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Two Suggestions 
• Interrupt often ! It will keep us awake and you might chance to ask 

a good question 
 

• These slides and the covered material are somewhat tuned to be 
useful to HEP grad students  
– I sometimes use HEP examples; in those cases, I will try to explain the 

boundaries for the benefit of other scientists 
 

• I do not expect you to follow all the maths – 2 hours are little time 
for the material I would like to cover, so sometimes I will go fast 
and I will usually neglect to prove the points I make 
 
– the good thing for you is that you can try yourself at home 
– we will focus on the concepts; the slides are available for offline 

consumption so that you can check the details later 
  



Statistics Matters! 
• To be a good scientist, one MUST understand Statistics: 

 
– “Our results were inconclusive, so we had to use Statistics” 
 We are quite often in that situation ! 
– A good knowledge of Statistics allows you to make optimal use of your  

measurements, obtaining more precise results than your colleagues, other 
things being equal 

– It is very easy to draw wrong inferences from your data if you lack some 
basic knowledge in the theory of Statistics (it is easy regardless!) 
 

– Foundational Statistics issues play a role in our measurements, because 
different statistical approaches provide different results 

• There is nothing wrong with this: the different results just answer different 
questions 

• The problem usually is, what is the question we should be asking ?  
Not always trivial to decide! 

 
• We also as scientists have a responsibility for the way we communicate 

our results. Sloppy jargon, imprecise claims, probability-inversion 
statements are bad. And who talks bad thinks bad !  



The Basic Statistics Distributions 
 Let us review quickly the main properties of a few of the statistical distributions 

you are most likely to work with in data analysis 
 NB you find all needed info in any textbook (or even the PDG) – this is a summary 

Name Expression Mean Variance Fun facts 

Gaussian 
f(x;μ,σ)= e-[(x-μ)2/2σ2]/(2πσ2)1/2 μ σ2 

Limit of sum of 
random vars is 
Gaussian distr.  

Exponential 
f(x;τ)= e-x/τ/τ τ τ2 Nothing fun 

about the exp 

Uniform 
f(x;α,β)= 

(β-α)/2 for α<=x<=β 
0 otherwise (α+β)/2 (β-α)2/12 

Any continuous 
r.v. can be 
easily 
transformed 
into uniform 

Poisson f(x;μ)= e-μμN/N! μ μ 
Turns into 
Gaussian for 
large μ 



More distributions 

Name Expression: 
 

Mean Variance Fun facts 

Binomial 
f(r;N,p)=  N! pr(1-p)N-r/[r!(N-r)!] Np Npq 

Special case of 
Multinomial 
distribution 

Chisquare 
f(x;N)= e-x/2 (x/2)N/2-1/[2Γ(N/2)] n 2n 

Turns into 
Gaussian for 
large n 

Cauchy 
f(x)= [π(1+x2)]-1 Undefined! Infinite 

AKA Breit-
Wigner, AKA 
Lorentzian. 
Models 
residuals when 
uncertainties 
add linearly 



Warm-Up Example 1: Why it is Crucial 
to Know Basic Statistical Distributions 

• I bet most of you know the expression, maybe even the basic properties, of the following: 
– Gaussian (AKA Normal) distribution 
– Poisson distribution 
– Exponential distribution 
– Uniform distribution 
– Binomial and Multinomial distribution 

• A mediocre scientist can live a comfortable life without having other distributions at his or 
her fingertips. However, I argue you should at the very least recognize and understand : 

– Chisquare distribution 
– Compound Poisson distribution 
– Log-Normal distribution 
– Gamma distribution 
– Beta distribution 
– Cauchy distribution (AKA Breit-Wigner) 
– Laplace distribution 
– Fisher-Snedecor distribution 

• There are many other important distributions –the list above is just a sample set. 
 

• We have no time to go through the properties of all these important functions. However, 
most Statistics books discuss them carefully, for a good reason.  

• We can make at least just an example of the pitfalls you may avoid by knowing they exist! 



The Poisson 
Distribution 

You probably know what the Poisson distribution is: 
 
 
 
 
– The expectation value of a Poisson variable with mean μ is E(n) = µ 
– its variance is V(n) = µ 

 
 The Poisson is a discrete distribution. It describes the probability of getting 

exactly n events in a given time, if these occur independently and randomly at 
constant rate (in that given time) μ 

 
 
Other fun facts: 
 
– it is a limiting case of the Binomial [                                         ]  for p0, in the 

limit of large N 
– it converges to the Normal for large µ 
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The Compound Poisson Distribution 

• Less known is the compound Poisson distribution, which describes the 
sum of N Poisson variables, all of mean µ, when N is also a Poisson 
variable of mean λ: 
 
 
 
– Obviously the expectation value is E(n)=λµ 
– The variance is V(n) = λµ(1+µ) 

 
• One seldom has to do with this distribution in practice. Yet I will make the 

point that it is necessary for a physicist to know it exists, and to recognize 
it is different from the simple Poisson distribution. 
 

    Why ? Should you really care ? 
 
 Let me ask before we continue: how many of you knew about the existence 

of the compound Poisson distribution? 
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In 1968 the gentlemen named in the above clip observed four 
tracks in a Wilson chamber whose apparent ionization was 
compatible with the one expected for particles of charge  2/3e.  
Successively, they published a paper where they showed a track 
which could not be anything but a fractionary charge particle! 
In fact, it produced 110 counted droplets per unit path length 
against an expectation of 229 (from the 55,000 observed tracks). 
 
What is the probability to observe such a phenomenon ?  
We compute it in the following slide. 
 
Note that if you are strong in nuclear physics and thermodynamics, 
you may know that a scattering interaction produces on  
average about four droplets. The scattering and the  
droplet formation are independent Poisson processes. 
However, if your knowledge of Statistics is poor, this observation  
does not allow you to reach the right conclusion. What is the  
difference, after all, between a Poisson process and the  
combination of two ? 

PRL 23, 658 (1969) 



Significance of the Observation 
Case A: single Poisson process, with m=229: 
 

 
 
 

Since they observed 55,000 tracks, seeing at least one track with P=1.6x10-18 has 
a chance of occurring of 1-(1-P)55000, or about 10-13 
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You may know your detector and the underlying physics as well as you know your ***, 
but only your knowledge of basic Statistics prevents you from fooling yourself ! 
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Case B: compound Poisson process, with λµ=229, µ=4: 
One should rather compute 
 
 
 
 
from which one gets that the probability of seeing at least one such track is 
rather 1-(1-P’)55000, or 92.5%. Ooops! 
  

 



Point Estimation: 
Combining Measurements and Fitting 

• Perceived as two separate topics, but they really are the same thing (the former is 
a special case of the latter) – I will try to explain what I mean in the following 
 

• The problem of combining measurements arises quite commonly and we should 
spend some time on it 

– We will get eventually to the point of spotting potential issues arising from correlations.  
– We should all become familiar with these issues, because for a scientist combining 

measurements is a daily activity. 
 

• To get to the heart of the matter we need to fiddle with a few basic concepts. 
What we call in jargon Data fitting in Statistics is named “parameter estimation” 
(which should be itself composed of two parts, “point estimation” and “interval 
estimation”). One thus realizes that the issue of combining different estimates of 
the same parameter is a particular case of data fitting, and in fact the tools we use 
are the same 
 

• It is stuff you should all know well, but if you do not, I am not going to leave you 
behind 

     the next few slides contain a reminder of a few  
   fundamental definitions.  



PDF, E[.], Mean, and Variance 
• The probability density function (pdf) f(x) of a random variable x is a normalized function 

which describes the probability to find x in a given range:    
 

    P(x,x+dx) = f(x)dx 
 

– defined for continuous variables. For discrete ones, e.g. P(n|µ) = e-µµn/n! is a probability tout-court. 
 

• The expectation value of the random variable x is then defined as 
 
 
 
• E[x], also called mean of x, thus depends on the distribution f(x). Of crucial importance is 

the “second central moment” of x, 
 
 
 
 also called variance. The variance enjoys the property that  
 
   E[(x-E[x])2] = E[x2]-µ2,    as you can prove by yourself at home. 
• Also well-known is the standard deviation σ = sqrt(V[x]).  
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Parameter Estimation: Definitions 
The parameters of a pdf are constants that characterize 
 its shape, e.g. 

Suppose we have a sample of observed values: 

here x is meant to be a random variable, while theta is a parameter 

We often want to find some function of the data to estimate the  
parameter(s): 

Note: the estimator gets written with a hat 

Usually we say ‘estimator’ for the function of x1, ..., xn; 
‘estimate’ for the value of the estimator with a particular data set. 



Two Properties of Estimators 
If we were to repeat the entire measurement, the estimates from each would distribute  
with their own pdf g(), which can be characterized by its properties: 

biased large 
variance 

best 

We want small (or zero) bias (systematic error): 

such that the average of repeated measurements should tend to the true value. 

And we want a small variance (statistical error): 

Note: small bias & small variance are in general conflicting criteria. You probably 
Know this from practice, but in Statistics this is a surprisingly universal rule 

(will define better below) 



Covariance and Correlation 
 

• If you have two random variables x,y you can also define their covariance, defined as 
 
 
 
 
 

• This allows us to construct a covariance matrix V, symmetric, and with positive-defined 
diagonal elements, the individual variances σx

2,σy
2: 

 
 
 
 

• A measure of how x and y are correlated is given by their correlation coefficient r: 
 
 

 
• Note that if two variables are independent, i.e. f(x,y) = fx(x) fy(y) , then r=0 and  
 E[xy] = E[x]E[y] = µxµy.  
  However, E[xy]=E[x]E[y] is not sufficient for x and y be independent! In everyday 

usage one speaks of “uncorrelated variables” meaning “independent”. In statistical 
terms,uncorrelated is much weaker than independent! 
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Uncorrelated vs Independent 

 Uncorrelated << Independent: r=0 is a very weak condition; r only 
describes the tendency of the data to “line up” in a certain (any) 
direction. Many strictly dependent pairs of variables fulfil it.  

 E.g. the abscissa and ordinate of the data points in the last row below. 



The Error Ellipse 
 When one measures two correlated parameters θ = (θ1,θ2), in the large-sample limit their 

estimators will be distributed according to a two-dimensional Gaussian centered on θ. 
One can thus draw an “error ellipse” as the locus of points where the χ2 is one unit away 
from its minimum value (or the log-likelihood equals ln (Lmax)-0.5). 
 

 The location of the tangents to the axes provide the standard  
 deviation of the estimators. The angle φ is given by 

 
  

 
 

A measurement of one 
parameter at a given value of 
the other is determined by the 
intercept on the line connecting 
the two tangent points.  
The uncertainty of that single 
measurement, at a fixed value 
of the other parameter, is  
 

The correlation coefficient ρ is the 
distance of each axis from the 
tangent point, in units of the 
corresponding standard deviation  
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Error propagation 
 Imagine you have n i.i.d. variables xi, and (quite typically) you do not know their pdf but at 

least know their mean and covariance matrix.  Take a function y of the xi : what is its pdf ? 
You can expand it in a Taylor series around the means, stopping at first order: 

 
 
 

 From this one can show that the expectation value of y and y2 are, to first order, 
 
 
       and the variance of y is then the 

      second  term in this expression. 
       (see backup)  
 In case you have a set of m functions y(x), you can build their own covariance matrix 
 

 
 

 This is often expressed in matrix form once one  
 defines a matrix of derivatives A, 
 
 The above formulas allow one to “propagate” the variances from the xi to the yj, but this is 

only valid if it is meaningful to expand linearly around the mean   
   Beware of routine use of these formulas in non-trivial cases. 
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• To see how standard error propagation works, let us use the formula for the 
variance of y(x) 
 
 
 
 
 
 
 
 
 
 
 
 

• One thus sees that for uncorrelated variables x1,x2 (V12=0), the variances of their 
sum add linearly, while for the product it is the relative variances which add 
linearly. 
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How Error Propagation Works 

                 for the sum, 
 
 
 
 
for the product. 

and consider the simplest examples 
with two variables x1,x2: their sum and 
product. 



Example 2: Why We Need to 
Understand Error Propagation 

• We  have seen how to propagate uncertainties from some measurements (random 
variables!) xi to a derived quantity y = f(x):  
 

 
 
 this is just standard error propagation, for uncorrelated random variables xi.  

 
 What we neglect to do sometimes is to stop and think  
 at the consequences of that simple formula, in the  
 specific cases to which we apply it. That is because we  
 have not understood well enough what it really means. 

 
• Let us take the problem of weighting two objects  A and B  
 with a two-arm scale offering a constant accuracy, say  
 1 gram. You have time for two weight measurements.  
  
 What do you do ? 

– weigh A, then weigh B 
– something else ? Who has a better idea ? 
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Smart Weighing 

• If you weigh separately A and B, your results will be affected by the stated 
accuracy of the scale: σA = σ = 1g , σB = σ = 1g. 
 

• But if you instead weighed S=A+B, and then weighed D=B-A by putting 
them on different dishes, you would be able to obtain 
 
 
 
 
 
 
 

 Your uncertainties on A and B have become 1.41 times smaller! This is the 
result of having made the best out of your measurements, by making 
optimal use of the information available. When you placed one object on a 
dish, the other one was left on the table, begging to participate! 
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Addendum: Fixed % Error 
• What happens to the previous problem if instead of a constant error of 1 gram, the 

balance provides measurements with accuracy of k% ? 
• If we do separate weighings, of course we get σA=kA, σB=kB. But if we rather weigh S 

= B+A and D = B-A, what we get is (as A=(S-D)/2, B=(D-S)/2) 
 
 
 
 
 
 
 
 

• The procedure has shared democratically the uncertainty in the weight of the two 
objects. If A=B we do not gain anything from our “trick” of measuring S and D: both 
σA=kA and σB=kB are the same as if you had measured A and B separately. But if they 
are different, we gain accuracy on the heavier one at expense of the uncertainty on 
the lighter one! 
 

• Of course the limiting case of A>>B corresponds instead to a very inefficient 
measurement of B, while the uncertainty on A converges to what you would get if you 
weighed it twice. 
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Weighted Average 
• Now suppose we need to combine two different, independent 

measurements with variances σ1, σ2 of the same physical quantity x0:  
– we denote them with  
   x1(x0,σ1), x2(x0,σ2)     the PDFs are G(x0,σi) 

 
• We wish to combine them linearly to get the result with the smallest 

possible variance, 
 x = cx1+dx2 
           What are c, d such that σF is smallest ? 

 Answer: we first of all note that d=1-c if we want <x>=x0  (reason with expectation 
values to convince yourself of this). Then, we simply express 
the variance of x in terms of the variance of x1 and x2 
 
 
             , and find c which minimizes the expression. This yields: 
 
      
   The generalization of these    
   formulas to N measurements is   
   trivial 
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Estimators: a Few Definitions 
• Given a sample {xi} of n observations of a random variable x, drawn from a pdf f(x), 

one may construct a statistic: a function of {xi} containing no unknown parameters. An 
estimator is a statistic used to estimate some property of a pdf. Using it on a set of 
data provides an estimate of the parameter. 
 

• Estimators are consistent if they converge to the true value for large n. 
• The expectation value of an estimator θ* having a sampling distribution H(θ*;θ) is 

 
 

• Simple example of day-to-day estimators: the sample mean and the sample variance 
 
 
 

• The bias of an estimator is b=E[θ*]-θ.    An estimator can be consistent even if biased: 
the average of an infinite replica of experiments with finite n will not in general 
converge to the true value, even if E[θ*] will tend to θ as n tends to infinity. 

• Other important properties of estimators (among which usually there are tradeoffs): 
– efficiency:  an efficient estimator (within some class) is the one with minimum variance 
– robustness: the estimate is  less dependent on the unknown true distribution f(x) for a more 

robust estimator (see example on OPERA at the end) 
– simplicity:  a generic property of estimators which produce unbiased, Normally distributed results, 

uncorrelated with other estimates. 
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More Properties of Estimators  
and Notes 

• Mean-square error: MSE = V[x*] + b2 

 it is the sum of variance and bias, and thus gives more information on the “total” 
error that one commits in the estimate, by using a biased estimator. Given the 
usual trade-off between bias and variance of estimators, MSE is a good choice for 
the quantity to minimize. 

  later we will show a practical example of this 
 

• The RCF bound gives a lower limit to the variance of biased estimators so one can 
take that into account in choosing an estimator (see later) 
 

• Consistency is an asymptotic property; e.g. it does not imply that adding some 
more data will by force increase the precision! 

• Bias and consistency are independent properties – there are inconsistent 
estimators which are unbiased, and consistent estimators which are biased. 
 

• Notable estimator: the MLE  and the least-square estimate. Defined later. 
 

• Asymptotically most estimators are unbiased and Normally distributed, but the 
question is how far is asymptopia. Hints may come from the non-parabolic nature 
of the Likelihood at minimum, or by the fact that two asymptotically efficient 
estimators that provide significantly different results.  
 
 



Maximum Likelihood 
• Take a pdf for a random variable x, f(x; θ) which is analytically known, but for which the value of m 

parameters θ is not. The method of maximum likelihood allows us to estimate the parameters θ if 
we have a set of data xi distributed according to f. 
 

• The probability of our observed set {xi} depends on the distribution of the pdf and on the thetas. If 
the measurements are independent, we have  

 
 

• The likelihood function  
  
 
 is then a function of the parameters θ only. It is written as the joint pdf of the xi, but we treat those 

as fixed.  L is not a pdf!  NOTA BENE! The integral under L is MEANINGLESS. 
 
• Using L(θ) one can define “maximum likelihood estimators” for the parameters θ as the values 

which maximize the likelihood, i.e. the solutions   of the equation 
       
     
    for j=1…m 
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Variance of the MLE 

• In the simplest cases, i.e. when one has unbiased estimates and 
Gaussian distributed data, one can estimate the variance of the 
maximum likelihood estimate with the simple formula 

  
 
 
 (For those who know what MINUIT is, this is also the default used by 

MIGRAD to return the uncertainty of a MLE from a fit). 
  
 However, note that this is only a lower limit of the variance in 

conditions when errors are not Gaussian and when the ML 
estimator is unbiased. A general formula called the Rao-Cramer-
Frechet inequality gives this lower bound as 
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Example 3: the Loaded Die 
 Imagine you want to test whether a die is loaded. Your hypothesis might be that 

the probabilities of the six occurrences are not equal, but rather that 

Your data comes from N=20 repeated throws of the die, whereupon you get: 

The likelihood is the product of probabilities, so to estimate the "load" t you write L as 

Setting the derivative wrt t to zero of –logL yields a quadratic equation: 

This has one solution in the allowed range for t, [-1/6,1/3]: t=0.072. Its uncertainty can be 
obtained by the variance, computed as the inverse of the second derivative of the likelihood. 
This amounts to +-0.084. The point estimate of the load, the MLE, is different from zero,  
but compatible with it. We conclude that the data cannot establish the presence of a load. 



Exercise with root 
 Write a root macro that determines, using the likelihood of the previous slide, the 

value of the bias, t, and its uncertainty, given a random set of N (unbiased) die 
throws. 

 Directions: 
1) Your macro will be called “Die.C” and it will contain a function “void Die(int N) {}” 
2) Produce a set of N throws of the die by looping i=0...N-1 and storing the result of 

(int)(1+gRandom->Uniform(0.,6.));  
3) Call N1=number of occurrence of 1; N3=occurrences of 6; N2=other results. 
4) With paper and pencil, derive the coefficients of the quadratic equation in t for 

the likelihood maximum as a function of N1, N2, N3. 
5) Also derive the expression of –d2lnL/dt2 as a function of t and N1,N2,N3. 
6) Insert the obtained formulas in the code to compute t* and its uncertainty σ(t*). 
7) Print out the result of t in the allowed range [-1/6,1/3] and its uncertainty. If 

there are two solutions in that interval, take the result away from the boundary. 
8) How frequently do you get a result for t less than one standard deviation away 

from 0? 
 



The Method of Least Squares 

• Imagine you have a set of n independent measurements yi –Gaussian random 
variables– with different unknown means λi and known variances σi

2. The yi can 
be considered a vector having a joint pdf which is the product of n Gaussians: 

 
 
 

• Let also λ be a function of x and a set of m parameters θ, λ(x;θ1…θm). In other 
words, λ is the model you want to fit to your data points y(x). 

 We want to find estimates of θ. 
 
 If we take the logarithm of the joint pdf we get the log-likelihood function, 
 
 
 which is maximized by finding θ such that the following quantity is minimized: 
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• The expression written above near the minimum follows a χ2 distribution only if the 
function λ(x;θ) is linear in the parameters θ and if it is the true form from which the 
yi were drawn. 
 

• The method of least squares given above “works” also for non-Gaussian errors σi, as 
long as the yi are independent. But it may have worse properties than a full 
likelihood. 
 

• If the measurements are not independent, the joint pdf will be a n-dimensional 
Gaussian. Then the following generalization holds: 
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Note that unlike the ML, writing the χ2 only 
requires a unbiased estimate of the variance of a 
distribution to work! (it does a Gaussian 
approximation) 

λ(x;a,b,c) 

y 

x 

Both a nice and a devaluing property! 



Example 4: Know the Properties of 
Your Estimators 

• Issues (and errors hard to trace) may arise in the simplest of 
calculations, if you do not know the properties of the tools you are 
working with. 

 
• Take the simple problem of combining three measurements of the 

same quantity. Make these be counting rates, i.e. with Poisson 
uncertainties: 
 
– A1 = 100 
– A2 = 90 
– A3 = 110 

 
 These measurements are fully compatible with each other, given that 

the estimates of their uncertainties are sqrt(Ai)={10, 9.5, 10.5} 
respectively. We may thus proceed to average them, obtaining  

 <A> = 100.0+-5.77 

If they aren’t, 
don’t combine! 



 Now imagine, for the sake of argument, that we were on a lazy mood, and 
rather than do the math we used a χ2 fit to evaluate <A>.  

  
 Surely we would find the same answer as the simple average of the three 

numbers, right?  
 
 

In general, a χ2  statistic results from a  
weighted sum of squares; the weights 
should be the inverse variances of the true 
values.  
Unfortunately, we do not know the latter! 
 

χ2 fit        Likelihood fit 

Let us dig a little bit into this matter. This 
requires us to study the detailed definition  
of the test statistics we employ in our fits. 

the χ2 fit does not “preserve 
the area” of the fitted histogram 

WTF is going on ?? 

… Wrong! 



Two Chisquareds and a Likelihood 
• The “standard” definition is called  “Pearson’s χ2”, which for Poisson data we write as 
 

 
 
 

• The other (AKA “modified” χ2) is called “Neyman’s χ2”: 
 

 
 
 

• While χ2
P uses the best-fit variances at the denominator, χ2

N uses the individual estimated 
variances. Although both of these least-square estimators have asymptotically a χ2 
distribution, and display optimal properties, they use approximated weights. 

 The result is a pathology:  neither definition preserves the area in a fit! 
 χ2

P overestimates the area, χ2
N underestimates it. In other words, neither works to 

make a unbiased weighted average ! 
 

• The maximization of  the Poisson maximum likelihood, 
 
 

  instead preserves the area, and obtains exactly the result of the simple average. 
     Proofs in the next slides. 
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Proofs – 1: Pearson’s χ2 

• Let us compute n from the minimum of χ2
P: 

 
 
 
 
 
 
 
 
 
 
 
 
 n is found to be the square root of the average of squares, and is 

thus by force an overestimate of the area! 
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2 – Neyman’s χ2 

• If we minimize χ2
N , 

  
 
 
 we have: 
 

 
 
 
 
 
 
 
 

  
 
 
 
 the minimum is found for n equal to the harmonic mean of the inputs – which is 

an underestimate of the arithmetic mean! 
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Just developing  
the fraction leads to  

which implies that 

from which we finally get  

(ALTERNATIVELY,  
just solvefor n this one) 



3 – The Poisson Likelihood LP 
• We minimize LP by first taking its logarithm, and find: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 As predicted, the result for n is the arithmetic mean. Likelihood fitting 
preserves the area! 
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Putting it Together • Take a k=100-bin histogram H, fill 
each bin with a value sampled 
from a Poisson distribution of 
mean µ 

• Fit H to a constant by minimizing 
χ2

P , χ2
N , -2ln(LP)  in turn 

• Repeat many times, study ratio of 
average result to true µ as a 
function of µ 

 
• One observes that the 

convergence is slowest for 
Neyman’s χ2, but the bias is 
significant also for χ2

P  
• This result depends only 

marginally on k  
• Keep that in mind when you fit a 

histogram! Standard ROOT  
 fitting uses V=Ni  Neyman’s def! 

 
 



Discussion 
• What we are doing when we fit a constant through a set of k bin contents is to extract the common, 

unknown, true value µ from which the entries were generated, by combining the k measurements 
 

We have k Poisson measurement of this true value. Each equivalent measurement should have the same 
weight in the combination, because each is drawn from a Poisson of mean µ, whose true variance is µ. 
 

But having no µ to start with, we must use estimates of the variance as a (inverse) weight. So the χ2
N 

gives the different observations different weights 1/Ni. Since negative fluctuations (Ni < µ) have larger 
weights, the result is downward biased! 
 
What χ2

P does is different: it uses a common weight for all measurements, but this is of course also an 
estimate of the true variance V = µ : the denominator of χ2

P  is the fit result for the average, µ*. Since 
we minimize χ2

P to find µ*, larger denominators get preferred, and we get a positive bias: µ* > µ! 
 
All methods have optimal asymptotic properties: consistency, minimum variance. However, one seldom 
is in that regime. χ2

P  and χ2
N also have problems when Ni is small (non-Gaussian errors) or zero ( 

χ2
N undefined). These drawbacks are solved by grouping bins, at the expense of loss of information. 

 
LP does not have the approximations of the two sums of squares, and it has in general better properties.  
Cases when the use of a LL yields problems are rare. Whenever possible, use a Likelihood! 
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Whenever 
possible, use a 
Likelihood! 



Linearization and Correlation 
• In the method of LS the linear approximation in the covariance may lead to 

strange results 
• Let us consider the LS minimization of a combination of two measurements of 

the same physical quantity k, for which the covariance terms be all known.  
 In the first case let there be a common offset error σc . We may combine the 

two measurements x1, x2 with LS by computing the inverse of the covariance 
matrix: 
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The minimization of the above expression leads to the following 
expressions for the best estimate of k and its standard deviation: 
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2The best fit value does not depend on σc, and corresponds 
to the weighted average of the results when the individual 
variances σ1

2 and σ2
2 are used. 

This result is what we expected, and all is good here.  



Normalization Error: Hic Sunt Leones 
 In the second case we take two measurements of k having a common scale error.  
 The variance, its inverse, and the LS statistics might be written as follows: 
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This time the minimization produces these results  
for the best estimate and its variance: 
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Before we discuss these formulas, let us test 
them on a simple case: 
 x1=10+-0.5,   
 x2=11+-0.5,  
 σf=20% 
 

Try this at home to see 
how it works! 

This yields the following disturbing result: 
 k = 8.90+-2.92 ! 
What is going on ??? 
 



Shedding Some Light  
on the Disturbing Result 

• The fact that averaging two measurements  with the 
LS method may yield a result outside their range 
requires more investigation. 

• To try and understand what is going on, let us rewrite 
the result by dividing it by the weighted average result 
obtained ignoring the scale correlation: 
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If the two measurements differ, their  
squared difference divided by the sum of the individual  
variances plays a role in the denominator. In that case the LS fit “squeezes the scale”  
by an amount allowed by σf in order to minimize the χ2. 
This is due to the LS expression using only first derivatives of the covariance: 
the individual variances σ1, σ2 do not get rescaled when the normalization factor is lowered, 
but the points get closer.  
 



When Do Averages Outside Bounds 
Make Sense ? 

• Let us take the general case of the average of two correlated measurements, when the 
correlation terms are expressed in the general form : 
 
 
 

• The LS estimators provide the following result for the weighted average [Cowan 1998]: 
 
 

 whose (inverse) variance is 
 
 
 
 From the above we see that once we take a measurement of x of variance σ1

2, a second 
measurement of the same quantity will reduce the variance of the average unless ρ=σ1/σ2. 

 But what happens if ρ>σ1/σ2 ? In that case the weight w gets negative, and the average goes 
outside the “psychological” bound [x1,x2]. 

 
 The reason for this behaviour is that with a large positive correlation the two results are 

likely to lie on the same side of the true value! On which side they are predicted to be by the 
LS minimization depends on which result has the smallest variance. 
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How Can That Be ? 

 It seems a paradox, but it is not. Again, the reason why we cannot digest the 
fact that the best estimate of the true value µ be outside of the range of the 
two measurements is our incapability of understanding intuitively the 
mechanism of large correlation between our measurements. 
 

• John: “I took a measurement, got x1. I now am going to take a second 
measurement x2 which has a larger variance than the first. Do you mean to 
say I will more likely get x2>x1 if µ<x1, and x2<x1 if µ>x1 ??” 

Jane: “That is correct. Your second measurement ‘goes along’ with the first, 
because your experimental conditions made the two highly correlated and x1 
is more precise.” 
John: “But that means my second measurement is utterly useless!” 
Jane: “Wrong. It will in general reduce the combined variance. Except for the 
very special case of ρ=σ1/σ2,  the weighted average will converge to the true 
µ. LS estimators are consistent !!”. 
 



Jane vs John, round 1 

Jane: “Now please tell me whether they are mostly on the same side (orange rectangles) 
or on different sides (pink rectangles) of the true value.” 
John: “Ah! Sure, all but one are on orange areas”. 
Jane: “That’s because their correlation makes them likely to “go along” with one another.”  
 

John: “Okay, so ?” 
Jane: “Please, would you pick a few points at 
random within the ellipse?”  
John: “Done. Now what ?” 

John: “I still can’t figure out how on  
earth the average of two numbers can be 
ouside of their range. It just fights with my 
common sense.” 
Jane: “You need to think in probabilistic 
terms. Look at this error ellipse: it is thin and 
tilted (high correlation, large difference in 
variances).” 
 



Round 2: a Geometric Construction 
 

 Jane: “And I can actually make it even easier for you. Take a two-dimensional plane, draw 
axes, draw the bisector: the latter represents the possible values of µ. Now draw the error 
ellipse around a  point of the diagonal. Any point, we’ll move it later.” 

 John: “Done. Now what ?” 
  
 Jane: “Now enter your measurements x=a, y=b. That corresponds to picking a point P(a,b) in 

the plane. Suppose you got a>b: you are on the lower right triangle of the plane. To find the 
best estimate of µ, move the ellipse by keeping its center along the diagonal, and try to scale 
it also, such that you intercept the measurement point P.” 

 John: “But there’s an infinity of ellipses that fulfil that requirement”. 
  
  

 
Jane: “That’s correct. But we are only interested in the smallest ellipse! Its center will give 
us the best estimate of µ, given (a,b), the ratio of their variances, and their correlation.” 
  
John: “Oooh! Now I see it! It is bound to be outside of the interval!” 
  
Jane: “Well, that is not true: it is outside of the interval only because the ellipse you have 
drawn is thin and its angle with the diagonal is significant. In general, the result depends on 
how correlated the measurements are (how thin is the ellipse) as well as on how different 
the variances are (how  big is the angle of its major axis with the diagonal). Note also that in 
order for the “result outside bounds” to occur, the correlation must be positive! 



P(a,b) 

a x1 

When a large positive correlation 
exists between the measurements 
and the uncertainties differ, the best  
estimate of the unknown µ may lie 
outside of the range of the two  
measurements [a,b] 

LS estimate of µ 

Tangent in P to 
minimum ellipse is 
parallel to  
bisector 



More Notes on Maximum  
Likelihood and Other Estimators 

We discussed the ML method earlier; now making some further points about it. 
 

• Take a random variable x with PDF f(x|θ). We assume we know the form of f() but 
we do not know θ (a single parameter here, but extension to a vector of 
parameters is trivial). 

 Using a sample {x} of measurements of x we want to estimate θ 
• If measurements are independent, the probability to obtain the set {x} within a 

given set of small intervals {dxi} is the product 
 
 
 

 This product formally describes how the set {x} we measure is more or less likely, 
given f and depending on the value of θ 

• If we assume that the intervals dxi do not depend on θ, we obtain the maximum 
likelihood estimate of the parameter, as the one for which the likelihood function 
 
 

 is maximized. 
 Pretty please, NOTE: L is a function of the parameter θ, NOT OF THE DATA x!  
   L is not defined until you have terminated your data-taking. 
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• The ML estimate of a parameter θ can be obtained by setting the derivative of L wrt 
θ equal to zero.  

• A few notes: 
– usually one minimizes –lnL instead, obviously equivalent and in most instances simpler  

• additivity 
• for Gaussian PDFs  one gets sums of square factors 

– if more local maxima exist, take the one of highest L 
– L needs to be differentiable in θ (of course!). Also its derivative needs to. 
– the maximum needs to be away from the boundary of the support, lest results make little sense 

(more on this later). 
• It turns out that the ML estimate has in most cases several attractive features. As 

with any other statistic, the judgement on whether it is the thing to use depends on 
variance and bias, as well as the other desirable properties. 
 

• Among the appealing properties of the maximum likelihood, an important one is its 
transformation invariance: if G(θ) is a function of the parameter θ,  then 
 
 
 

 which, by setting both members to zero, implies that if θ* is the ML estimate of θ, 
then the ML estimate of G is G*=G(θ*), unless dG/dθ=0. 

 
 This is a very useful property! However, note that even when θ* is a unbiased 

estimate of θ for any n, G* need not be unbiased.  
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RCF Bound, Efficiency and Robustness 

of Point Estimators 
• A uniformly minimum variance unbiased estimator (UMVU) for a parameter is the one 

which has the minimum variance possible, for any value of the unknown parameter it 
estimates. 

• The form of the UMVU estimator depends on the distribution of the parameter! 
•  Minimum variance bound: it is given by the RCF inequality 

 
 
 
 A unbiased estimator (b=0) may have a variance as small as the inverse of the second derivative  
 of the  likelihood function, but not smaller.  

• Two related properties of estimators are efficiency and robustness. 
– Efficiency: the ratio of the variance to the minimum variance bound 
 The smaller the variance of an estimator, in general the better it is, since we can then expect the 

estimator to be the closest to the true value of the parameter (if there is no bias) 
– Robustness: more robust estimators are less dependent on deviations from the assumed underlying pdf  

• Simple examples: 
– Sample mean: most used estimator for centre of a distribution - it is the UMVU estimator of the mean, 

if the distribution is Normal; however, for non-Gaussian distributions it may not be the best choice.  
– Sample mid-range (def in next slide): UMVU estimator of the mean of a uniform distribution 

• Both sample mean and sample mid-range are efficient (asymptotically efficiency=1) for the 
quoted distribution (Gaussian and box, respectively). But for others, they are not. Robust 
estimators have efficiency less dependent on distribution 
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Choosing Estimators: an Example 

 OPERA quoted its best estimate of the δt as the 
sample mean of the measurements 

 
– This is NOT the best choice of estimator for the 

location of the center of a square distribution! 
– OPERA quotes the following result: 
  <δt> = 62.1 +- 3.7 ns 

 
– The UMVU estimator for the Box is the mid-range,  

 δt=(tmax+tmin)/2 
 

– You may understand why sample mid-range is better 
than sample mean: once you pick the extrema, the 
rest of the data carries no information on the 
center!!! It only adds noise to the estimate of the 
average! 

– The larger N is, the larger the disadvantage of the 
sample mean.   

I assume you are all familiar with the OPERA measurement of neutrino velocities 
You may also have seen the graph below, which shows the distribution of δt (in nanoseconds) 
for individual neutrinos sent from narrow bunches at the end of October 2011 
Because times are subject to random offset (jitter from GPS clock), you might expect this to be 
a Box distribution 
 



Expected Uncertainty  
on Mid-Range and Average 

• 100,000  n=20-entries histograms, with data 
distributed uniformly in [-25:25] ns 
 

– Average is asymptotically distributed as a Gaussian; 
for 20 events this is already a good approximation. 
Expected width is 3.24 ns 

– Uncertainty on average consistent with Opera result 
– Mid-point has expected uncertainty of 1.66 ns 
– if δt=(tmax+tmin)/2, mid-point distribution P(n δt) is 

asymptotically a Laplace distribution; again 20 events 
are seen to already be close to asymptotic behaviour 
(but note departures at large values) 
 

– If OPERA had used the mid-point, they would have 
halved their statistical uncertainty: 

– <δt> = 62.1 +- 3.7 ns  <δt> = 65.2+-1.7 ns  
 

NB If you were asking yourselves what is a Laplace 
distribution: 

  
 f(x) = 1/2b exp(-|x-µ|/b) 



However… 
• Although the conclusions above are correct if the underlying pdf of the data is exactly a 

box distribution, things change rapidly if we look at the real problem in more detail 
• Each timing measurement, before the +-25 ns random offset, is not exactly equal to the 

others, due to additional random smearings: 
• the proton bunch has a peaked shape with 3ns FWHM 
• other effects contribute to smear randomly each timing measurement 

– of course there may also be biases –fixed offsets due to imprecise corrections made to the delta t 
determination; these systematic uncertainties do not affect our conclusions, because they do not 
change the shape of the p.d.f 

• The random smearings do affect our conclusions regarding the least variance estimator, 
since they change the p.d.f. ! 

• One may assume that the smearings are 
Gaussian. The real p.d.f. from which the 20 
timing measurements are drawn is then a 
convolution of a Gaussian with a Box 
distribution. 

• Inserting that modification in the generation 
of toys one can study the effect: with 20-
event samples, a Gaussian smearing with 6ns 
sigma is enough to make the expected 
variance equal for the two estimators; for 
larger smearing, one should use the sample 
mean! 

• Timing smearings in Opera are likely larger 
than 6ns  They did well in using the sample 
mean after all ! σ of Gaussian smearing (ns) 

sample mean 

sample midrange 

Gaussian smearing (ns) 
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Confidence Intervals 



The simplest Confidence Interval:  
+- 1 Standard Error 

• The standard deviation is used in most simple applications as a measure 
of the uncertainty of a point estimate 

• For example: N observations {xi} of random variable x with hypothesized 
pdf f(x;θ), with θ unknown. The set X={xi} allows to construct an estimator 
θ*(X) 

• Using an analytic method, or the RCF bound, or a MC sampling, one can 
estimate the standard deviation of θ* 

• The value θ*+- σ*
θ* is then reported. What does this mean ? 

• It means that in repeated estimates based on the same number N of 
observations of x, θ* would distribute according to a pdf G(θ*) centered 
around a true value θ with a true standard deviation σθ*, respectively 
estimated by θ* and σ*

θ* 
• In the large sample limit G() is a (multi-dimensional) Gaussian function 
• In most interesting cases for physics G() is not Gaussian, the large sample 

limit does not hold, 1-sigma intervals do not cover 68.3% of the time the 
true parameter, and we have better be a bit more tidy in constructing 
intervals. But we need to have a hunch of the pdf f(x;θ) to start with! 

 
 

Pay att'n 



Neyman’s Confidence Interval Recipe 
• Specify a model which provides the probability density 

function of a particular observable x being found, for 
each value of the unknown parameter of interest: 
p(x|μ)  

• Also choose a Type-I error rate α (e.g. 32%, or 5%) 
• For each µ, draw a horizontal acceptance interval 

[x1,x2] such that  
  p (x∈[x1,x2] | μ) = 1 ‐ α.  
 There are infinitely many ways of doing this: it all 

depends on what you want from your data 
– for upper limits, integrate the pdf from x to infinity 
– for lower limits do the opposite 
– might want to choose central intervals 
– or shortest intervals ? 

•  In general: an ordering principle is needed to 
well‐define. 

• Upon performing an experiment, you measure x=x*. 
You can then draw a vertical line through it.  

  
  The vertical confidence interval [µ1,µ2]  (with 

Confidence Level C.L. = 1 ‐α) is the union of all values of 
μ for which the corresponding acceptance interval is 
intercepted by the vertical line. 



Important Notions on C. I.’s 

 Let the unknown true value of μ be μt . In repeated experiments, the confidence intervals 
obtained will have different endpoints [μ1, μ2], depending on the random variable x.   

 A fraction C.L. = 1 –α of intervals obtained by Neyman’s contruction will contain (“cover”) the 
fixed but unknown μt :  P( μt∈[μ1, μ2]) = C.L. = 1 -α. 

What is a vector ?  

Also note: “repeated sampling” does not require one to perform the same experiment all 
of the times for the confidence interval to have the stated properties. Can even be different  
experiments and conditions! A big issue is what is the relevant space of experiments to consider. 

A vector is an element of a vector space (a set with certain properties). 

           defined to be “an element of a confidence set”, the latter 
being a set of intervals defined to have the property of frequentist coverage under sampling! 
Similarly, a confidence interval is 

It is important thus to realize two facts: 
1) the random variables in this equation are μ1and μ2, and not μt !  
2) Coverage is a property of the set, not of an individual interval ! For a Frequentist, the interval 

either covers or does not cover the true value, regardless of α.  
  Classic FALSE statement you should avoid making:  
 “The probability that the true value is within µ1 and µ2 is 68%” !  

The confidence interval instead does consist of those values of μ for which the 
observed x is among the most probable (in sense specified by ordering principle) to be 
observed. 



One Example of Coverage 
• Do you remember the program "Die.C"? 
• You may modify it to compute the coverage of the 

likelihood intervals.  

By running it you will find that the coverage is only 
approximate for small number of throws, 
especially when your true value of the  
parameter t (the “increase in probability”  
of throws giving a 6)  lies close to the  
boundaries -1/6, 1/3. 
 

Create a histogram called “Coverage” and a 
cycle on the true parameter values, taking 
care of simulating the die throws correctly 
taking into account the bias t. Then you 
count how often the likelihood has the true 
value within its interval, as a function of the 
true value. 
 



Hypothesis Testing 
We are often concerned with proving or disproving a theory, or comparing and 
choosing between different hypotheses. 
 
In general this is a different problem than that of estimating a parameter, but the two 
are tightly connected. 
 
If nothing is known a priori about a parameter, naturally one uses the data to estimate it; 
if however theory predictions exist, the problem is better formulated as a test of hypothesis. 
 
 
Within the idea of hypothesis testing one 
must also consider goodness-of-fit tests: 
in that case there is only one hypothesis 
to test (e.g. a particular value of a parameter  
as opposed to any other value), so some of the  
possible techniques are not applicable 
 
A hypothesis is simple if it is completely 
specified; otherwise (e.g. if depending on 
the unknown value of a parameter) it is called composite. 



Nuts and Bolts of Hypothesis Testing 
• H0: null hypothesis  
• H1: alternate hypothesis 
• Three main parameters in the game: 

– α: type-I error rate; probability that H0 is true although you accept the 
alternative hypothesis 

– β: type-II error rate; probability that you fail to claim a discovery (accept H0) 
when in fact H1 is true 

– θ, parameter of interest (describes a continuous hypothesis, for which H0 is a 
particular value). E.g. θ=0 might be a zero cross section for a new particle 

• Common for H0 to be nested in H1 

Can compare different methods by plotting the test statistic 
for H0 and H1 and look at α vs β  
- Usually there is a tradeoff between α and β; often a subjective 
decision, involving cost of the two different errors.  
- Tests may be more powerful in specific regions of an interval  
 
In classical hypothesis testing, test of θ=0 equates to asking 
whether 0 is in the confidence interval  
(HT Interval estimation) 

Above, a smaller α is paid  
with a larger type-II error 
rate (yellow area)  
 smaller power 1-β 



Alpha vs Beta and 
Power Graphs 

• Very general framework of classification 
• Choice of α and β is conflicting: where to stay in the 

curve provided by your analysis method highly 
depends on habits in your field 

• What makes a difference is the test statistic: note how 
the N-P likelihood-ratio test outperforms others in the 
figure – reason is N-P lemma (see below) 

The power of a test usually also 
depends on the parameter of 
interest: different methods may 
have better performance in 
different parameter space points 
 
UMP (uniformly most powerful): 
has the highest power for any θ 

As data size increases, power curve becomes closer to step function 
 



Power of the Die Load Test 
• We can revisit the macro Die5.C, which studies the hypothesis that 

there is a load in the die, recast it in as a problem of Hypothesis 
Testing (is t=0 in the critical region?), and determine the power of 
the test as data size increases 

100 die throws  

500 die throws  

2000 die throws  
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Two digressions on Poisson data 

1) What do uncertainty bars mean ? 
 

Physicists are used to draw data 
constituted by event counts in bins of a 
histogram as points with uncertainty 
bars (statisticians NEVER do that!) 
But what does a point with a 
uncertainty bar really mean ? 

With the point you are doing two things:  
- You are giving the number of observed events 
- You are offering your estimate of the Poisson mean in the bin ! 

 
The uncertainty bar applies to the estimated mean, not to the number of observed 
events (of course!) 
So it is legal to draw a uncertainty around a (fixed) observation, but one needs to 
know what that means!!! 



 
2) Optimizing your counting experiment 

• Counting experiments are very common, and so is a misconception related 
to them 

• The variance σ of a Poisson process can be estimated by N, just as can the 
mean μ 

• So if you count N events and compare with a background B (assumed well 
known from e.g. a large MC), your signal S can be estimated as N-B, and 
you can assign an uncertainty sqrt(N) to it, if N is large 
 
– Given that, you are tempted to optimize your selection to get the largest value 

of (N-B)/sqrt(N), as this is a poor man's "number of sigma" significance of the 
excess 

 
• Beware of this – N must be really large for it to be a valid technique. 

– Also, there are other estimators of the significance that are MUCH more 
precise and still take only two lines of code to compute! 
 

• An example will clarify matters and hopefully convince you 



Optimization 
• We all-too-often see analyses blindly optimizing on S/sqrt(B) even in cases 

when the signal region is going to contain a small number of entries 
 

• One real-life example (recently seen): a great cut keeps 20% bgr, 60% signal 
– at preselection, expect 8 signal, 1 background: S/sqrt(B)=8 
– after selection, expect 4.8 signal, 0.2 background: S/sqrt(B)=10.7 
– Is it a good idea ? 
– Median of B-only p-value distribution for observing N=8+1=9 in the first case is 

pm=1.1*10-6 , twice smaller than median p-value for observing N = 4.8+0.2 = 5 
(pm=2.6*10-6)   we worsened the expected p-value by a factor of 2 !!! 

 
• If you really need a quick-and-dirty answer please use: Q=2[(S+B)0.5-B0.5] 

which has better properties (case above: Qpresel=4; Qsel=3.58) 
• In general “optimization” is a word used recklessly. A full optimization is 

seldom seen in HEP analyses. This however should not discourage you from 
trying! 

   
When possible, optimize on final result, not on “intermediate step” 

(systematics may wash out your gain if you disregard them while optimizing); 
use median H0 p-value. 
 

ANSWER IS HERE 
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Drawing home a few lessons 
 
If I managed to thoroughly confuse you, I have reached my 
goal! There are a number of lessons to take home from this: 

 
– Even the simplest problems can be easily mishandled if we do 

not pay a lot of attention  
 

– Correlations may produce surprising results. The average of 
highly-correlated measurements is an especially dangerous case, 
because a small error in the covariance leads to large errors in 
the point estimate. 

– Knowing the PDF your data are drawn from is CRUCIAL (but you 
then have to use that information correctly!) 

– Statistics is hard! Pay attention to it if you want to get correct 
results ! 



Backup and proofs 



Instruction to get a compiling root in 
Windows 

• Make sure you have installed visual studio express 11, 
or download it from Microsoft (there is a free version) 

• Create the following launch_root.bat file: 
> call “C:\Program Files (x86)\Microsoft Visual Studio 

11.0\Common7\Tools\vsvars32.bat” 
> cd “C:\root\bin” 
> root -l 

• Execute the .bat file 
• Now in root you can compile your code. I.e., do 

root> .L  pippa.C+   to compile it 
root> pippa();  to execute it 



Maximum Likelihood for Gaussian pdf 
• Let us take n measurements of a random variable distributed according to a 

Gaussian PDF with µ, σ unknown parameters. We want to use our data {xi} to 
estimate the Gaussian parameters with the ML method.  
 
 

• The log-likelihood is 
 
 
 

• The MLE of µ is the value for which dlnL/dµ=0: 
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So we see that the ML estimator of the 
Gaussian mean is the sample mean. 



 We can easily prove that the sample mean is a unbiased estimator of the 
Gaussian µ, since its expectation value is indeed μ: 
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since one can find as above that 
 
The bias vanishes for large n. Note that a unbiased  
estimator of the Gaussian σ  exists: it is the sample variance 
 
which is a unbiased estimator of the variance for any pdf. But it is not the ML one. 
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Expression of covariance matrix of a 
function y of data xi 

We take a function y(x) of n random variables xi and calculate 

ij

x

n

ji ji
y

ij

x

n

ji ji

jj

x

n

j j
ii

x

n

i i

ii
x

n

i i

ii
x

n

i i

V
x
y

x
yyEyE

V
x
y

x
yy

x
x
yx

x
yE

xE
x
yyyxyE

x
x
yyxy

µ

µ

µµ

µ

µ

σ

µ

µµ

µµµ

µµ

















==

==

====

==

==

∑

∑

∑∑

∑

∑













∂
∂

∂
∂

≅−=













∂
∂

∂
∂

+=

=



























−













∂
∂














−








∂
∂

+−







∂
∂

+≅

−







∂
∂

+≅

1,

222

1,

2

11

1

22

1

])[(][

)(

)()(

][)(2)()]([

)()()( (Taylor expansion to first order) 

(as E[y(x)]=y(μ) ) 

Now, as E[y(x)]=y(μ), Ε[y(x)2]=y(μ)2, it follows: 



The sample mean is a unbiased 
estimator of the population mean μ: 
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since, for the definition of expectation value, we have  
 
 
 
it follows that the sample mean is unbiased: 



Expectation value of sample variance 

That is the reason for the (n-1) factor in the expression of the sample variance, 
 
 
 
which is called “Bessel correction”. Note that this makes it unbiased, but there  
are other expressions (one which minimizes the MSE for Gaussian data is (n+1)!, but 
it is a biased estimator of the population variance!) 



About your lecturer 
• I am a INFN researcher, working in the CMS 

experiment at CERN since 2002 
– member of the CMS Statistics Committee, 2009- 

(and chair, 2012-2015) 
• Previously (1992-2010) have worked in the 

CDF experiment at the Tevatron 
• My interest in statistics dates back to early 

analyses in CDF. But becoming sapient in 
statistical matters is a lifelong task, and am 
still working on it 

• Besides research, I do physics outreach in a 
blog since 2005. The blog is now at 
http://www.science20.com/quantum_diaries
_survivor 

• Ways to contact me: 
– Email: tommaso.dorigo@gmail.com 
– Skype: tonno923 
– Twitter: dorigo 
– Phone: 3666995594 / 3468671707 
– Office phone: 0499677230 

• I recently published a book on how HEP 
discoveries are made and not made – 
contains discussions on how statistical 
inference is made in large particle 
physics experiments 
 
 
 
 
 
 
 
 
 
 
 
 

More info at the World Scientific page:  
http://www.worldscientific.com/worldscibo
oks/10.1142/q0032 

http://www.science20.com/quantum_diaries_survivor
http://www.science20.com/quantum_diaries_survivor
mailto:tommaso.dorigo@gmail.com
http://www.worldscientific.com/worldscibooks/10.1142/q0032
http://www.worldscientific.com/worldscibooks/10.1142/q0032
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