
Theory of optically thin emission line spectroscopy

1 Important definitions

In general the spectrum of a source consists of a continuum and several line components.

Processes which give raise to the continuous part of the spectrum involve situations where

the radiation emitters (or absorbers) are left free to vary their energy without constraints.

These include free – free, bound – free and free – bound processes. Electrons which jump

between bound levels of an ion, instead, can only vary their energy by well defined amounts

and, therefore, they produce spectral lines, either in absorption (if the arrival level is higher

than the starting level) or in emission (if the arrival level is lower than the starting level).

We call ground level of an ion the lowest energy configuration of its electrons. It is a state

with very long lifetime, in which the electrons experience the highest binding energy to the

nucleus.

We call permitted line a spectral line that corresponds to a transition following the selec-

tion rules. Such transitions are very fast and the levels being connected to the ground level

by permitted lines only live for extremely short times.

We call forbidden line a spectral line that corresponds to a transition violating one or

more selection rules.

We call meta-stable level an excited level of a heavy ion that is located a few eV above

the ground level and is connected to it only by forbidden transitions. Such a level lives for

a relatively long time, before radiating back to the ground level, because its spontaneous

decay is unlikely. If the spontaneous transition actually occurs, the emitted photon is never

re-absorbed, because the forbidden transition would require the photon and the ion to stay

close for a long time, which is obviously impossible.

2 The transport of radiation

Electromagnetic radiation is a form of propagating energy, which, while traveling along a path

from a source to the observer, can be affected by interactions with the intervening medium.

The intensity of radiation, measured over a frequency range, produces the spectrum of a
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source and it carries information on the physics of the source and of the intervening medium.

If we consider a radiation beam of specific intensity Iν , traveling along an elementary path

dr, we can describe the change of intensity occurring at frequency ν by taking into account

the amount of energy that is added to the beam (emission) and the one that is subtracted

from it:

dIν = ενdr − kνIνdr, (2.1)

where εν represents the emission coefficient and kν represents the absorption coefficient. If

we define the optical depth of the medium as:

τν = −kνr ⇒ dτν = −kνdr, (2.2)

where the negative sign arises from the fact that we observe the radiation beam looking to-

wards the source, while radiation propagates in the opposite direction, we can divide Equa-

tion (2.1) by dτν and obtain the differential form of the transfer equation:

dIν
dτν

= Iν −
εν
kν
. (2.3)

Defining the source function as Sν = εν/kν , the general solution of the transfer equation

becomes:

Iν(τν = 0) = Iν0e
−τ∗ν +

∫ τ∗ν

0

Sν(τν)e−τν dτν , (2.4)

where Iν(τν = 0) is the observed emergent radiation intensity, Iν0 is the background radiation

intensity and τ∗ν is the total optical depth of the encountered medium. The solution of the

transfer equation can be read as follows: the intensity of the observed radiation, emerging

from a cloud, is given by the sum of the background radiation intensity, absorbed by the full

length of the cloud, and of all the contributions emitted by the cloud layers, each one absorbed

by the path corresponding to its depth in the cloud.

If we make the simplifying assumption that Sν is spatially constant and, therefore, not

depending on τν , we can solve the integral getting to the solution:

Iν(τν = 0) = Iν0e
−τ∗ν + Sν(1− e−τ

∗
ν ), (2.5)

which has two limits, depending on τ∗ν :

Optically thick case (τ∗ν >> 1) ⇒ Iν(τν = 0) = Sν

in this case all the exponential terms are lost, no background is visible and the observed

intensity is simply the source function of the outermost layer of the cloud.

Optically thin case (τ∗ν << 1) ⇒ Iν(τν = 0) = Iν0 + τ∗νSν

this is obtained by plugging the approximation e−τ
∗
ν ≈ 1− τ∗ν , holding when τ∗ν << 1,

into equation (2.5). The meaning of this solution is that in the optically thin case we
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see the radiation coming from behind the cloud, with the addition of a faint emission

contribution. It is the case of the optically thin emission lines.

In general, the intensity of an emission line is defined as:

ILν = Iν(τν = 0)− Iν0, (2.8)

that is the observed intensity without the intensity of the background source. It should be

noted however that we can neglect the background source intensity if we look at a medium in

a direction where there is no source in the background (for example, the border of an ionized

nebula, far away from the central star) or in conditions of dilution of radiation.

3 Dilution of radiation

Dilution of radiation is a concept that applies whenever we are far away from a radiation

source (with respect to the source size). It is commonly the situation that we deal with in

the optical / UV domain, where sources are point-like, but it cannot be used in radio, where

the whole sky is a source of background radiation. It is expressed by applying a dilution

factor W to the radiation field intensity Iν . The definition of the dilution factor is the ratio

between the solid angle subtended by the source from the observing point with respect to the

whole solid angle of the sky. Numerically:

W =
Ω

4π
, (3.1)

where Ω is the solid angle subtended by the radiation source (which scales with the inverse

square of distance), while 4π corresponds to the whole-sky solid angle. In most cases of

interest, it is a very tiny quantity (it is W ∼ 10−5 for the Sun as seen from Earth and

W ∼ 10−16 for a point located in an ionized nebula at approximately 1pc from the ionizing

star). In the case of thermal sources, dilution of radiation means that:

Iν = WBν(T ), (3.2)

implying that all terms containing an interaction with the radiation field can be neglected

in the balance equations, effectively decoupling the system from the transport equation and

simplifying the solution of analytical problems.

4 Equilibrium conditions in ionized nebulae

The theory that we develop on the Physics of ionized nebulae is based on the assumption

that the medium can achieve:

3



1. thermal equilibrium (defined by a temperature that is constant in time): it requires

that the heating and the cooling of the medium have the same efficiency;

2. ionization equilibrium, meaning that the number of electrons that are released in ion-

ization processes is equal to the number of recombinations, so that the ionization degree

does not change in time;

3. steady state statistical equilibrium, meaning that the population of the ion excitation

levels does not change with time (so that the number of electrons which leave a specific

level in the unit of time is equal to the number of electrons which come to that same

level in the same time).

In this situation (which IS NOT a strict condition of Thermodynamic Equilibrium), we

can still apply some of the Thermodynamic Equilibrium relations and in particular we assume

that the particles have a Maxwell-Boltzmann velocity distribution. This is possible because

the elastic collision cross-section is by far the most relevant at the typical energies of thermal

astrophysical plasmas. The above assumptions are based on the observational evidence that

the spectra of photo-ionized nebulae, like H II regions and planetary nebulae, do not change

appreciably over short time scales. Should any of the conditions above be violated, we would

expect changes in the spectrum, as well. Indeed there are peculiar environments where such

assumptions DO NOT hold. We can mention for example:

• nova and supernova explosions

• compact regions in Active Galactic Nuclei

• shock waves

The spectra of most of these objects are actually variable and they must be studied with a

somewhat different formalism.

5 The two-level system

The two-level system is a simplified representation of the transitions that can occur between

the energy levels of an ion, under specific circumstances. In order to apply this formalism,

we need the equilibrium conditions described in the previous sections. In addition we neglect

• ionizations

• recombinations

and we only consider the transitions between two bound states, a lower level 1 (ground level)

and an upper level 2 (excited level). In these conditions the steady state rule implies that
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the number of electrons that undergo the transition 1→ 2 (excitation) equals the number of

electrons that follow the opposite transition 2 → 1 (de-excitation). The general expression

of steady state for a two-level system, therefore, is:

N1(B12Uν +N ′Q12) = N2(A21 +B21Uν +N ′Q21), (5.1)

where N1 and N2 are the occupation numbers of levels 1 and 2, Q12 and Q21 are the collisional

efficiency rates for excitation and de-excitation, N ′ is the collisional partners number density,

B12 is the radiation absorption probability, B21 the stimulated emission probability, A21 the

spontaneous emission probability and Uν is the radiation density. The general definition of

Uν is:

Uν =
1

c

∫
4π

Iνdω. (5.2)

This simply reduces to:

Uν =
4π

c
Iν (5.3)

if Iν is isotropic or it can be expressed through the equivalent isotropic radiation field. Solving

the steady state equation (5.1) gives the population ratio of the two considered levels under

specific physical conditions. If we are able to connect any spectral properties (mainly intensity

of continuum or emission lines) with the level occupation numbers, we are finally able to

constrain the physics of gas.

Although oversimplified, the two-level system well describes the physics of isolated tran-

sitions. It has two very important applications, namely to forbidden optical emission lines

and to radio emission lines.

5.1 The optical case

We consider the case when the transition connecting levels 1 and 2 corresponds to a forbidden

optical line. Since we are far from radiation sources, we put ourselves in dilution of radiation

(which implies that we can neglect all terms depending on Uν from equation 5.1). In this

case, the steady state equation (5.1) becomes:

N1N
′Q12 = N2(A21 +N ′Q21). (5.4)

We can infer the population ratio as:

N2

N1
=

N ′Q12

A21 +N ′Q21
. (5.5)

Now, recalling that in thermodynamic equilibrium (TDE) every process is exactly balanced

by its opposite process, the collisional efficiency rates must obey the relation:

N∗1Q12 = N∗2Q21, (5.6)
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where N∗1 and N∗2 are the occupation numbers of levels 1 and 2 in thermodynamic equilib-

rium, meaning that in TDE every collisional excitation must be followed by a corresponding

collisional de-excitation. Since, however, the collisional efficiency rates are intrinsic to the

ions, their relation is independent on whether the system is in TDE or not, so that:

Q12

Q21
=
N∗2
N∗1

=
g2
g1

exp

(
−hν21
kBT

)
(5.7)

is a general expression and we used the Boltzmann formula for the ratio of the two levels

occupation numbers in TDE. Using Equation (5.7) to express Q12 as function of Q21 in

Equation (5.5) and dividing numerator and denominator by N ′Q21, we get:

N2

N1
=
g2
g1

exp

(
−hν21
kBT

)
· 1

1 +A21/N ′Q21
. (5.8)

We immediately recognize that Equation (5.8) is a generalized form of the Boltzmann formula,

where the factor:
1

1 +A21/N ′Q21
=
b2
b1

(5.9)

represents the ratio between the departure coefficients from TDE of the two levels, which are

defined as:

bi =
Ni
N∗i

. (5.10)

If we compare the rate of spontaneous radiative decays A21 with that of collisional de-

excitations N ′Q21, we immediately see that

when A21 >> N ′Q21 (radiation dominated case) the departure coefficient ratio of

Equation (5.9) is much smaller than 1, all the ions sit in the ground level, because

every excitation is followed by radiation emission, and the system is far from TDE;

when A21 << N ′Q21 (collision dominated case) the departure coefficient ratio of Equa-

tion (5.9) is approximately 1 (Equation (5.8) reduces to the Boltzmann formula), all

collisional excitations are followed by collisional de-excitation and the system retains

its energy, staying close to TDE.

Following these considerations, we define the critical density of an emission line as:

Nc =
A21

Q21
. (5.11)

At this density, half of the ions which get excited to level 2 are also collisionally de-excited

back to level 1. This is an extremely useful reference, because at higher density values than

Nc the emission of a specific line is effectively suppressed by collisional de-excitations. We

conclude that there are 3 fundamental conditions to emit a forbidden line:

1. the density of collisional partners must be N ′ < Nc;
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2. the temperature of the gas must be high enough for collisions to excite the high energy

level 2;

3. the radiation field must be diluted (otherwise the excited level can be destroyed by an

incoming photon, before it radiates back the emission line photon).

6 Temperature and density determination in ionized neb-

ulae

There are two main ways to measure the temperature and the density of a photo-ionized

cloud and they are based on the observation of:

1. OPTICAL FORBIDDEN LINES

2. RADIO CONTINUUM

Here, we only deal with the first method. The determination from optical lines is based

on the two-level system formalism. Indeed, solving the transport equation in the optically

thin case we have:

ILν = Iν(τν = 0)− Iν0 =

∫ τ∗ν

0

Sνdτν . (6.1)

Since we can express the source function as:

Sν =
εcontν + εlineν

kcontν + klineν

, (6.2)

keeping in mind that it is εcontν << εlineν (because continuum radiation is diluted), kcontν >>

klineν (because the line is forbidden and therefore never re-absorbed) and that dτν = kν · dr,

we have that:

Sνdτν =
εlineν

kcontν

kcontν dr. (6.3)

Plugging Eq. (6.3) into (6.1), we find:

ILν =

∫ r∗

0

εLν dr, (6.4)

where we can use the general expression of a line emission coefficient:

εLν =
1

4π
hν21N2A21ψ(ν), (6.5)

where ψ(ν) is a function of order unity, expressing the normalized line profile over frequency.

It is clear that:

ILν =
1

4π
hν21A21ψ(ν)

∫ r∗

0

N2dr, (6.6)
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so that, if we consider the average gas density, which does not depend on r, and we take into

account the ratio of two emission lines coming from one specific ion species that have the

same profile, it is:
ILnm
ILn′m

=
νnm
νn′m

Anm
An′m

Nn
Nn′

. (6.7)

Using the population ratio derived in Equation (5.8) for the optical case of the two level

system, applied to the ratio Nn/Nn′ that appears in Equation (6.7), we obtain:

ILnm
ILn′m

=
gn
gn′

νnm
νn′m

Anm
An′m

1 +Anm/N
′Qnm

1 +An′m/N ′Qn′m
exp

[
−h(νnm − νn′m)

kBT

]
. (6.8)

The choice of lines with very similar frequencies reduces Equation (6.8) to:

ILnm
ILn′m

=
gn
gn′

Anm
An′m

1 +Anm/N
′Qnm

1 +An′m/N ′Qn′m
, (6.9)

which changes between two constant values depending mainly on density and it is therefore

a strong indicator of gas density (case of [S II] and [O II] emission lines). On the contrary,

taking lines that are far away in frequency, like in the case of the [O III], the ratio expressed

in Equation (6.8) is strongly controlled by the exponential term, which depends mainly on

temperature.

The complete solution of the nebula is to assume a guess to the temperature (10000K is

a good starting point for most ionized nebulae), to calculate the density and to use it in the

calculation of a more precise temperature. The process can be iterated until convergence is

achieved.

7 Recombination lines

Due to the equilibrium conditions that apply in photo-ionized nebulae, in order to keep the

ionization degree to a constant value, the number of electrons that are released in photo-

ionization processes must be equal to the number of electrons that recombine with ions.

In principle, recombinations can occur to an arbitrary energy level of the ions, but those

electrons, which directly recombine to the ground level, give back to the radiation field a

single photon, whose energy is high enough to ionize another particle. We shall see later

that this re-ionization occurs very close to the recombination point (on the spot), so that

recombinations to the ground level do not participate to the overall balance of the level

occupation numbers. The electrons that recombine to higher energy levels, on the other

hand, follow a very quick transition cascade to the ground level, going through a series of

permitted transitions, which results in the emission of recombination lines.

To study the recombination lines, we put ourselves in the typical conditions of a hydrogen

dominated astrophysical cloud, where:
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• all H atoms sit in the ground level and they are photo-ionized from there

• the radiation field is diluted and the gas is optically thin (no stimulated emission or

radiation absorptions are present)

• there is no collisional excitation of levels (this is reasonable because the energy gap

between the ground level and the first excited level of H is 10.4eV, which is far too high

to be covered by the collision with a thermal partner)

• the excited levels can only be populated by direct recombination or by recombination

to higher levels, followed by transition cascade coming to the level.

In these conditions, the statistical balance is expressed by:

Nn

n−1∑
m=1

Anm =

∞∑
m=n+1

NmAmn +NpNeα0n(Te), (7.1)

where α0n(Te) is the effective recombination coefficient at level n, which is a function of

temperature. Since in TDE every level would be described by a Saha-Boltzmann distribution,

we can generalize Equation (7.1) simply by introducing the departure coefficients in every

term containing an occupation number. The result is an equation system with unknown

departure coefficients that can be numerically solved in order to determine the actual level

occupation numbers and to predict the intensities of the recombination lines.

8 Ionization equilibrium

Let’s consider, as a starting point, the case of a pure hydrogen nebula. In this case, the

electron density is equal to the ion number density and the only relevant source of continuous

opacity is the bound – free absorption (photoionization) cross-section:

aν = 3 · 1029n−5ν−3, (8.1)

where n is the principal quantum number of the level that is being photo-ionized (meaning

that photo-ionizations from excited levels are highly disfavoured with respect to those from

the ground level). The absorption coefficient is obtained by multiplying Equation (8.1) by

the density of absorbers:

kkν (n− f) = 3 · 1029n−5ν−3N0n. (8.2)

Since the lifetimes of excited levels are very short, we can conclude that all photo-

ionizations occur from the ground level and write that the ratio between ionized and neutral

particles is:
N1

N0
=

R01

Neα0
, (8.3)
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where R01 ≈ 10−8 s−1 is the ionization rate and α0 ≈ 4 · 10−13 cm3 s−1 is the effective

recombination coefficient. Taking advantage from the pure hydrogen assumption (Ne ≈ N1),

we have:

N0 =
N2
e

2.5 · 104 cm−3
. (8.4)

Once we know the number density of neutral H atoms, we can put it into equation (8.2) to

evaluate the absorption coefficient. Forcing an optical depth of 1, we can estimate the size

at which a gaseous cloud becomes optically thick to the Lyman series and to the Lyman

continuum photons. It turns out that typical sizes to achieve the optically thick regime are

between 10−1 pc and 10−3 pc, much smaller than the size of a real cloud. As a consequence,

real clouds are optically thick to Lyman photons.
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