	5’.	

•  In	addi1on,	Planck	has	a	large	overlap	in	
l	with	 the	high	 resolu1on	ground-based	
experiments	 ACT	 (Sievers	 et	 al.	 2013)	
and	 SPT	 (Keisler	 et	 al.	 2011).	 The	 noise	
spectra	 of	 SPT	 and	 Planck	 cross	 at	
around	 l∼2000,	 allowing	 an	 excellent	
check	 of	 the	 rela1ve	 calibra1ons	 and	
transfer	func1ons.	
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The	Planck	mission:	a	very	short	summary	
•  Planck’s	 all-sky	 wide-frequency	 coverage	

becomes	 a	 key	 factor,	 allowing	 it	 to	 measure	
foregrounds	and	remove	 them	to	below	 intrinsic	
detector	 noise	 levels,	 but	 the	 contribu1on	 of	
higher	 resolu1on	 experiments	 to	 resolve	
foregrounds	is	also	very	important.	

•  Increased	 sensi1vity	 places	 Planck	 in	 a	 new	
situa1on.	 Earlier	 satellite	 (COBE/DMR	 (Smoot	 et	
al.	 1992),	 WMAP	 (Benne_	 et	 al.	 2012))	
experiments	were	limited	by	detector	noise	more	
than	 by	 systema1c	 effects	 and	 foregrounds.	
Recent	 ground-based	 and	 balloon-borne	
experiments	ongoing	or	under	development	(e.g.,	
ACT	 (Kosowsky	 2003),	 SPT	 (Ruhl	 et	 al.	 2004),	
SPIDER	 (Fraisse	 et	 al.	 2011),	 EBEX	 (Reichborn-
Kjennerud	et	 al.	 2010)),	 have	 far	 larger	numbers	
of	 detectors	 and	 higher	 angular	 resolu1on	 than	
Planck	 but	 can	 survey	 only	 a	 frac1on	 of	 the	 sky	
over	 a	 limited	 frequency	 range.	 They	 are	
therefore	 sensi1ve	 to	 foregrounds	 or	 limited	 to	
analysing	only	the	cleanest	regions	of	the	sky	

	
	
h_p://www.sciops.esa.int/index.php?project=planck&page=Planck_Collabora1on	



4 CHAPTER 1 THE PLANCK MISSION

The Low Frequency Instrument (LFI) covers 30–70 GHz in three bands*; the High Fre-
quency Instrument (HFI) covers 100–857 GHz in six bands. The band centers are spaced ap-
proximately logarithmically. Performance parameters of the instruments are summarized in
Table 1.1. The LFI horns are situated in a ring around the HFI. Each horn collects radiation
from the telescope and feeds it to one or more detectors. As shown in Figure 1.3, there are
nine frequency bands, with central frequencies varying from 30 to 857 GHz. The lowest three
frequency channels are covered by the LFI, and the highest six by HFI.

TABLE 1.1

SUMMARY OF PLANCK INSTRUMENT CHARACTERISTICS

LFI HFI

INSTRUMENT CHARACTERISTIC

Detector Technology . . . . . . . . . . . . . . HEMT arrays Bolometer arrays
Center Frequency [GHz] . . . . . . . . . . . 30 44 70 100 143 217 353 545 857
Bandwidth (∆ν/ν) . . . . . . . . . . . . . . . 0.2 0.2 0.2 0.33 0.33 0.33 0.33 0.33 0.33
Angular Resolution (arcmin) . . . . . . . . 33 24 14 10 7.1 5.0 5.0 5.0 5.0
∆T/T per pixel (Stokes I)a . . . . . . . . . 2.0 2.7 4.7 2.5 2.2 4.8 14.7 147 6700
∆T/T per pixel (Stokes Q &U)a . . . . . 2.8 3.9 6.7 4.0 4.2 9.8 29.8 . . . . . .

a Goal (in µK/K) for 14 months integration, 1σ, for square pixels whose sides are given in the row “Angular
Resolution”.

FIG 1.3.— Spectrum of the CMB, and the frequency coverage of the Planck channels. Also indicated are the
spectra of other sources of fluctuations in the microwave sky. Dust, synchrotron, and free-free temperature fluctuation
(i.e., unpolarized) levels correspond to the WMAP Kp2 levels (85% of the sky; Bennett et al. 2003). The CMB and
Galactic fluctuation levels depend on angular scale, and are shown for ∼1◦. On small angular scales, extragalactic
sources dominate. The minimum in diffuse foregrounds and the clearest window on CMB fluctuations occurs near
70 GHz. The highest HFI frequencies are primarily sensitive to dust.

While LFI and HFI alone have unprecedented capabilities, it is the combination of data from
the two instruments that give Planck the imaging power, the redundancy, and the control of

* The 100 GHz channel originally proposed was dropped in 2003 due to budget constraints.

The	Planck	mission:	a	very	short	summary	
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6 CHAPTER 1 THE PLANCK MISSION

FIG 1.4.—Planck orbit at the 2nd Lagrangian point of the Earth-Sun system (L2). The spin axis is pointed
near the Sun, with the solar panel shading the payload, and the telescope sweeps the sky in large circles at 1 rpm.

system. Radiometer noise temperatures are 15–25 times the quantum limit, with angular res-
olution ranging from 56′ to 14′. The LFI instrument (Bersanelli & Mandolesi 2000) with its
large arrays of cryogenically cooled radiometers, represents another major advance in the state
of the art. It is designed to produce images of the sky (including polarized components) at 30,
44, and 70 GHz with high sensitivity and freedom from systematic errors.

The heart of the LFI instrument is a compact, 22-channel multifrequency array of dif-
ferential receivers with ultra-low-noise amplifiers based on cryogenic indium phosphide (InP)
high-electron-mobility transistors (HEMTs). To minimise power dissipation in the focal plane
unit, which is cooled to 20 K, the radiometers are split into two subassemblies connected by a
set of waveguides, as shown in Figure 1.5.

FIG 1.5.—The LFI radiometer array assembly (left), with details of the front-end and back-end units (right).
The front-ends are based on wide-band low-noise amplifiers, fed by corrugated feedhorns which collect the radiation
from the telescope. The waveguides transport the amplified signals from the front-end (at 20 K) to the back-end
(at 300 K). They are designed to meet simultaneously radiometric, thermal, and mechanical requirements, and are
thermally linked to the three V-groove thermal shields of the Planck payload module. The back-end unit, located
on top of the Planck service module, contains additional amplification as well as the detectors, and is interfaced to
the data acquisition electronics. The HFI is inserted into and attached to the frame of the LFI focal-plane unit.

The radiometer design is driven by the need to suppress 1/f -type noise induced by gain
and noise temperature fluctuations in the amplifiers, which would be unacceptably high for a
simple total power system. A differential pseudo-correlation scheme is adopted, in which signals



The	scien1fic	target	
•  The	main	 objec1ve	 of	 Planck,	 defined	 in	 1995,	 is	 to	measure	 the	

spa1al	 anisotropies	 of	 the	 temperature	 of	 the	 Cosmic	Microwave	
Background	 (CMB),	 with	 an	 accuracy	 set	 by	 fundamental	
astrophysical	 limits.	 Its	 level	 of	 performance	 was	 designed	 to	
enable	Planck	to	extract	essen1ally	all	the	cosmological	informa1on	
embedded	 in	 the	 CMB	 temperature	 anisotropies:	 Planck	 can	 be	
considered	 the	 ul:mate	 experiment	 as	 far	 as	 CMB	 temperature	
anisotropies	are	concerned.		

•  Planck	 was	 also	 designed	 to	 measure,	 to	 high	 accuracy,	 the	
polariza1on	 of	 the	 CMB	 anisotropies,	 which	 encodes	 not	 only	 a	
wealth	 of	 cosmological	 informa1on,	 but	 also	 provides	 a	 unique	
probe	of	the	early	history	of	the	Universe	during	the	1me	when	the	
first	 stars	 and	 galaxies	 formed.	 Finally,	 the	 Planck	 sky	 surveys	
produce	a	wealth	of	informa1on	on	the	proper1es	of	extragalac1c	
sources	and	on	the	dust	and	gas	in	our	own	galaxy		



The	scien1fic	target	
à	A	major	goal	of	the	Planck	experiment	is	to	determine	with	

great	precision	the	key	cosmological	parameters	describing	
our	 Universe.	 A	 combina1on	 of	 high	 sensi1vity,	 high	
angular	 resolu1on,	 and	 wide	 frequency	 coverage	 makes	
Planck	ideal	for	this	task.			

à Planck	is	able	to	measure	anisotropies	on	intermediate	and	
small	 angular	 scales	 over	 the	 whole	 sky	 much	 more	
accurately	 than	 previous	 experiments	 (COBE,	 Boomerang,	
Maxima,	WMAP,	 ...)	à	 improved	constraints	on	 individual	
parameters,	 and	 the	 breaking	 of	 degeneracies	 between	
combina1ons	of	other	parameters.		

à Planck’s	 sensi1vity	 and	 angular	 resolu1on	 make	 the	
analysis	 less	 reliant	 on	 supplementary	 astrophysical	 data	
than	previous	CMB	experiments.	



Planck	results	
à 	First	major	release	in	2013		
à 	Second	major	release	in	2015		
à 	in	total	>>100	papers	from	the	Planck	collabora1on	
à 	I	am	doing	a	massive	compression	of	informa1on	
à 	I	might	have	a	bias	towards	results	on	early	universe	and	
infla1on	physics.			

à 	At	the	moment	we	are	working	for	the	Legacy	papers,		
					to	be	delivered	by	the	end	of	2017.	



Planck
C

ollaboration:The
P

lanck
m

ission

Fig. 7. The nine Planck frequency maps show the broad frequency response of the individual channels. The color scale (identical to the one used in 2013), based on inversion of
the function y = 10x � 10�x, is tailored to show the full dynamic range of the maps.

15The	nine	Planck	frequency	maps	show	the	broad	frequency	response	of	 the	
individual	 channels.	 The	 color	 scale	 has	 been	 tailored	 to	 show	 the	 full	
dynamic	range	of	the	maps.	



The	CMB	@	Planck	resolu1on	



COBE,	WMAP,	Planck	

Planck	

Npix	~		104		

FWHM	~	7o	
	

lmax	~	30	

Npix	~		3×106		

FWHM	~	12	arcmin	
	

lmax	~	1000		

Npix	~		5×107		

FWHM	~	5	arcmin	
	

lmax	~	3000		

Planck	

1992	

2003	

2015	



CMB	basics	
•  (Afer	infla1on)	the	Universe	is	ini1ally	in	a	hot	and	dense	state	
•  Free	electrons	and	nuclei	interact	with	photons	via	Compton	sca_ering	
•  As	the	Universe	cools	down,	electrons	combine	with	protons	to	form	Hydrogen	

atoms	(recombina:on)	è	maOer-radia:on	decoupling:	last	scaOering	surface.		
						Time	of	decoupling	~	380000	yrs.	Temperature	at	decoupling	~	3000	K.		
						Aler	decoupling	CMB	photons	travel	feely	to	us.		
•  Due	to	Universe	expansion	the	CMB	has	today	a	blackbody	spectrum	with	color	

temperature	T	~	2.7	K	
	



The	``smooth’’	isotropic	universe:	CMB	as	a	blackbody		

THE	CMB	INTENSITY	SPECTRUM	
	
Best	fit	T0=2.725	±	0.002K	(95%	CL)	
No	distor1ons	detected		
(apart	y-distor1ons	from	Sunyaev-Zel’dovich	effect)	
	
	

A	``perfect’’	blackbody	spectrum		
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The	Background	Cosmology	
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CMB	basics	
•  The	Early	Universe	is	nearly,	but	not	perfectly	homogeneous	and	isotropic.	

Ma_er	and	radia1on	accrete	onto	overdense	regions				è anisotropies	
in	the	CMB	spa1al	temperature	distribu1on		

22	
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ΔT
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~ 10−5
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T = 2.755K
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x 100,000 

Ini1al	condi1ons	
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Actors:		
ü 	Photons-baryons		glued	together	in	a	single	fluid	by	Compton	sca_ering	un1l	last-sca_ering		
					epoch	z~1100.			
ü 	dark	ma_er+	neutrinos+cosmological	constant	
	
•  On	large	scales	(larger	than	then	cosmological	horizon	at	decouoling	epoch):		

					density	fluctua1ons	at	last	sca_ering	+	gravita1onal	redshil	(Sachs-Wolfe	effect)	

•  On	intermediate	scales:	
			

					gravity	(mainly	due	to	Dark	Ma_er)+pressure			
									==	acous;c	oscilla;ons		

	
	

•  On	small	scales	(scales	less	than	mean	free	path	of	photons)	:	
										Damping	due	to	photon	free	streaming	(Silk	damping)	

Genera1on	of	temperature	anisotropies	
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t Scattering Surface

Figure 2. Projection effects. Temperature fluctuations on a distant surface appear as
anisotropies on the sky. The angular size depends on the geometry of the universe and the
distance to this surface. At a fixed distance, a smaller physical scale is required to subtend
the same angle in a closed universe and larger in an open universe (schematically flattened
for clarity). Acoustic fluctuations from last scattering subtend a smaller angle on the sky
than the ISW effects for the same physical scale.

Projection Effect

The description of the primary signal now lacks only the relation between fluctuations at z ≃ 103 and
anisotropies today. A spatial fluctuation on this distant surface appears as an anisotropy on the sky. Two

quantities affect the projection: the curvature of the universe and the distance to the surface. The curvature
is defined as K = −H2

0ΩK/c2. Here the relative contribution of the curvature to the expansion rate is
ΩK = 1 − Ω0 −ΩΛ, with ΩΛ related to the cosmological constant as Λ = 3H2

0ΩΛ/c2.

Consider first the case of positive curvature. Photons free stream to the observer on geodesics analogous
to lines of longitude to the pole (see Fig. 2). Positive curvature (closed universe K > 0) makes the same

6

Genera1on	of	temperature	anisotropies	



The	CMB	power	spectrum	
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Sensi1vity	

σ Ĉ
=

2
2+1( ) fsky

b
2C + N( )

sky	coverage	
signal	

instrumental		
noise	

beam	

•  Even	for	an	ideal	noiseless	experiment	error	bars	are	not	0	due	to	cosmic	variance	

•  A	CMB	experiment	is:	
	
ü  	Cosmic	variance	dominated	where	the	error	budget	is	dominated	by						
						the	cosmic	variance	term	(instrumental	noise	is	negligible,	low	l)	
	

ü  	Signal	dominated	where	Cl	>	Nl		(low	l)	
	

ü  	Noise	dominated	when	Nl	>	Cl	(high	l)	





	Planck	CMB	power	spectrum	

180°	 18°	 1°	 0.2°	 0.1°	 0.07°	
Angular	scale	

Mul1pole	moment,	



WMAP+Planck+ACT+SPT	
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Effect	of	changing	parameters	on	Cl	



Cosmological	parameters	
The	Universe	observed	by	Planck	is	well-fit	by	a	6	
parameter	ΛCDM	model	(&	strong	constraints	provided	
on	devia1ons	from	this	model).		
Very	good	agreement	with	2013	analysis	
	

•  		Baryon	density:	Ωb	
	

•  		Ma_er	density:	Ωm	
	

•  		Acous1c	scale	(angular	size):	θMC	
	

•  		Op1cal	depth	to	reioniza1on:	τ
•  			Amplitude	of	primordial	scalar	fluctua1ons:	As	
	

•  			Scalar	Spectral	index:	ns	



Precision	cosmology	
ΛCDM:	The	standard	cosmological	model		
	
																				just	6	numbers…....	
describe	the	Universe	composi1on	and	evolu1on	

Homogeneous	background	 Perturba1ons	

Ωb,	Ωc,	ΩΛ,H0,	τ	
•  	atoms	4%	
•  	cold	dark	ma_er	23%	
•  	dark	energy	73%	

As,	ns,	r	
•  	nearly		scale-invariant	
•  	adiaba1c	
•  	Gaussian	

Λ??	CDM??	 ORIGIN???	
Credit:	L.	Verde	



Planck	parameters	measurements		

Cosmological	 parameters	 68%	 confidence	 limits	 for	 the	 base	 ΛCDM	 model	 from	 Planck	 CMB	 power	 spectra	 in	
combina1on	with	lensing	reconstruc1on	(``lensing’’)	and	external	data	(``ext’’,	BAO+JLA+H0)	



The	energy	budget	of	the	Universe	

...has	changed!	
credits:	F.	Bouchet	



The	rate	of	expansion	

...	has	changed	too	

H0	=	73.24	±	1.74	Mpc-1	km/s		
Riess	et	al.	2016	

H0	=	(67.8	±	0.9)	Mpc-1	km/s	
Planck	2015		
		
	



Extensions	to	the	“minimal”	model	

Planck Collaboration: Cosmological parameters
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More	extensions…	



CMB	lensing	
•  		Large	scale	structure	deflects	the	trajectory	of	CMB	photons		
								through	gravita1onal	lensing	

Planck Collaboration: Gravitational lensing by large-scale structures with Planck

1. Introduction

When Blanchard and Schneider first considered the e↵ect of
gravitational lensing on the cosmic microwave background
(CMB) anisotropies in 1987, they wrote with guarded optimism
that although “such an observation is far from present possibil-
ities [...] such an e↵ect will not be impossible to find and to
identify in the future.” (Blanchard & Schneider 1987). In the
proceeding years, and with the emergence of the concordance
⇤CDM cosmology, a standard theoretical picture has emerged,
in which the large-scale, linear structures of the Universe which
intercede between ourselves and the CMB last-scattering sur-
face induce small but coherent (Cole & Efstathiou 1989) de-
flections of the observed CMB temperature and polarisation
anisotropies, with a typical magnitude of 20. These deflec-
tions blur the acoustic peaks (Seljak 1996), generate small-scale
power (Linder 1990; Metcalf & Silk 1997), non-Gaussianity
(Bernardeau 1997), and convert a portion of the dominant E-
mode polarisation to B-mode (Zaldarriaga & Seljak 1998).
Gravitational lensing of the CMB is both a nuisance, in that it
obscures the primordial fluctuations (Knox & Song 2002), as
well as a potentially useful source of information; the charac-
teristic signatures of lensing provide a measure of the distri-
bution of mass in the Universe at intermediate redshifts (typi-
cally 0.1 < z < 5). In the⇤CDM framework, there exist accurate
methods to calculate the e↵ects of lensing on the CMB power
spectra (Challinor & Lewis 2005), as well as optimal estimators
for the distinct statistical signatures of lensing (Hu & Okamoto
2002; Hirata & Seljak 2003a).

In recent years there have been a number of increasingly sen-
sitive experimental measurements of CMB lensing. Lensing has
been measured in the data of the WMAP satellite both in cross-
correlation with large-scale-structure probed by galaxy surveys
(Hirata et al. 2004; Smith et al. 2007; Hirata et al. 2008; Feng
et al. 2012a), as well as internally at lower signal-to-noise (Smidt
et al. 2011; Feng et al. 2012b). The current generation of low-
noise, high-resolution ground-based experiments has done even
better; the Atacama Cosmology Telescope (ACT) has provided
an internal detection of lensing at 4.6� (Das et al. 2011, 2013),
and the South Pole Telescope detects lensing at 8.1� in the tem-
perature power spectrum, and 6.3� from a direct reconstruction
of the lensing potential (Keisler et al. 2011; van Engelen et al.
2012; Story et al. 2012). Significant measurements of the cor-
relation between the reconstructed lensing potential and other
tracers of large-scale structure have also been observed (Bleem
et al. 2012; Sherwin et al. 2012).

Planck enters this field with unique full-sky, multi-frequency
coverage. Nominal map noise levels for the first data release (ap-
proximately 105, 45, and 60 µK arcmin for the three CMB chan-
nels at 100, 143, and 217 GHz respectively) are approximately
five times lower than those of WMAP (or twenty five times lower
in power), and the Planck beams (approximately 100, 70 and 50
at 100, 143 and 217 GHz), are small enough to probe the 2.04
deflections typical of lensing. Full sky coverage is particularly
beneficial for the statistical analysis of lensing e↵ects, as much
of the “noise” in temperature lens reconstruction comes from
CMB fluctuations themselves, which can only be beaten down
by averaging over many modes.

Lensing performs a remapping of the CMB fluctuations,
such that the observed temperature anisotropy in direction n̂
is given in terms of the unlensed, “primordial” temperature

anisotropy as (e.g. Lewis & Challinor 2006)
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Here � is conformal distance (with �⇤ ⇡ 14000 Mpc) denoting
the distance to the CMB last-scattering surface) and  (�n̂, ⌘)
is the gravitational potential at conformal distance � along the
direction n̂ at conformal time ⌘ (the conformal time today is de-
noted as ⌘0). The angular-diameter distance fK(�) depends on
the curvature of the Universe, and is given by
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The lensing potential is a measure of the integrated mass distri-
bution back to the last-scattering surface. It contains information
on both the gravitational potentials  To first order, its e↵ect on
the CMB is to introduce a correlation between the lensed tem-
perature and the gradient of the unlensed temperature, a property
which can be exploited to make a (noisy) reconstruction of the
lensing potential itself.

In Fig. 1 we plot the noise power spectrum N��L for recon-
struction of the lensing potential using the three Planck frequen-
cies which are most sensitive to the CMB anisotropies on the
arcminute angular scales at which lensing e↵ects become ap-
parent. The angular size of the Planck beams (50 FWHM and
greater) does not allow a high signal-to-noise (S/N) reconstruc-
tion of the lensing potential for any individual mode (our high-
est S/N ratio on an individual mode is approximately 2/3 for the
143 and 217 GHz channels, or 3/4 for a minimum-variance com-
bination of both channels), however with full-sky coverage the
large number of modes which are probed provides considerable
statistical power. To provide a feeling for the statistical weight of
di↵erent regions of the lensing measurement, in Fig. 2 we plot
(forecasted) contributions to the total detection significance for
the potential power spectrum C��L as a function of lensing mul-
tipole L. In addition to the power spectrum of the lensing po-
tential, there is tremendous statistical power in cross-correlation
of the Planck lensing potential with other tracers of the matter
distribution. In Fig. 2 we also plot forecasted S/N contributions
for several representative tracers.

This paper describes the production, characterization, and
first science results for two Planck-derived lensing products:

(I) A map of the CMB lensing potential �(n̂) over a large
fraction of the sky (approximately 70%). This repre-
sents an integrated measure of mass in the entire visible
Universe, with a peak sensitivity to redshifts of z ⇠ 2.
At the resolution of Planck, this map provides an esti-
mate of the lensing potential down to angular scales of
50 at L = 2048, corresponding to structures on the order
of 3 Mpc in size at z = 2.

(II) An estimate of the lensing potential power spec-
trum C��L and an associated likelihood, which is
used in the cosmological parameter analysis of
Planck Collaboration XVI (2013). Our likelihood is
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cies which are most sensitive to the CMB anisotropies on the
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of the Planck lensing potential with other tracers of the matter
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for several representative tracers.
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sents an integrated measure of mass in the entire visible
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mate of the lensing potential down to angular scales of
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five times lower than those of WMAP (or twenty five times lower
in power), and the Planck beams (approximately 100, 70 and 50
at 100, 143 and 217 GHz), are small enough to probe the 2.04
deflections typical of lensing. Full sky coverage is particularly
beneficial for the statistical analysis of lensing e↵ects, as much
of the “noise” in temperature lens reconstruction comes from
CMB fluctuations themselves, which can only be beaten down
by averaging over many modes.

Lensing performs a remapping of the CMB fluctuations,
such that the observed temperature anisotropy in direction n̂
is given in terms of the unlensed, “primordial” temperature
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the CMB is to introduce a correlation between the lensed tem-
perature and the gradient of the unlensed temperature, a property
which can be exploited to make a (noisy) reconstruction of the
lensing potential itself.
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arcminute angular scales at which lensing e↵ects become ap-
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est S/N ratio on an individual mode is approximately 2/3 for the
143 and 217 GHz channels, or 3/4 for a minimum-variance com-
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(forecasted) contributions to the total detection significance for
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of the Planck lensing potential with other tracers of the matter
distribution. In Fig. 2 we also plot forecasted S/N contributions
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di↵erent regions of the lensing measurement, in Fig. 2 we plot
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•  Can	build	quadra1c	es1mators	of	the	lensing	poten1al,	exploi1ng	the		
						breaking	of	isotropy	i.e.	the	appearance	of	off-diagonal	term	in	the	alm		
						covariance	matrix	(equivalently,	the	coupling	between	T	and	grad	T	)		

		
•  Lensing	also	affects	the	Cl	directly	(smoothing	of	acous:c	peaks)	
	
•  The	lensing	poten:al	depends	on	cosmological	parameters	and	probes		
						completely	different	redshiTs	w.r.t	primary	anisotropies!	
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FIG. 1: The lensed (dashed red) and unlensed (solid black) Cl for the concordance ΛCDM

cosmology; the temperature power spectra are on the left and the E polarization power spectra

are on the right.

1. Lensing increases the power in the temperature (polarization) anisotropies by a factor

of two at l ∼ 4200 (l ∼ 5000). However we will find that the four-point function starts

reducing the signal to noise of the bispectrum on significantly larger scales.

In this work we will ignore other secondary anisotropies such as the thermal and ki-

netic Sunyaev-Zeldovich effects and the Ostriker-Vishniac effect. The dominant secondary

anisotropy, the thermal Sunyaev-Zeldovich effect, has a characteristic spectral shape that

will allow it to be separated. In general the physics of these secondary anisotropies requires a

non-linear analysis using hydrodynamical simulations, we will leave a detailed analysis of the

effects of these secondary anisotropies to a future work [22]. These secondary anisotropies

also produce polarization in the CMB, fortunately the amplitude of the polarization sec-

ondary anisotropies is much lower than the corresponding temperature anisotropies and will

be less of a problem.

Finally, although the E and B polarization modes most directly correspond to the pri-

mordial curvature fluctuations and gravity waves, they are not directly measured in CMB

experiments. The Stokes’ parameters Q and U are measured and then decomposed into E

and B. While this decomposition is perfectly well defined for a noise free experiment ob-

serving the full sky, ambiguities arises in practical experimental situations [23]. Fortunately
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Planck	lensing	measurements	
gravita1onal	lensing	is		
detected	with	an		
overall	significance	of	40σ	



Neutrino	masses	
•  Cosmological	measurements	constrain		 mν∑

•  Massive	neutrinos	below	free	streaming	scale	do	not	cluster,	thus	
						the	gravita1onal	poten1al	decays	at	small	scales	during	ma_er	domina1on		
						in	this	case	

•  Main	effect	on	CMB:	changes	in	lensing	(less	smoothing	of	peaks,	less		
						power	in	lensing	likelihood	at	L	>	10)	

•  Without	lensing	the	constraining	power	of	CMB	alone	is	small.	Previous		
						measurements	used	generally	a	combina1on	of	CMB	and	LSS	data	
	
	
	
	



What	about	the	ini;al	condi;ons	set	in		
the	very	early	universe?		



We	are	here	

We	seek	informa1on	
about	very	early	;mes		
and	very	high	energies	
E~1016	GeV	

T~1	MeV	

Zeq~3500	

Zrec~1100	

Zrec~0	



												INFLATION	and	THE	INFLATON		
Infla;on	is	a	period	of	accelerated	expansion	in	the	early	universe.		
ABained	if	the	energy	density	of	the	universe	is	dominated	by	the	poten;al	energy	of	
a	scalar	field	(the	inflaton)	
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(effec1ve	cosmological	constant:	infla1on	is	driven	by	the	vacuum	energy	of	the	
scalar	field)		
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If																																				the	inflaton	is	slowly	rolling	its	poten;al:		
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												INFLATION:	WHY	SO	IMPORTANT?		

Ø 	Infla1onary	paradigm	is	one	of	the	most	relevant	development	in		
					modern	cosmology.	Introduced	to	solve	some	shortcomings	of	the			
					standard	Big-Bang	model	(Guth	‘81)	
					e.g.:	why	the	universe	is	so	nearly	spa1ally	flat?	(flatness	problem)		
														why	the	temperature	of	CMB	photons	on	opposite	sides	of	the		
														sky	is	so	accurately	the	same	even	if	they	were	never	in	causal		
														contact?	(horizon	problem)	
	
	
Ø 	most	importantly:	infla1on	offers	an	elegant	explana;on	for	the		
				origin	of	the	first	density	perturba;ons	which	are	the	seeds	for		
				the	CMB	anisotropies	and	the	Large-Scale-Structures	of	the	Universe	
				we	observe	today	(e.g.	cluster	of	galaxies).						
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From	S.	Dodelson	``Modern	Cosmology’’,	Academic	Press	(2003)		
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Genera:ng	the	primordial	density	perturba:ons		
ü 	first	step:	take	a	scalar	field	during	an	infla1onary	(quasi-de-Si_er)	phase		

				split	the	scalar	field	into	a	``classical’’	background	expecta1on	value	(on	the	vacuum	state)	
				and	quantum	fluctua:ons		around	the	mean	value	
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Genera:ng	the	primordial	density	perturba:ons		
The	inflaton	field	is	special:	it	dominates	the	energy	density	of	the	universe	during	infla1on	
	
	
	
	
Fluctua1ons	in	the	inflaton	produce	fluctua1ons	in	the	universe	expansion	from	place	to	place,		
so	that	each	region	in	the	universe	goes	through	the	same	expansion	history	but	at	slightly		
different	1mes:		
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ζ	remains	constant	on	superhorizon	scales	(ζ	is	the	uniform	energy	density	curvature	pert.)	
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So what’s going on?  
 
On microscopic scales (well inside the horizon) microphysics is at work: 
use quantum field theory. There are quantum fluctuations of the scalar 
field; if averaged over macroscopic interval of time  they vanish (quantum 
fluctuations of vacuum: particles are continuosly created and destroyed). 
 
However the space-time background is exponentially inflating so their 
physical wavelengths grow exponentially 
 
 
until they become greater then the horizon H-1 (which remains almost 
constant). On super-horizon scales the fluctuations get frozen (because of 
the friction term           ). The fluctuations do not vanish if averaged on 
macroscopic time interval: a classical fluctuation has been generated.  
 
Said in other words: if on superhorion scales               over macroscopic 
time interval then the final result is a state with a net number of 
particles. This is a gravitational mechanism of amplification. The crucial  
point is the “in’’ and “out” (of the horizon) state of the fluctuations  
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Log	a(t)	

Hubble	radius:	(a	H)-1		

End	infla1on	->			rad.	epoch->	ma_.	epoch	

(comoving)	lenghts	

λ~	2	π/k:	
fluctua1on	
mode	

t0:	today	

δϕ	⇒	ζ	
quantum	fluctua:ons		

ζ~δρ/ρ	

δρ/ρ⇒	δT/T	
seeds	for	CMB	fluctua:ons	&	structures	

Structure	forma:on	within	the	infla:onary	scenario	
Quantum	fluctua;ons	are	streched	from	microscopic	to	cosmological	scales	

1-3000	Mpc	

sub-atomic	scales	 cosmological	scales	
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Observa:onal	predic:ons			
Ø 	Primordial	density	(scalar)	perturba:ons		
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Ø 	Tensor-to-scalar	perturba:on	ra:o	

Ø 	Consistency	rela:on	(valid	for	all	single	field	models	of	slow-roll	infla1on):		
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Varying	the	Spectral	index	
If	n=1:	Harrison-Zel’	dovich	spectrum	(exact	scale-invariance)		

P(k)	

k	

n=1	

n>1:	blue	:lt:	perturba:ons	have	more	power	on		
																									small	scales	

n<1:	red	:lt:	less	power	on	smaller	scales	
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n=1	would	signal	some	underlying		symmetry;	
measuring	n	≠	1	would	signal	a	dynamical	process	for	genera;ng	
the	ini;al	density	fluctua;ons	(infla;on??)		



Observa:onal	predic:ons			

One	can	also	consider	a	running	of	the	spectral	index	and		
a	running	of	the	running		

N.B:	a	nega;ve	running	can	reduce	power	on	the	largest	scales!!		
								a	running	of	the	running	can	allow	for	even	stronger	suppression		
								on	large	scales,	while	leaving	small	scales	power	almost	unchanged		
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Primordial	gravita1onal	waves	

GWs	are	tensor	perturba1ons	of	the	metric.	Restric1ng	ourselves	to	a		
flat	FRW	background	(and	disregarding	scalar	and	vector	modes)	
	
																																ds2=a2(τ)[-	dτ2	+	(δij	+	hij(x,τ)) dxi	dxj]
	
where	hij		are	tensor	modes	which	have	the	following	proper1es	
hij		=	hji																																				(symmetric)	
hii		=	0																										(traceless)	
hij|i=	0																									(transverse)			
and	sa1sfy	the	equa1on	of	mo1on	
	

‘	=	d/dτ		
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h"ij +2
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a
h'ij −∇

2hij = 0
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Primordial	gravita1onal	waves	
GWs	have	only	(9à6-1-3=)	2	independent	degrees	of	freedom,		
corresponding	to	the	2	polariza1on	states	of	the	graviton	
	
	
	
	
	
	
	
	
	
behaviour:	
k	«	aH		(outside	the	horizon)		h	≈	const	+	decaying	mode	
k	»	aH		(inside	the	horizon)					h	≈	e±ikτ/a							gravita1onal	wave;	it	freely		
																																																																															streams,	experiencing	redshil											
																																																																															and	dilu1on,	like	a	free	photon	
	

polariza1on		
tensor	

free	massless,	minimally		
coupled	scalar	field	
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hij (
!x,τ ) = d3k

(2π )3∫ ei
!
k•!xh(!x,τ )εij (

!
k )

h"+ 2 a '
a
h '+ k2h = 0

Energy	scale	of	infla1on!	
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Why	gravity	waves	of	infla:on	are	important?		

Ø 	A	smoking	gun	of	a	period	of	infla1on	in	the	early	universe:	a		
				stochas1c	background	of	gravita1onal	waves	is	predicted	by	infla1on		
				independently	of	the	specific	infla1onary	model			

Ø 	The	amplitude	of	the	infla1onary	gravity	waves	probes	the		
					energy	scale	of	infla;on	
	
	
	
	
	
Ø 	a	detec;on	would	provide	a	firm	observa;onal	link	to	physics	of	
				the	early	universe,	characterized	by	energies	never	achievable	in	labs.	
	
Ø 	infla1onary	gravity	waves	generate	a	unique	imprint	into	the	CMB		
				polariza1on	pa_ern		(the	so	called	B-modes	of	polariza;on)	
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Classifying	infla1onary	models	

``Large	field’’		like	poten1al		
``Small	field’’		like	poten1al	
		
		

Roughly speaking: ``Large field’’ models can produce a high level of gravity waves;  
                             ``small field’’ models produce a low level of gravity waves 
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“Large field’’ models can produce a high level of gravity waves  
   (r>0.01)  

“Small field’’ models produce a low  level of gravity waves  
 (r<0.01)  

30≤ N ≤60.  
 
 
So the bigger is the field excursion during inflation the bigger is the  
amplitude of the gravity waves  

Inflaton	dynamics	and	the	level	of	gravity	waves		
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Planck	parameters	measurements		

n=1		excluded	at	5.6	sigma!!		



Observa1onal	constraints:	Planck	

n=1 (Harrison Zeld’ ovich spectrum) excluded at than 5.6 sigmas!  

Amplitude of primordial density (scalar) perturbations 

Spectral index  of primordial density (scalar) perturbations 
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(17) ln(1010As) = 3.062± 0.029 (68%CL)

(17) (�1 + �2 = even)
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(17) ln(1010As) = 3.062± 0.029 (68%CL)

(17) ns = 0.9677± 0.0060 (68%CL)

(17) (�1 + �2 = even)



Constraints	on	tensor	modes	
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(17) ln(1010As) = 3.062± 0.029 (68%CL)

(17) ns = 0.9677± 0.0060 (68%CL)

(17) f equil
NL = �16± 70 (68%CL)

fortho
NL = �34± 33 (68%CL)

(17) f local
NL = 2.5± 5.7 (68%CL)

(17) rD > 0.16 (95%CL)

(17) V 1/4 < 1.9⇥ 1016 GeV

(17) (�1 + �2 = even)

Energy	scale	of	infla1on	



What	are	the	implica;ons	for	
infla;onary	models	?	



		

€ 

Large fieldmodels V (φ)∝φα

r =
4α
N

1− n =
α + 2
2N

€ 

Exponential models

V (φ)∝exp[− 2 / p φ /MPl ]→ a(t)∝ t p

r =
16
p

1− n =
2
p

		

€ 

Small fieldmodels V (φ)∝1− (φ p /µ p ), p ≥ 3

r ~ 0 1− n =
2
N
(p −1)
(p − 2)

for examplep = 3 out of 95%CL

		

€ 

Natural inflation V (φ)∝1+ cos(φ / f )
consistent for f ≥ 5MPl

		

€ 

Starobinky model R + (R 2 / 6M 2 )

→V(φ )∝ (1− e−2 2 / 3 φ /M Pl )



		

€ 

Hill- top	quartic	models	

V(φ )∝ [1− (φ /µ)p ]; p = 4

		

€ 

Starobins	ky model R + (R 2 / 6M 2 )

→V(φ )∝ 1− e−2 2 / 3 φ /M Pl
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

		

€ 

α - attractors V(φ )∝ tanh2m(φ / 6αMPl )

for m = 1 log10(α
2 ) ≥ 2.3 95% CL



Constraints	on	slow-roll	parameters	



	ANGULAR	POWER	SPECTRUM	OF	TEMPERATURE	CMB							
																ANISOTROPIES	MEASURED	BY	PLANCK	



Running	of	the	spectral	index	



Reconstruc1ng	the	infla1onary	poten1al	
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No	significant	evidence	of	
departures	from	a	featureless	
Power	spectrum		



Primordial non-Gaussianity 



Primordial	NG	
ζ(x):	primordial	perturba1ons	
	
If	the	fluctua1ons	are	Gaussian	distributed	then	their	sta1s1cal	proper1es	are	
completely	characterized	by	the	two-point	correla1on	func1on,	<ζ(x1)ζ(x2)>			
or	its	Fourier	transform,	the	power-spectrum.				

Thus	a	non-vanishing	three	point	func;on,	or	its	Fourier	transform,	the	bispectrum		
is	an	indicator	of	non-Gaussianity	
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k 2 )Φ(
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Primordial	NG	

Physical	origin	of	primordial	NG:		
self-interac1ons	of	the	inflaton	field,	e.g.	λ	ϕ3, 
interac1ons	between	different	fields,			
non-linear	evolu1on	of	the	fields	during	infla1on,		
gravity	itself	is	non	linear…..					

Gaussian free (i.e. non-interacting) 
field, linear theory  

Collec1on	of	independent	harmonic	oscillators	
(no	mode-mode	coupling)	



Why	primordial	NG	is	important?		



Bispectrum	vs	power	spectrum	informa1on	

5×106	pixels	compressed	
into	~2500	numbers:	
O.K.	only	if	gaussian	
	
	
	
If	not	we	could	miss	
precious	informa;on	

Measure	3	point-func;on	
and	higher-order	

Planck	2013	Results.	XV.	CMB	power	spectra	and	likelihood		

Planck	2013	Results.	I.	Overview	of	products	and	scien1fic	results		
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One	(among	many)	good	reason:		

fNL	and	shape	are	model	dependent:		
e.g.:	standard	single-field	models	of	slow-roll	infla1on		
predict	
					
																														fNL~O(ε,η)	<<1		
																																																																																							(Acquaviva,	Bartolo,	Rio_o,	Matarrese	2002;	
																																																																																								Maldacena	2002)	

		
	
A	detec1on	of	a	primordial	|fNL|~1	would	rule	out		
the	standard	single-field	models	of	infla1on	
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CMB	bispectrum	defini1on	

l3	

l2	

l1	

L=lmax	

L=lmax	

  

€ 

Bℓ 1ℓ 2ℓ 3 =
ℓ 1 ℓ 2 ℓ 3
m1 m2 m3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ aℓ 1

m1aℓ 2
m2aℓ 3

m3

m
∑ ; Bℓ 1ℓ 2ℓ 3 = hℓ 1ℓ 2ℓ 3bℓ 1ℓ 2ℓ 3

  

€ 

ΔT
T

ϑ ,φ( ) =
ℓ= 2

∞

∑ aℓm
m=−ℓ

ℓ

∑ Yℓm ϑ ,φ( )



SHAPES	OF	NG:LOCAL	NG	

Fergusson and Shellard 09 

Bispectrum peaks for squeezed triangles k3<<k1~k2   
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Non-lineari1es	develop	outside	the	horizon	during	or	immediately	aler	infla1on	
(e.g.	mul;field	models	of	infla;on)	

Babich et al.  04   



Single	field	models	of	infla;on	with	non-canonical	kine;c	term	L=P(ϕ,	X)	where		X=(∂	ϕ)2	(DBI	
or	K-infla1on)	where	NG	comes	from	higher	deriva1ve	interac1ons		of	the	inflaton	field		
	
Example:		
					

Bispectrum	peaks	for		equilateral	triangles:	k1=k2=k3	

EQUILATERAL	NG	

Fergusson and Shellard 09 

Babich et al.  04   
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Measuring	the	amplitude	and	shape	of	non-Gaussiani1es,		
with	their	huge	amount	of	informa1on	associated	to	triangular	
configura1ons	is	analogous	to	measuring	a	cross	sec1on	as	a	func1on		
of	the	angle	of	the	outgoing	par1cles	in	par1cle	and	collider	physics				

Constraints	on	fNL	translates	into	constraints	of	the	coefficients	of	the		
interac1ons	of	the	inflaton	Lagrangian			(e.g.	Senatore	et	al.	0905.37462)		

LESSON:	NG...IT’S	NOT	JUST	A	NUMBER	



Limits	set	by	Planck	

See	Planck	2015	results.	XVII.	Constraints	on	primordial	non-Gaussianity	
								



e.g.	mul1-field	models	of	infla1on	

e.g.	models	with	non-standard	kine1c	terms		

Observa;onal	limits	set	by	Planck		



Implica;ons	for	infla;on	models	
Ø 	The	standard	models	of	single-field	slow-roll	infla1on	has	survived		
					the	most	stringent	tests	of	Gaussianity	to-date:	
					devia;ons	from	primordial	Gaussianity	are	less	than	0.01%	level.	
					This	is	a	fantas;c	achievement,	one	of	the	most	precise		
					measurements	in	cosmology!	
	
	
		
	
	
Ø 	The	NG	constraints	on	different	primordial	bispectrum	shapes	severly		
					limit/rule	out	specific	key	(infla;onary)	mechanisms	alterna;ve	to	the		
					standard	models	of	infla;on						
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General	single-field	models	of	infla;on:	
Implica;ons	for	Effec;ve	Field	Theory	of	Infla;on	

	

Constraints	obtained	from		
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(Cheung	et	al.	08;	Weinberg	08)	
for	extensions	see	also	N.B.,	Fasiello,	Matarrese,	Rio_o	10)	
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(17) ln(1010As) = 3.062± 0.029 (68%CL)

(17) ns = 0.9677± 0.0060 (68%CL)

(17) f equil
NL = �16± 70 (68%CL)
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NL = �34± 33 (68%CL)

(17) (�1 + �2 = even)
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Mul;-field	models	of	infla;on:	the	curvaton	case	

A	second	scalar	field,	different	from	the	inflaton	and	subdominant	during	infla1on,	decays		
aler	infla1on	with	its	fluctua1ons	converted	on	super-horizon	scale	to	the	final		
gravita1onal	perturba1ons			

4 THE AUTHOR

(17) ln(1010As) = 3.062± 0.029 (68%CL)

(17) ns = 0.9677± 0.0060 (68%CL)

(17) f equil
NL = �16± 70 (68%CL)

fortho
NL = �34± 33 (68%CL)

(17) f local
NL = 2.5± 5.7 (68%CL)

(17) rD > 0.16 (95%CL)

(17) (�1 + �2 = even)



Models	with	non-standard	shapes	of	NG		

	Feature	and	resonant	models:	oscilla1ng	bispectra	due	to	
	
ü 	a	sharp	feature	(e.g.	step-like)	in	the	inflaton	poten1al	
							(Wang	&	Kamionkowski	2000;	Chen	et	al.	07)		

	
	✓periodic	features:	e.g.	axion	infla;on	V(φ)=V0(φ)[1+λ	cos(φ/f)]	
							(recent	interest	in	axion	monodromy	infla1on	mo1vated	by	string	theory	
								e.g.	McAllister	et	al.	2010;	Siverstein	&	Westphal	08;	Flauger	et	al	09;	
								Flauger	and	Pajer	2011).				

	
			Inflaton	quantum	perturba1ons	can	resonate	
				with	oscillatory	features	of	the	background		
				evolu1on	genera1ng	large	interac1ons	(NG)	
					
		
				



The	CMB	bispectrum	as	seen	by	Planck		



Cauton	here!!!	
Feature	models	reveal	interes;ng	
signatures,	and	they	seem	to	be	able	to	
match	the	oscilla;on	features	at	l<900	
and		the	apparent	signal	in	the	flajened	
limit	in	the	reconstructed	bispectrum;		
however	the	sta;s;cal		
significance	is	lower	than	2	σ	when	
corrected	for		``look	elsewhere’’	effects						

	Non-standard	shapes	of	NG:	feature	models		
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CMB	polariza1on	

•  Thomson	sca_ering	generates	
						linear	polarized	radia1on	if	the		
						intensity	of	the	incident	radia1on		
						presents	a	quadrupole	moment	

•  An	incident	quadrupole	can	arise	from		
	

					1.		Anisotropies	in	the	density		
										of	photons	surrounding	the		
										electron	(scalar	perturba1ons)	
					2.		A	quadrupolar	stretching	of	space		
										due	to	a	passing	gravita:onal	wave	

dσ
dΩ

=
3σ T

8π
ε̂ ' ⋅ ε̂

Assume	we	observed	polariza1on	in	the	CMB.	Can	we	tell	whether	the	source		
is	a	scalar	or	a	tensor?	



Stokes	Q,	U	parameters	
4 Theory of Cosmic Microwave Background Polarization

Q = 0
U > 0

Q = 0
U < 0

Q <  0
U = 0

Q > 0
U = 0

Fig. 3. The linear-polarization states described various combinations of Stokes parameters Q and
U .

gating in the ẑ direction has an electric-field vector,

Ex = ax cos(ωt − ξx); Ey = ay cos(ωt − ξy). (1)

The Stokes parameters are then the intensity,

I = a2
x + a2

y, (2)

linear-polarization parameters,

Q = a2
x − a2

y, U = 2axay cos(ξx − ξy), (3)

and circular-polarization parameter,

V = 2axay sin(ξx − ξy). (4)

The last Stokes parameter V vanishes as Thomson scattering induces no circular
polarization (but see Ref. [8]). The parameter Q quantifies the polarization in the
x-y directions while U quantifies it along axes rotated by 45◦. Fig. 3 illustrates the
linear polarization described by various combinations of Q and U .

If we rotate the x-y axes by an angle α about the line of sight ẑ, then the new
x′-y′ coordinates are

(

x′

y′

)

=

(

cosα sin α
− sinα cosα

)(

x
y

)

, (5)

but the Stokes parameters (Q, U) transform as [9]

(

Q′

U ′

)

=

(

cos 2α sin 2α
− sin 2α cos 2α

)(

Q
U

)

. (6)

Formally, (Q, U) are two quantities that under a coordinate transformation,

x′
i = Ak

i xk, (7)

Q	

U	

P = Q2 +U 2

α =
1
2
arctanU

Q

Intensity	
	
Orienta1on	with	respect	to	x-axis	
	

You	can	think	of	describing	polariza1on	using	a	“headless	vector”	P	with:	
	
		
	



E,	B	polariza1on	modes	

•  A	vector	can	always	be	decomposed	into	a	curl-free	(electric)	and	a	divergenceless		
						(magne1c)	component.	

	 v =

∇φ +


∇×

A

•  P=(Q,U)	does	not	transform	as	vector	but	as	a	trace-free	symmetric	2x2	tensor.	A	
						decomposi1on	similar	to	the	vector	case	s1ll	exists	but	it	involves	second	(covariant)		
						deriva1ves	of	two	scalar	fields	called	the	E	and	B	mode,	in	analogy	with		
						the	vector	case	
	
•  The	usefulness	of	the	E-B	decomposi1on	of	CMB	polariza1on	will	be	clear	shortly.	
						as	an	an1cipa1on:	scalar	(Density)	perturba:ons	can	generate	only	an	E-mode,		
						while	tensor	(GW)	perturba:ons	source	both	E	and	B	modes.	
	



m=0

v

Scalars 
(Compression)

hot

hot

cold

CMB	polariza1on	from	scalar	perturba1ons	

•  Consider	a	plane	wave	density	perturba1on	
	

•  Before	recombina1on,	photons	flow	from		
						underdense	(CMB	hot	spots)	to	overdense		
					(CMB	cold	spots)	regions	

•  An	electron	si�ng	in	the	middle	of	e.g.	an		
					overdense	region	sees	a	larger	incident	
					radia1on	intensity	in	the	direc1on	of		
					the	flow,	and	lower	intensity	from		
					the	plane	orthogonal	to	the	flow	

Hu	and	White	1997	

A	net	ver1cal	polariza1on	is	generated			
for	the	photon	sca_ered	out	of	the		
screen.	Rota;ng	k	in	the	plane	of	the	screen	
does	not	change	the	polariza;on	state	
	
	 											curl-free	polariza:on	(pure	E-mode)	
!v ||
!
k ⇒

!v ||
!
k



crest

trough

trough

m=2 
 

Tensors 
(Gravity Waves)

•  GW	stretch	a	circular	ring	of	test		
						par1cles	into	an	ellipse	like	in	figure	
	

•  The	lobes	are	no	longer	aligned	with		
						the	velocity	flows	
	

•  That	allows	to	generate	a	curl	
polariza1on	pa_ern.	

	

•  GW	generate	both	E	and	B	modes!	

CMB	polariza1on	from	tensor	perturba1ons	

Hu	and	White	1997	



Curl-free	E-modes	polariza1on:		
generated	by	density	perturba1ons	and	by	gravita1onal	waves	

Curl	B-modes	polariza1on:		
Can	be	produced	only	by	gravita;onal	waves	
	
	
Primordial	B-modes	is	a	smoking	gun	for	infla;on	
	
		

CMB	polariza1on	



CMB	POLARIZATION	(E-mode)	MEASURED	BY	PLANCK	



- 	Low	level	of	systsema1cs	in	polariza1on	(of	the	order	of	a	few	(μk2))	
			(probably	due	to	leakage	temp	->	polariza1on	from	beam	mismatches)	

- 	Therefore	polariza1on	results	must	be	considered	as	a	first	snapshot		
			of	the	2015	release	of	polariza1on		

- 	However:	high	level	of	consistency	between	TT	and	the	full		
			TT	TE	EE	likelihoods	
			(which	show	that	systema1c	effects	are	small)	

	

CMB	POLARIZATION	(E-mode)	MEASURED	BY	PLANCK	



BICEP2	results	of	March	2014:	BB	power	spectrum	

DETECTION OF B-MODES BY BICEP2 9
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FIG. 2.— BICEP2 power spectrum results for signal (black points) and temporal-split jackknife (blue points). The red curves show the lensed-⇤CDM theory
expectations — in the case of BB an r = 0.2 spectrum is also shown. The error bars are the standard deviations of the lensed-⇤CDM+noise simulations. The
probability to exceed (PTE) the observed value of a simple �2 statistic is given (as evaluated against the simulations). Note the very different y-axis scales for the
jackknife spectra (other than BB). See the text for additional discussion of the BB spectrum.
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FIG. 3.— Left: BICEP2 apodized E-mode and B-mode maps filtered to 50 < ` < 120. Right: The equivalent maps for the first of the lensed-⇤CDM+noise
simulations. The color scale displays the E-mode scalar and B-mode pseudoscalar patterns while the lines display the equivalent magnitude and orientation of
linear polarization. Note that excess B-mode is detected over lensing+noise with high signal-to-noise ratio in the map (s/n > 2 per map mode at `⇡ 70). (Also
note that the E-mode and B-mode maps use different color/length scales.)

r = 0.2−0.05
+0.07

r=0	excluded	at	the	5.9	σ	level	
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BICEP2/Keck	&	Planck	joint	analysis	
(Phys.Rev.LeO.	114	(2015)	10)		
	

These	results	show:	
	
Ø 	Planck	measurements	of	the	polariza;on	from	dust	have	been	crucial	
				to	properly	interpret	the	signal	measured	by	BICEP2	
	
Ø 	the	understanding	and	handling/removal	of	foregrounds	is	crucial		
				for	the	search	of	a	primordial	signal	in	the	B-modes		
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BICEP2/Keck	&	Planck	joint	analysis		
	

B-modes	detected		
with	high	significance	
in	the		
BK150	GHz	×	P353	GHz.	
	
A	substan;al	amount	of	
BK150	×	BK150	appears		
to	be	due	to	dust	
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BICEP2/Keck	&	Planck	joint	analysis		
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BICEP2/Keck	&	Planck	joint	analysis		
	

r<0.12	@95%	CL	



Adding	BICEP2/Keck	–	Planck	correla;on		
	

This	constraint	is	stronger	that	using	T	only,	because	the	BKP	likelihood	directly	constrain		
The	B-modes	and	so	it	is	insensi1ve	to	change	of	the	scalar	power	spectrum		



A	perfect	Universe?	
180°	 18°	 1°	 0.2°	 0.1°	 0.07°	

Angular	scale	

Mul1pole	moment,	



Zooming	on	the	largest	scales	l<50...	



CMB	``Anomalies’’	
Hemispherical	power	asymmetry	

						The	``northen’’	hemisphere	w.r.t	a	
privileged	direc1on	shows	a	deficit	of	
power.	Already	seen	by	WAMP	

€ 

ΔT
T

( ˆ n ) = (1+ A • ˆ n ) ΔT
T

iso
( ˆ n )

€ 

A = 0.067± 0.023



The	CMB	@	Planck	resolu1on	



The	future	of	CMB:	B-modes	

•  A	huge	experimental	and	theore1cal	effort	is	
ongoing	to	detect	the	CMB	B-mode	polariza1on	

	
•  	Crucial	reason:	a	detec1on	of	B-modes	would	
be	a	smoking-gun	test	of	infla1on	

	



The	future	of	CMB:	B-modes	
•  Around	2014-2015,	a	new	era	in	Cosmology	has	started,	the	so	

called	B-mode	era.	The	constraints	on	infla1onary	GWs	set	by	
the	B-modes	of	CMB	polariza1on	started	to	be	compe11ve	with	
the	ones	from	temperature	alone	since	the	BICEP	2/Keck	Array/
Planck	joint	CMB	analysis	(and	the	discovery	in	2014	of	the	
lensing	induced	B-mode	by	the	Polarbear	telescope).	

		
•  A	variety	of	ground-based,	balloon-borne	and	satellite	

experiments	are	ongoing	or	have	been	proposed	for	the	(near-
term/far)	future.			

					e.g.:	ACTPol,	Polarbear,	CLASS,	Piper,Spider,	EBEX,…...;	
													satellites:	CORE,	PRISM,	LIteBIRd,PIXIE.		
														
	

		

	







Inflationary Models with CORE

LiteBIRD 

CORE (incl. delensing) 

Planck 2015 + BKP 
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 Exploring Cosmic Origins: Inflation

Models with approximatively the same potential in the observable region, but completely different 
post-inflationary expansion due to a different reheating era could be distinguished with CORE.CORE	could	achieve	a	sensi1vity	on	r	two	orders	of	magnitude	below	the	current	one		

	



See	h_p://www.cosmosnet.it	



CMB-Stage4	

•  	Next	genera1on	CMB	ground-based	program	to	
pursue	infla1on,	neutrino	proper1es,	dark	
energy	and	new	discoveries.		

•  	~500,000	detectors	in	the	30	-	300	GHz	using	
mul1ple	telescopes	and	sites	to	map	most	of	the	
sky	

•  	including	the	exis1ng	CMB	experiments	(e.g.,	
ACT,	BICEP/Keck,	CLASS,	POLARBEAR/Simons	
Array	&	SPT)		



1.4 The Road from Stage 3 to Stage 4 7
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Figure 3. Schematic timeline showing the expected increase in sensitivity (µK2) and the corresponding
improvement for a few of the key cosmological parameters for Stage-3, along with the threshold-crossing
aspirational goals targeted for CMB-S4.

improvement for a few of the key cosmological parameters for Stage-3, along with the threshold-crossing
aspirational goals targeted for CMB-S4.

Finally, in Fig. 4 we show how the scientific findings (yellow circles), the technical advances (blue circles)
and satellite selections (green circles) would a↵ect the science goals, survey strategy and possibly the design
of CMB-S4.

CMB-S4 Science Book

From	arXiv:1610.02743	



CMB-Stage4	

South	Pole	 Artacama	(Chile)	

South	Pole	Telescope	(SPT)	

BICEP-3	 Keck-Array	

ACT	

CLASS	



From	arXiv:1610.02743	



A	(re)new(ed)	window	to	cosmology:	
CMB	spectral	distor1ons	

Ø 	We	know	there	must	be	1ny	devia1ons	from	a	perfect	black	body	of	the	CMB		
					spectrum	in	the	frequency	domain	
	
Ø 		Not	detected	yet	(apart	y-distor1ons	from	Sunyaev-Zel’dovich	effect)	

Ø 		

	
							FROM	COBE/FIRAS		

		

€ 

ΔIν
Iν

< 10−4 µ < 9×10−5 y < 1.5×10−5 (95% C.L)Current status: distortions 

M. Liguori – Primary CMB – New challenges in Cosmic Microwave Backgroud studies – ASI 30 March 2016   

No distortion detected  
(except y-distortions from  
SZ-effect, not primordial). 
 
Best limits essentially date back  
to COBE/FIRAS: 
 
ΔIν/Iν < 10-4 

µ < 9 x 10-5 

y < 1.5 x 10-5   (95% C.L.) 

Spectral distortions yet undetected. They are expected in  
standard Cosmology, from a variety of mechanisms. 



CMB	spectral	distor1ons	
Ø  	Various	planned	and	proposed	satellite	missions	can	achieve	the	required	

sensi1vity	to	measure	the	primordial	μ	and	y	spectral	distor1ons:	these	are	
predicted	to	be	<μ>≈1.9×10-9				and	<y>≈4.2×10-8		

Sensi1ve	to	a	minimum	<μ>min≈10-9		 Sensi1ve	to	a	minimum	<μ>min≈10-8		

Ø  Besides	being	a	probe	of	the	standard	ΛCDM	model	(including	infla1on)	
					it	can	unveil	new	physics,	e.g.	about	
					-	decaying	and	annihila1ng		dark	ma_er	par1cles	
					-	black	holes	and	cosmic	strings	
					and	it	can	allow	to	measure	a	whole	series	of	signals	like	y-distor1ons	from		
					re-ionized	gas	
					

Primordial 
Inflation 
Explorer 
(PIXIE) 

Al Kogut 
Goddard Space 
Flight Center 



A	powerful	source	of	informa1on	

Ø 	CMB	spectral	distor1ons	expected	in	the	standard	ΛCDM	modeL:	
				a	very	promising,	yet	nearly		completely	unexploited		
				observa:onal	window!		
			(see,	e.g.,	Kathri	and	Sunyaev	2013,	arXiv:	1303.7212;	Chluba	2016,	arXiv:		
					1603.02496)	
	
Ø 	In	par:cular	can	probe	very	small	scales	10−4	-	0.02	Mpc!	
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0). Finally for z . zµ,f even Compton scattering is not
e�cient enough to establish kinetic equilibrium between
matter and radiation. The distortion created after this
moment is known as y-type and is relevant e.g. for the
Sunyaev-Zel’dovich e↵ect [7]. Of course this is a simpli-
fied picture since there is no sharp transition between one
regime and the next. For the purpose of analytical esti-
mates we will take the period responsible for the creation
of µ-distortion to be zµ,f . z . zµ,i with the numerical
values given above. As we will see, due to a logarithmic
dependence on the size of this interval, changing these
values by factors of order unity will not alter the main
results. It should be clear though that for precise predic-
tions one needs to study the system numerically.

We will be interested in the energy injection coming
from the dissipation of acoustic waves of the adiabatic
mode (Silk damping) as these re-enter the horizon and
start oscillating. Other sources of distortion are present
(e.g. adiabatic cooling [2]) and the physics of the system
is very rich. Our working assumption here is that either
all other sources lead to a smaller and therefore negligi-
ble distortion, as it is the case if the primordial power
spectrum is not too red tilted, or that all other relevant
e↵ects are understood with a high enough precision to
be subtracted o↵ leaving the µ-distortion caused by Silk
damping as the only signal.

µ-DISTORTION

In this section, following [1–3], we derive a formula that
relates the late time µ-distortion to the primordial power
spectrum. Using the Bose-Einstein distribution plus the
fact that the total number of photons is constant, for
an amount of energy (density) released into the plasma
�E one finds that µ ' 1.4�E/E. Hence, let us estimate
the energy injection due to damping of acoustic waves.
The energy density of a density wave is given by[19] Q =
⇢h��(x)2ipc2s/(1 + c2s), with cs the sound speed, ⇢ the
density and � the dimensionless amplitude of oscillations
averaged over a period (indicated by hip to di↵erentiate
it from the quantum/ensemble average hi). Since at this
time the universe is dominated by radiation we take ⇢ =
⇢� and c2s ' 1/3. Then one has

�E

E
' �

Z z
µ,f

z
µ,i

d

dz

Q

⇢�
' 1

4
h��(x)2ip|zµ,i

z
µ,f

(1)

We can use the transfer function (see e.g. [9])

��(k) ' 3 cos (kr) e�k2/k2

D , (2)

where, using that R ⌘ 3⇢B/4⇢� ⌧ 1, the di↵usion damp-
ing scale is

kD ⌘
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z

dz
1 + z

6Hne�T (1 +R)
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Figure 1: The figure shows the power spectrum with Silk
damping as function of log k. The dotted, dashed and dot-

dashed lines are �2
R

e

�2k2

/k

2

D at z

µ,i

= 2 ⇥ 106, z
µ,f

= 5 ⇥
104 and z

L

= 1100 respectively. The red area on the right
indicated by µ is the di↵erence of the power spectrum between
z

µ,i

and z

µ,f

. Once integrated over log k this gives the µ-
distortion. For comparison on the left we have highlighted
the scales probed by LSS and CMB anisotropies.

and

kr =

Z t

0

k dt

a
p
3(1 +R)

' 2kt

a
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. (4)

We then have

h��(x)2ip = 1.45
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)·~x ,

where R describes curvature perturbations. Finally to
account for the fact that µ arises from a thermalization
process, we use a top-hat filter in real space W (x), which
smears the dissipated energy over a volume of radius
k�1

s & k�1

D,f .
Summarizing, the deformation parameter µ is related

to primordial perturbations by
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where W (k) ⌘ 3k�3 [sin(k)� k cos(k)] is the Fourier

transform of the top-hat filter W (x) and ~k± ⌘ ~k
1

±
~k
2

. The quantum/ensemble average of µ(x) gives the
log-integral of the primordial power spectrum from
kD(zµ,i) ' 1.1⇥ 104 Mpc�1 to kD(zµ,f ) ' 46Mpc�1

hµ(x)i ' 2.3

Z
d log k�2

R(k)
h
e�2k2/k2

D

ii
f
, (7)

(From	Pajer	&	Zaldarriaga	2012)	
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CMB	μ	distor1ons		
Ø 	Example:		
					Energy	injec1on	from	dissipa;on	of	acous;c	waves	due	to	Silk	damping	
			
					The	relevant	redshit	range	is		5×104	=zf	<	z	<	zi=	2×106		
	
					and	the	relevant		scales	are	kD(zi)	=	12000	Mpc-1	and		kD(zf)	=	46	Mpc-1		
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(17) ln(1010As) = 3.062± 0.029 (68%CL)

(17) ns = 0.9677± 0.0060 (68%CL)

(17) f equil
NL = �16± 70 (68%CL)

fortho
NL = �34± 33 (68%CL)

(17) f local
NL = 2.5± 5.7 (68%CL)

(17) rD > 0.16 (95%CL)

(17) V 1/4 < 1.9⇥ 1016 GeV

(17)
⇤

H(t) =
ȧ

a

⌅

(17) (⇥1 + ⇥2 = even)

(17) µ ⇤ 1.4
4

�
⌅�2

�(x)⇧p
⇥zi

zf
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phenomenological models of dipolar modulation, which
were originally motivated by the observed power asym-
metry in CMB data. Since a trispectrum signal of the
⌧

NL

type gives rise to large-scale modulation of small-
scale power, and this leaves a signature in the µ-µ corre-
lation function, we can expect also these dipolar modu-
lation models to generate µ-µ correlations. We will show
that, if a modulation shows up at very small scales, a sig-
nal of this type is actually generated. Also in this case,
the dipolar anisotropy sources o↵-diagonal µ-µ couplings,
this time with |`

1

�`

2

| = 1. The observed CMB asymme-
try is, however, only on large scales, ` . 60 [16–20]. In
this case, we expect the signal to vanish, since spectral
distortions test only very small scales. Our results will
confirm this intuitive expectation.

This paper is organized as follows: In Sec. II we briefly
summarize the physical mechanism which generates µ-
type spectral distortions; in Secs. III and IV we derive the
µ-T and µ-µ correlation functions, respectively, for mod-
els with anisotropic NG and dipolar power asymmetry.
Some Fisher matrix forecasts for ideal cosmic-variance-
dominated experiments and more realistic experiments
are shown in Sec. V. Finally, we summarize our main
results and draw our conclusions in Sec. VI.

II. CMB µ DISTORTION ANISOTROPY

Heating due to di↵usion damping of acoustic waves can
induce distortions in the CMB blackbody spectrum. At
very early times, when double Compton scattering is ef-
ficient (z & z

i

⌘ 2 ⇥ 106), any generated distortion is
immediately erased due to quick thermalization, and the
blackbody spectrum is maintained. On the other hand,
for z

f

. z . z

i

with z

f

⌘ 5 ⇥ 104, double Compton
scattering has become ine�cient, and Compton scatter-
ing mainly thermalizes the system, without changing the
number of photons. Hence, due to energy injection via
acoustic wave dissipation, a blackbody spectrum is al-
tered to a Bose-Einstein distribution with nonzero chem-
ical potential: [21–30]

µ ⇡ 1.4

4
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2
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i
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, (1)

where hi
p

denotes a quantity averaged over an oscillation

period, and [F (z)]zi
zf

⌘ F (z
i

) � F (z
f

). The density fluc-

tuation a↵ecting µ is expressed as (see e.g., Refs. [31–34])
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where ⇣ denotes primordial curvature perturbation and
the photon transfer function is approximately given by
�

�

(k) ' 3 cos(kr) exp[�k

2

/k

2

D

(z)] with r(t) ' 2t/(a
p
3).

The di↵usion damping scales at z

i

and z

f

are, respec-
tively, k

D

(z
i

) ⇡ 12000 Mpc�1 and k

D

(z
f

) ⇡ 46 Mpc�1

[31–34].

The above equations yield an expression for the µ dis-
tortion [5, 6]:
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where W (x) ⌘ 3j
1

(x)/x is a top-hat filter function, lim-
iting the scales where the acoustic waves are averaged
to give heat as k

3

/k

s

. 1, and we have used an esti-
mate: hcos(k

1

r) cos(k
2

r)i
p

' 1/2. In the following anal-
ysis, we take k

s

to be k
D

(z
f

), in order to estimate a lower
bound on the µ distortion. Then, the transfer function
f(k

1

, k

2

, k

3

) filters the squeezed-limit signals, satisfying
k

1

, k

2

> k

D

(z
f

) > k

3

. As seen in Eq. (3), the µ distor-
tion has quadratic dependence on the primordial curva-
ture perturbation (while usual CMB anisotropy is simply
proportional to the curvature perturbation), and hence
the correlation between the µ distortion and the CMB
temperature anisotropy or the power spectrum of the µ

distortion is generated if the bispectrum or trispectrum of
curvature perturbations is nonzero [5, 6]. In what follows,
we analyze these correlators, including broken rotational
invariance.

III. µ-T CORRELATION DUE TO PRIMORDIAL
ANISOTROPIC NON-GAUSSIANITY

We here investigate potential imprints on spec-
tral distortions of primordial models which generate
a curvature bispectrum with a quadrupolar asym-
metry. This can be expressed as h⇣

k
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This type of angle dependence is realized in scenarios
of anisotropic inflation characterized by the presence of
a U(1) gauge field with a small but nonvanishing vac-
uum expectation value (see e.g., Refs. [13–15] and the
reviews [35, 36] for other possibilities). 2 One can expect
these models to leave signatures in the µ-T correlation
function, since the isotropic part is of the local type (thus

2
The quadrupolar signature (5) is a generic common prediction of

inflation models where rotational-invariance breaking is induced

by vector fields. In addition, depending on the specific model

considered, further contributions to the anisotropic bispectrum

are present; see, e.g., Refs. [13, 15].

		

Ø 	The	monopole		

It	is	predicted	to	be	1.9×10-8	for	the	best	fit	ΛCDM		
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0). Finally for z . zµ,f even Compton scattering is not
e�cient enough to establish kinetic equilibrium between
matter and radiation. The distortion created after this
moment is known as y-type and is relevant e.g. for the
Sunyaev-Zel’dovich e↵ect [7]. Of course this is a simpli-
fied picture since there is no sharp transition between one
regime and the next. For the purpose of analytical esti-
mates we will take the period responsible for the creation
of µ-distortion to be zµ,f . z . zµ,i with the numerical
values given above. As we will see, due to a logarithmic
dependence on the size of this interval, changing these
values by factors of order unity will not alter the main
results. It should be clear though that for precise predic-
tions one needs to study the system numerically.

We will be interested in the energy injection coming
from the dissipation of acoustic waves of the adiabatic
mode (Silk damping) as these re-enter the horizon and
start oscillating. Other sources of distortion are present
(e.g. adiabatic cooling [2]) and the physics of the system
is very rich. Our working assumption here is that either
all other sources lead to a smaller and therefore negligi-
ble distortion, as it is the case if the primordial power
spectrum is not too red tilted, or that all other relevant
e↵ects are understood with a high enough precision to
be subtracted o↵ leaving the µ-distortion caused by Silk
damping as the only signal.

µ-DISTORTION

In this section, following [1–3], we derive a formula that
relates the late time µ-distortion to the primordial power
spectrum. Using the Bose-Einstein distribution plus the
fact that the total number of photons is constant, for
an amount of energy (density) released into the plasma
�E one finds that µ ' 1.4�E/E. Hence, let us estimate
the energy injection due to damping of acoustic waves.
The energy density of a density wave is given by[19] Q =
⇢h��(x)2ipc2s/(1 + c2s), with cs the sound speed, ⇢ the
density and � the dimensionless amplitude of oscillations
averaged over a period (indicated by hip to di↵erentiate
it from the quantum/ensemble average hi). Since at this
time the universe is dominated by radiation we take ⇢ =
⇢� and c2s ' 1/3. Then one has

�E

E
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Z z
µ,f

z
µ,i

d

dz

Q

⇢�
' 1

4
h��(x)2ip|zµ,i

z
µ,f

(1)

We can use the transfer function (see e.g. [9])

��(k) ' 3 cos (kr) e�k2/k2

D , (2)

where, using that R ⌘ 3⇢B/4⇢� ⌧ 1, the di↵usion damp-
ing scale is
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Figure 1: The figure shows the power spectrum with Silk
damping as function of log k. The dotted, dashed and dot-

dashed lines are �2
R

e

�2k2

/k

2

D at z

µ,i

= 2 ⇥ 106, z
µ,f

= 5 ⇥
104 and z

L

= 1100 respectively. The red area on the right
indicated by µ is the di↵erence of the power spectrum between
z

µ,i

and z

µ,f

. Once integrated over log k this gives the µ-
distortion. For comparison on the left we have highlighted
the scales probed by LSS and CMB anisotropies.

and

kr =

Z t

0

k dt

a
p
3(1 +R)

' 2kt

a
p
3
. (4)

We then have

h��(x)2ip = 1.45
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)·~x ,

where R describes curvature perturbations. Finally to
account for the fact that µ arises from a thermalization
process, we use a top-hat filter in real space W (x), which
smears the dissipated energy over a volume of radius
k�1

s & k�1

D,f .
Summarizing, the deformation parameter µ is related

to primordial perturbations by

µ(x) ' 4.6
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where W (k) ⌘ 3k�3 [sin(k)� k cos(k)] is the Fourier

transform of the top-hat filter W (x) and ~k± ⌘ ~k
1

±
~k
2

. The quantum/ensemble average of µ(x) gives the
log-integral of the primordial power spectrum from
kD(zµ,i) ' 1.1⇥ 104 Mpc�1 to kD(zµ,f ) ' 46Mpc�1

hµ(x)i ' 2.3

Z
d log k�2

R(k)
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, (7)

sponding short and long wavelength contributions to ⇣(x). The dominant terms are
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so that the small-scale curvature perturbation modulated by the long-wavelength modes is
given by
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The fractional change in small-scale power due to the long-wavelength mode is therefore
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As written in the second equality the fractional change in small-scale power determines the
fractional change in the µ type distortions, since the average µ distortions are given by

hµi '
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d ln k�
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where �
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(k) is the power spectrum of the primordial curvature perturbations. F (k) is the
k-space window function denoted as W (k) in [34]: F (k) ' (9/4)[e
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(z) is the damping scale, and we need to evaluate the difference respectively at
redshifts z

i
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6 and z
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4, defining the µ-distortion era. Such redshifts correspond
to diffusion scales k
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now compute the TTµ bispectrum induced by the g
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In Eq. (2.6) the indices 1, 2, 3 refer to three different positions on last-scattering surface (or,
by means of an angular projection from the last-scattering surface, they label three different
directions in the sky). Also, in writing Eq. (2.6) we have used that the large-angle temperature
fluctuation is given by �T/T ' �⇣/5 (in the Sachs-Wolfe (SW) approximation).

The equation above describes correlation between �T/T and the fractional change in µ-
distortions, �µ/µ. If we want to work with µ-fluctuations instead, we simply have to multiply
Eq. (2.6) by the average µ distortions, Eq. (2.5). In the case of a scale invariant spectrum of
primordial curvature perturbations with �
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where we have moved to ` space by the harmonic transformation:
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denoting the angular power spectrum and
bispectrum (3.12), respectively.
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Ø 	Pajer	&	Zaldarriaga	2012	and	in	Ganc	and		Komatsu	2012	pointed	out		
				that	the	cross-correla1on	between	CMB	μ-distor1on	and	CMB		
				temperature	fluctua1ons	can	be	a	diagnos1c	very	sensi1ve	to	local-type		
				bispectra	from	infla1on		
	
Ø  Can	reach	sensi1vity	to	fNL~0.01-0.001!!!	(for	an	ideal	experiment…...)	

An	example:	spectral	distor1ons	and	
primordial	non-Gaussianity		



	
Ø 	A	simple	explana1on:				
					Local	primordial	non-Gaussianity	correlate	short-	with	long-mode		
					perturba1ons,			so	it	induces	a	correla1on	between	the	dissipa1on	process		
					on	small	scales	
	
	
and	the	long-mode	fluctua1ons	in	the	CMB		
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An	example:	spectral	distor1ons	and	
primordial	non-Gaussianity		



A	simple	argument	in	real	space	

If	there	is	a	local	model	of	non-Gaussianity,	then	the	small	scale	power		
spectrum	of	curvature	perturba1on	Δ2

ς(k,x)	will	be	modulated	from	
patch	to	patch,	by	the	long-wavelength	curvature	fluctua1on			
and	correlated	to	it	



Conclusions		
•  The	Universe	observed	by	Planck	is	well-fit	by	a	6	parameter	ΛCDM	model.	Very	good	

agreement	with	2013	analysis,	but	with	increased	precision.	Some	tensions	with	other	
dataset	disappeared	,	others	remain.	Planck	data	

	
•  provide	strong	constraints	on		devia1ons	from	this	base	ΛCDM	model		from	an	

analysis	of	an	extensive	grid	of	models	
•  firmly	establish	a	devia1on	from	scale	invariance	for	primordial	ma_er	perturba1ons,	

a	key	indicator	of	cosmic	infla1on	
•  detect	with	high	significance	lensing	of	the	CMB	by	intervening	ma_er,	providing	

evidence	for	dark	energy	from	the	CMB	alone	
•  find	no	evidence	for	significant	devia1ons	from	Gaussianity	in	the	sta1s1cs	of	CMB	

anisotropies,	providing	one	of	the	1ghtest	tests	on	standard	single-field	models	of	
infla1on	

•  find	a	low	value	of	the	Hubble	constant,	in	tension	with	the	value	derived	from	the	
standard	distance	ladder	

•  	find	a	deficit	of	power	at	low-ls	w.r.t.	our	best-fit	model	
•  confirm	the	anomalies	at	large	angular	scales	first	detected	by	WMAP	
•  establish	the	number	of	neutrino	species	at	3	
•  A	first	consistency	check	with	polariza1on	data	performed:	they	will	be	crucial	in	

support	these	conclusions	

	
		


