
Lecture Notes for Astronomical Spectroscopy

1 Fundamentals of atomic spectroscopy

1.1 Quantum number definitions

Let’s consider an atom or ion with 1 valence electron. Valence electrons are

defined as those electrons which lie outside the atomic core, that consists of the

stable group of electrons filling a complete shell. The elements that have only 1

valence electron are H and alcaline metals (Li, Na, K, Ru, Ce). Ions with only

1 electron are, instead, He+, Li++ etc. The state of an atom or ion with only 1

valence electron is defined by the following quantum numbers:

• n principal quantum number (n = 1, 2, 3, ... 1)

• l azimuthal quantum number (l = 0, 1, ... n� 1)

• s spin quantum number (s = ±1/2)

• j inner quantum number (j = l + s)

• mj magnetic quantum number (�j  mj  j)

Each quantum number is connected with some characteristics of the electron

in its level. n defines the energy level in which the electron can be found. l is

related to the angular momentum associated to the orbital motion and the states

with l = 0, 1, 2, 3, 4 ... are also named s (sharp), p (principal), d (di↵use), f, g

... The angular momentum quantum numbers l, s and j are associated with the

actual angular momentum vectors ~L, ~S and ~

J by the relations:

|

~

L| =
p

l(l + 1)h̄ (1)

|

~

S| =
p

s(s + 1)h̄ (2)

|

~

J | =
p

j(j + 1)h̄ (3)
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Electron states are defined by means of their quantum numbers n, l, s, j (and mj

if a magnetic field is present) and each state corresponds to a di↵erent binding

energy.

1.2 Bohr atomic model

According to Bohr’s model, electrons can be interpreted as classical particles

orbiting about the atomic nucleus only on trajectories which give raise to an

angular momentum that is a multiple of h̄. If we consider, for example, an atom

of Na I (Z = 11), the electron configuration is

1s

22s

22p

6

| {z }
atomic core

3s

1

where 1s

22s

22p

6 is the electron configuration of the atomic core, while 3s

1

represents the valence electron in its ground state.

1.3 Russell-Saunders coupling

If an atom or ion features more than 1 valence electron, the interaction be-

tween the vectors of the system leads to coupling of the electron properties. In

particular, if for any pair of electrons i, j the conditions

li � lj >> li � si (4)

si � sj > li � si (5)

we can perform a vectorial sum of the orbital and spin angular momenta and,

thus, define the total azimuthal quantum number:

~

L =
X

i

~

li |

~

L| =
p

L(L + 1)

and the total spin quantum number:

~

S =
X

i

~si |

~

S| =
p

S(S + 1),

where the sums are calculated on the valence electrons only.

We can therefore define the term state of an ion as it is described by the quan-

tum number set n, L, S. In general, lower orbits have higher binding energy and,

for the hydrogen atom, it turns out that En = E0 · n

�2 (with E0 = �13.6 eV).

Each nLS term naturally splits into r = 2J + 1 sub-levels, characterized by

di↵erent values of J :
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Figure 1: Energy diagram for the electron configurations of the Na I atom.

• if L � S J = L + S, L + (S � 1) ... L� (S � 1), L� S r = 2S + 1

• if L < S J = S + L, S + (L� 1) ... S � (L� 1), S � L r = 2L + 1

so that, in absence of any external field, the term nLS is split in a multiplet

nLSJ . Each multiplet term is represented by the notation:

2S+1
LJ

Knowing the state of an ion, we can derive the statistical weights of its levels

(which are equal to the number of di↵erent ways an electron can fill the level)

and, in conditions of thermodynamical equilibrium, we can calculate the ratio

between the occupation numbers.

We also define the parity of a state to be odd or even, depending on the

parity of the sum
P

i li, so that the term is represented by:

2S+1
L

(o,e)
J
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Example on Na I terms:

there is 1 valence electron of configuration 3s

1, therefore

L = 0 S =
1
2
) J =

1
2

2
S

e
1/2 s term

L < S r = 2L + 1 = 1! singlet term

If the electron is in a higher angular momentum state, however, the situation

may be di↵erent, as, for example in the cases with:

L = 1 S =
1
2

J =

8
<

:
L + S = 3/2

L� S = 1/2

a doublet of P terms, or

L = 2 S =
1
2

J =

8
<

:
L + S = 5/2

L� S = 3/2

representing a doublet of D terms. The detailed notation of the Na I ground

level is 1s22s

22p

6 32
S1/2 and the Na I doublet at ��5890, 5896 comes from the

transitions

32
S

e
1/2 ! 32

P

o
1/2 � = 5895.92 Å

32
S

e
1/2 ! 32

P

o
3/2 � = 5889.95 Å

which are illustrated in the electron configuration diagram given in Fig. 1.

1.4 Grötrian diagrams

Grötrian diagrams represent a means of illustration of the energy levels of ions,

through the introduction of two distinct scales. The first one gives the energy

di↵erence of the considered level with respect to the ground state, in eV. A

second scale, called the term scale, provides the ratio between the absolute

value of the binding energy and the product h c, given in kaiser or cm�1. An

example is illustrated in Fig. 2. By the definition of the term scale, it turns out

that it is:

Tm =
|Binding energy|

hc

(6)

and, recalling that:

h = 4.13 · 10�15 eV s�1 = 6.626 · 10�27 erg s�1
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Figure 2: Example of a Grötrian diagram

c = 2.99792 · 1010 cm s�1

1 eV = 1.6022 · 10�12 erg

it turns out that:

Tm =
1
�

=
E (eV)

12398 · 10�8 (eV cm)
(7)

Tm measures the wave number corresponding to the transition between the

m level and the free state. For a transition between two levels m and n, on the

contrary, it is:

|Tm � Tn| =
|Em � En|

hc

=
1

�mn
=

�E (eV)
12398 · 10�8eV cm

(8)

so that an energy di↵erence of 1 eV corresponds to a radiation wavelength of

12398 Å.

1.5 Fine structure

In the presence of an external magnetic field, each multiplet term splits in

g = 2J + 1 simple terms, due to the various possible orientations of the angular

momentum ~

J with respect to the field lines. If there is no external magnetic field,

we still have to weigh each energy levels g times, in the statistics of occupation

numbers. In this case, it is said that the LSJ term is g-times degenerate. Fig. 3

summarizes the hierarchy of terms.
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Figure 3: Electron configuration term hierarchy.

The statistical weight of a total term LS is calculated as the sum of the

weights of its multiplet terms LSJ :

g =
L+SX

J=L�S

(2J + 1) =
2SX

k=0

[2(L� S + k) + 1] (9)

This sum is an arithmetic progression of terms with step 1 and it equals the

product between the number of members and the arithmetic mean of the first

and the last member:

g = (2S + 1)
(2L� 2S + 1) + (2L� 2S + 4S + 1)

2
= (2S + 1)(2L + 1) (10)

In the case of the hydrogen atom, with S = 1/2 and g = 2(2L + 1), each

total term LS corresponds to a statistical weight of:

gn =
n�1X

L=0

2(2L + 1) = 2n

2 (11)

Therefore, in the hydrogen atom, all the LS terms with the same principal

quantum number n have the same energy. This occurs because the hydrogen
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atom has only one electron and there is no mantle a↵ecting the binding energy

according to the orbit’s eccentricity. Of course, this situation changes for more

complex ions.

1.6 Selection rules

An ion with a particular electron configuration may change to a di↵erent one,

provided that it can exchange the amount of energy corresponding to the energy

di↵erence of the initial and final configurations. For transitions involving energy

exchanges with radiation, through the emission or absorption of photons, the

following selection rules apply:

1. only transitions connecting states with the same parity are permitted

2. �J = ±1, 0 but J = 0 ! J = 0 is forbidden

3. �L = ±1, 0 but it must always be �l = ±1 for the jumping electron

4. �S = 0 (if L � S this means that transitions between states with di↵erent

multiplicity are forbidden)

5. �MJ = ±1, 0 but MJ = 0 ! MJ = 0 is forbidden, if it is also �J = 0

The conditions 1 and 2 hold in dipole approximation, while 3 and 4 are valid in

Russell-Saunders coupling.

1.7 Level population - the Boltzmann equation

If we consider a sample of atoms and ions, we can introduce the following defi-

nitions:

• Nin number of i-times ionized atoms in the energy level n per cubic cen-

timeter (cm�3)

• Ni =
P

n Nin number of i-times ionized atoms (cm�3)

• N =
P

i Ni number of atoms and ions of an element (cm�3)

• �in excitation energy of the level n from the ground state of the i-times

ionized atom
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• �i = �i1 ionization energy from the ground state of the i-times ionized

atom

• gin statistical weight of the n level in the i-times ionized atom

In conditions of Thermodynamical Equilibrium, where every energy ex-

change process is perfectly balanced by its own inverse, the distribution of the

ions of a given element in the available energy levels is given by the Boltzmann

formula:
Nin

Ni1
=

gin

gi1
exp

✓
�

�in

kBT

◆
(12)

where kB = 1.38 · 10�16 erg K�1. It can be easily seen from Eq. (12) that the

population of excited levels decreases exponentially with their excitation energy,

though an increase of temperature brings to an higher population of the excited

levels, because of the higher average energy of particles, that can therefore fill

more easily the excitation energy gap through collisional processes.

Summing Eq. 12 over all the excitation states n, we have that:

Ni

Ni1
=

1
gi1

X

n

gn exp
✓
�

�in

kbT

◆
(13)

and, dividing Eq. (12) by Eq. (13), we get:

Nin

Ni
=

gin

Ui(T )
exp

✓
�

�in

kbT

◆
, (14)

where we have introduced the partition function

Ui(T ) =
X

n

gn exp
✓
�

�in

kbT

◆
. (15)

Ui(T ) is a converging function because of the exponential factor (which quickly

drops toward the high energy levels) and of the level broadening e↵ects (such

as natural broadening, collisional broadening and Doppler e↵ects) which limit

the number of discrete energy levels to a finite n, above which any further level

melts in a continuous band.

Eq. (14) is the Boltzmann formula for the population of the generic level n,

relative to the total ion abundance Ni, in thermodynamical equilibrium. For

computational purposes, it is useful to express Eq. (12) in logarithmic form:

log
Nin

Ni
= log

gin

gi
� �in✓ (16)

with ✓ = 5040 · T

�1.
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1.8 Ionization - the Saha equation

The Saha equation is the relationship which describes the equilibrium estab-

lished for the reactions of ionization and recombination and it can be regarded

as the extension of the Boltzmann’s formula to the region of space where the

levels are continuously distributed with positive energy. Assuming that �0 is

the ionization potential of a particular species, indeed, we can represent the

state of a free electron with kinetic energy K as:

E = �0 + K = �0 +
p

2

2mev
(17)

Recalling from Quantum Mechanics that we cannot define the properties of an

electron with an accuracy better than:

dpxdx � h (18)

we have to subdivide the six-dimensional phase space1 in cells with a volume of

h

3, each one being able to contain up to 2 electrons. The number of atoms in

the ground level which lost an electron, whose position in the phase space is in

the range ~x� ~x + d~x and ~p� ~p + d~p is given by:

dN11

N01
= 2

g01

g11
exp

⇢
�

1
kbT


1

2me
(p2

x + p

2
y + p

2
z) + �0

��
d3

xd3
p

h

3
, (19)

where the factor 2 expresses the number of electrons that can share the same

phase space cell. If we integrate Eq. (19) over the whole phase space, we have:

N11

N01
= 2

g11

g01

Z +1

�1

Z

V

exp

�

1
KBT

✓
1

2me
|p|

2

◆�
d3

xd3
p

h

3
, (20)

where V is the volume averagely available for one electron. If we consider

the approximation in which 1 ion corresponds to 1 electron, we can use the

expression:

V = N

�1
e =

pe

kbT
, (21)

with pe representing the electron pressure. Integration of Eq. (20) over the

momentum yields a factor (2⇡mekBT )3/2 and, since there is no function of the

spatial coordinates, with the introduction of Eq. (21) in Eq. (20), the result is:

N11pe

N01
= 2

g11

g01

(2⇡me)3/2(kBT )5�2

h

3
exp

✓
�

�0

kBT

◆
. (22)

1
Remember that we must use vectorial quantities to describe the phase space. Therefore ~x

will be the three-dimensional position vector and ~p provides the additional three dimensions

of the velocity space.
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This relation gives the ratio between the occupation number of the ground level

of the singly ionized atom, with respect to the occupation number of the ground

level of the neutral atom. Summing over all the possible excitation levels and

considering the more general case of subsequent ionization states, we get the

Saha equation:

Ni+1pe

Ni
= 2

Ui+1(T )
Ui(T )

(2⇡me)3/2(kBT )5�2

h

3
exp

✓
�

�i

kBT

◆
, (23)

which has a logarithmic expression:

log
✓

Ni+1pe

Ni

◆
= log


2
Ui+1(T )
Ui(T )

�
� �i✓ +

5
2

log T � 0.48, (24)

provided that �i is measured in eV and pe in dyn cm�2.

Notice from equations (23) and (24) that the e↵ect of increasing the electron

pressure is to reduce the degree of ionization (recombinations are favored and

there are fewer cells for free electrons), while increasing temperature raises the

ionization.

2 Radiation transport

2.1 The Radiative Transport Equation

We now want to consider the case in which a gaseous nebula is ionized, either by

a shock wave, or by radiation coming from a thermal or a non-thermal source.

The main di↵erence between the cases of thermal (e. g. stellar) and non-

thermal (e. g. AGN) radiation is the Spectral Energy Distribution (SED) of the

ionizing photons. In the case of a star, the SED is well represented by a Black

Body function of appropriate temperature, while in the AGN case the spectrum

is essentially given by a combination of power-law continuum and of emission

lines (mainly H lines, with a prominent Balmer series and several forbidden lines

of [O III], [O I], [S II], [N II], [Ne III]). The most important consequence of the

di↵erent spectral shapes is the excess of high frequency photons, produced by

power law SEDs, illustrated in Fig. 4.

Let’s now consider the case, illustrated in Fig. 5, of a radiation beam which

crosses a gas cloud and describe what happens during the interaction between

the gas cloud and the low density radiation field. In particular, we need to

10



Figure 4: Ionizing photons SEDs for a thermal (curve) and a non-thermal

(straight line) radiation source.

introduce some parameters to describe the radiation field. To do this, let’s

take into account a surface ⌃ and an area element dA on it (see Fig. 6). The

energy flowing through the area dA cos ✓ per unit time, unit frequency in a beam

propagating in the solid angle d⌦ is given by the specific intensity:

I⌫ =
dE⌫

dA cos ✓d⌫d⌦dt

[erg cm�2s�1Hz�1] (25)

As the beam passes through the cloud, energy may either be absorbed or

emitted due to the interactions of radiation with the atoms. We define the

emission coe�cient:

✏⌫ =
dE⌫

dsdA cos ✓d⌦dtd⌫
[erg cm�3s�1Hz�1] (26)

as the amount of energy added to the beam while crossing the element volume

dsdA cos ✓ (per unit frequency and time), while we introduce an absorption

coe�cient through the expression:

k⌫I⌫ = �
dE⌫

dsdA cos ✓d⌫d⌦dt

(27)
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Figure 5: Scheme of a radiation source observed behind an intervening gas cloud.

The line of sight to the source defines the r coordinate of the problem.

Notice that, while the emission coe�cient ✏⌫ is an amount of energy, the ab-

sorption coe�cient represents the fraction of energy that will be absorbed from

a beam of specific intensity I⌫ and it is measured in units of cm�1.

If we take into account a radiation beam which propagates into a medium

for a path of length ds, in the most general situation its specific intensity will

be a↵ected by the emissions and absorptions of energy according to:

dI⌫ = �k⌫I⌫ds + ✏⌫ds. (28)

Dividing Eq. (28) by the length element ds, we obtain the Radiative Transport

Equation in its di↵erential form:

dI⌫

ds

= �k⌫I⌫ + ✏⌫ . (29)

In the case of pure absorption (i. e. ✏⌫ = 0) Eq. (29) becomes

dI⌫

ds

= �k⌫I⌫ (30)

and, if s

⇤ is the geometrical thickness of the cloud, its solution is:

I⌫(s⇤) = I⌫(0) exp

 
�

Z s⇤

0

k⌫(s)ds

!
. (31)
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Figure 6: Geometry of a radiation beam crossing a surface ⌃.

The exact solution of Eq. (31), therefore, requires a detailed knowledge of k⌫(s)

in each point within the cloud.

In order to solve the radiative transport problem in a more general case, we

introduce the optical depth of the medium through the definition:

d⌧⌫ = k⌫dr = �k⌫ds (32)

(notice that the optical depth is a dimensionless quantity that, for our geometry,

is null at the observer’s side of the cloud, while it is maximum deep in the cloud,

on the source’s side). The total optical depth of the medium is, thus:

⌧

⇤
⌫ =

Z r⇤

0

k⌫(r)dr = �
Z 0

s⇤
k⌫(s)ds. (33)

Dividing Eq. (29) by �k⌫ , we have:

dI⌫

d⌧⌫
= I⌫ �

✏⌫

k⌫
. (34)

The quantity S⌫ = ✏⌫/k⌫ is a characteristic of the cloud, fairly independent from

the properties of the radiation source, that is called source function. Eq. (34)

can be re-arranged in
dI⌫

d⌧⌫
� I⌫ = �

✏⌫

k⌫
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and, multiplying both members by a factor e

�⌧⌫ , we get

d
d⌧⌫

[I⌫e

�I⌫ ] = �S⌫e

�⌧⌫ (35)

that can be integrated to:

I⌫(⌧⌫ = 0) =
Z ⌧⇤⌫

0

S⌫(⌧⌫)e�⌧⌫ d⌧⌫ + I⌫0e
�⌧⇤⌫

, (36)

where we have called I⌫0 = I⌫(⌧⇤⌫ ) the specific intensity of the initial radiation

beam, as it strikes the cloud on the source’s side. It can be seen from Eq. (36)

that the emergent intensity is the sum of the original specific intensity, emit-

ted by the source and attenuated by the whole path across the cloud, and of

any contribution arising within the cloud itself and attenuated by a path corre-

sponding to its own depth. Recalling the expression of source function, indeed,

the integral on the right hand side of Eq. (36) turns out to be:

Z ⌧⇤⌫

0

S⌫e

�⌧⌫ d⌧⌫ =
Z r⇤

0

✏⌫e

�⌧⌫ dr,

meaning that the overall emitted radiation is a sum of contributions attenuated

by the proper e

�⌧⌫ factor.

If we now assume S⌫ = const inside the cloud, the integration of Eq. (34)

yields:

I⌫(0) = S⌫(1� e

�⌧⇤⌫ ) + I⌫0e
�⌧⇤⌫

. (37)

This solution has two fundamental limits:

• ⌧⌫ >> 1 (optically thick case), which implies I⌫(0) = S⌫ (i. e. we only

see the cloud, through its source function)

• ⌧⌫ << 1 (optically thin case), that, in the approximation e

�⌧⌫
⇡ 1 � ⌧⌫ ,

gives I⌫(0) = ⌧

⇤
⌫ (S⌫ � I⌫0) + I⌫0.

Taking into account the optically thin case, if we do not look along the direction

to the radiation source, it is I⌫0 = 0 and, therefore

I⌫(0) = ⌧

⇤
⌫ S⌫ = ✏⌫r⇤

meaning that all the radiation produced in any element ds emerges from the

cloud without being absorbed.
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In conditions of Thermodynamical Equilibrium the energy absorbed in a

volume element dV must be equal to the energy emitted in the same region:

k⌫I⌫ = ✏⌫ (38)

and the source function is given by the Planck distribution:

✏⌫

k⌫
= I⌫ = B⌫(T ) (39)

where we recall that:

B⌫(T ) =
2h⌫

3

c

2

1
e

h⌫/kBT
� 1

. (40)

When this condition is carried out in the continuum, outside the lines, we can

describe the level population with the Boltzmann equation (14), the ionization

degree with the Saha equation (23) and the source function with the Black Body

distribution. The temperature to be used in these relations must be the same

and coincident with the kinetic temperature of the gas.

2.2 The Equivalent Thermodynamic Equilibrium

A fundamental question is the problem of under which conditions the assump-

tion of Thermodynamic Equilibrium is valid. A particular region is in ther-

modynamic equilibrium when each process has exactly the same probability to

occur as its opposite one. Energy is constantly exchanged in all its forms and a

steady state is reached if the translational kinetic energy is exchanged between

all the particles, without being transformed into other forms of energy (for in-

stance, when elastic scatterings dominate). The particle velocity distribution is

then very similar to the Maxwell law:

�(v, T )dv =
4
⇡

✓
m

2kBT

◆3/2

v

2 exp
✓
�

mv

2

2kBT

◆
dv. (41)

In a real astrophysical plasma the translational energy of particles is trans-

formed in radiating energy as a consequence of the collisional excitation of the

levels of ions or molecules and of the subsequent spontaneous de-excitation with

the emission of a photon. However, this process is quite rare, with respect to

elastic collisions, as it can be seen from a simple comparison of the charac-

teristic process cross-sections (being �el ⇠ 10�13 cm�2 for elastic scattering,

�rec ⇠ 10�20 cm�2 for electron–ion recombinations and �forb ⇠ 10�15 cm�2 to
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Figure 7: Geometry of a radiation beam flowing through a surface element dA.

excite a nebular line). In general, then, atoms and electrons in the interstel-

lar gas have a velocity distribution that looks very similar to the Maxwellian

expression of Eq. (41) and the same value of the temperature can be used to

describe the di↵erent kinds of particles that compose the gas. As a consequence,

the relative population of levels will be very similar to the one the gas would

have in thermodynamic equilibrium, if collisional excitations and de-excitations

dominate over the radiative processes.

We, therefore, define a condition of Equivalent Thermodynamic Equilibrium

as a situation in which

• there is thermal equilibrium (all the particles are described by the same

temperature)

• translational kinetic energy is NOT converted into other forms of energy

2.3 Radiation density

If a radiation beam flows with the speed of light c through a surface element dA

in a direction oriented with an angle ✓ with respect to the surface normal, like
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it is shown in Fig. 7, we have that dt = ds/c and we can write the expression

of the specific intensity of Eq. (25) in the form:

I⌫ =
cdE⌫

dA cos ✓d⌫d⌦ds

, (42)

but, since dA cos ✓ds = dV , the presence of a radiation beam implies the exis-

tence of an energy density per unit frequency:

dE⌫

dV d⌫
=

I⌫d⌦
c

. (43)

Integrating over all the possible propagation directions, we define the radiation

density as:

U⌫ =
1
c

Z

4⇡

I⌫d⌦, (44)

so that, for an isotropic radiation field, it is:

U⌫ =
4⇡
c

I⌫ . (45)

2.4 Radiation transport in the lines

Let’s consider again the general solution of the transport equation (36):

I⌫(0) =
Z ⌧⇤nu

0

S⌫(⌧⌫)e�⌧⌫ d⌧⌫ + I⌫0e
�⌧⇤⌫

.

In order to determine I⌫ , we have to know the source function S⌫ = ✏⌫/k⌫

in each point. In general, the absorption and emission of radiation are due

to continuous processes, which arise from free-free, free-bound and bound-free

transitions, and to discrete ones, generated only by bound-bound transitions.

We can therefore separate the two contributions and write:

S⌫(⌧⌫) =
✏

K
⌫ + ✏

L
⌫

k

K
⌫ + k

L
⌫

. (46)

If we now focus on the line contribution, the total energy emitted in a certain

direction per unit volume per unit time, due to a transition n! m, is:
Z

line

✏⌫d⌫ =
1
4⇡

h⌫nmAnmNn, (47)

where Anm is the spontaneous transition probability coe�cient (numerically

equal to the number of transitions n ! m which can occur per unit time, or,

equivalently, to the inverse mean life time of the level n) and Nn is the particle
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densities of ions in the level n. It is convenient to define the normalized line

profile as a function of frequency  (⌫), such that:
Z

line

 (⌫)d⌫ = 1 (48)

so that the line emission coe�cient can be expressed as:

✏

L
⌫ =  (⌫)

Z

line

✏⌫d⌫ =
1
4⇡

h⌫nmAnmNn (⌫). (49)

On the other hand, the energy absorbed in a transition m ! n per unit

time, per unit volume, per unit solid angle is:
Z

line

k⌫I⌫d⌫ =
1
4⇡

h⌫nmNmBmnU⌫nm �

1
4⇡

h⌫nmNnBnmU⌫nm , (50)

where Bmn and Bnm are, respectively, the absorption probability coe�cient

and the stimulated emission coe�cient, so that the right hand side of Eq. (50)

accounts for the energy that is subtracted from the beam by absorptions and the

energy that is added back to it, because of stimulated emissions. If we assume

that I⌫ is constant and isotropic in the line, we can assume U⌫ = 4⇡I⌫/c (Eq. 45)

and, taking the intensity out of integration in Eq. (50), we get:
Z

line

k⌫d⌫ =
h⌫nm

c

(BmnNm �BnmNn). (51)

To find the line absorption coe�cient, we simply have to multiply this integral

by the normalized line profile  (⌫), so that it is:

k

L
⌫ =

h⌫nm

c

(BmnNm �BnmNn) (⌫). (52)

The spontaneous and stimulated transition probabilities Anm, Bnm and Bmn

are named Einstein coe�cients and are related together by general expressions,

that can be derived in conditions of thermodynamic equilibrium. In such con-

ditions, indeed, all the reactions relating levels n

*

)

m (n > m) are perfectly

balanced, and we can set up a statistical balance equation between the radiative

transitions connecting the levels:

U⌫BmnNm = Nn[Anm + U⌫Bmn]. (53)

Solving Eq. (53) for U⌫ , we get:

U⌫ =
NnAnm

NmBmn �NnBnm
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that can be re-arranged in:

U⌫ =
Anm

Nm
Nn

Bmn �Bnm

. (54)

For an isotropic radiation field of low frequency, the thermodynamical equilib-

rium condition implies that:

Nm

Nn
=

gm

gn
e

�h⌫nm
kBT

⇡

gm

gn

✓
1�

h⌫nm

kBT

◆
(55a)

U⌫ =
4⇡
c

I⌫ ⇡
4⇡
c

2
⇣
⌫

c

⌘2

kBT =
8⇡⌫2

c

3
kBT, (55b)

where we made use of the Rayleigh-Jeans approximation of the black body

distribution:

B⌫(T ) = I⌫ ⇡ 2
⇣
⌫

c

⌘2

kBT

that holds at low frequencies. Since Eq. (54) must be equal to Eq. (55b), it

turns out that:
Anm

Nm
Nn

Bmn �Bnm

=
8⇡⌫2

c

3
kBT,

which is satisfied by the solution:

Anm =
8⇡h⌫

3

c

3
Bnm, (56a)

gnBnm = gmBmn (56b).

Using Eq. (56a,b), we can write the expression of k

L
⌫ in Eq. (52) in the form:

k

L
⌫ =

h⌫nm

c

 (⌫)NmBmn


1�

gmNn

gnNm

�
(57)

and, introducing Eq. (56a) in the expression of ✏L⌫ (Eq. 49):

✏

L
⌫ =

2h

2
⌫

4

c

3
Nn (⌫)

gm

gn
Bmn. (58)

The source function in the line is then given by the ratio between Eq. (58) and

Eq. (57):

S

L
⌫ =

2h⌫

3

c

2

✓
gnNm

gmNn
� 1
◆�1

. (59)

Since in thermodynamic equilibrium the level population follows the Boltzmann

distribution:
Nn

Nm
=

gn

gm
exp

✓
�

h⌫nm

kBT

◆
, (60)
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the expression of S

L
⌫ reduces to:

S

L
⌫ =

2h⌫

3

c

2

1

e

h⌫nm
kBT

� 1

that is the Planck distribution, in agreement with the solution of the transport

equation in thermodynamical equilibrium of Eq. (39).

2.5 Deviations from thermodynamic equilibrium

Equations (57), (58) and (59) give us the general expressions of the absorption

coe�cient, of the emission coe�cient and of the source function within a spectral

line. We now want to determine the ratio between the level populations, without

assuming our system to be in thermodynamic equilibrium. Instead, we assume

a steady state, i.e. a condition where there are no temporal variation of the

level population.

We define:

• Rnm the velocity of radiative transitions n! m

• Cnm the velocity of collisional transitions n! m

The steady state assumption implies that the condition:

dNn

dt

= Nn

X

m

(Rnm + Cnm)�
X

m

Nm(Rmn + Cmn) = 0 (61)

is satisfied for each level n. To obtain the level population, we must solve a

system of equations like Eq. (61), called statistical equations, for each level. In

addition, the complete solution would require the sums over m to be extended

and to include the continuously distributed states, in order to account also for

ionizations from the level n. A similar system of equations canbe introduced

to describe the ionization equilibrium, for which we have that the number of

ionizations equals the number of recombinations.

For the moment, let’s just consider the statistical equations for bound state

only, under the e↵ect of radiative and collisional transitions. The transition

rates can be expressed as:
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n > m departures n < m departures

Rnm = Anm + BnmU⌫ Rnm = BnmU⌫

Cnm = N

0
Qnm Cnm = N

0
Qnm

n > m arrivals n < m arrivals

Rmn = BmnU⌫ Rmn = Amn + BmnU⌫

Cmn = N

0
Qmn Cmn = N

0
Qmn

where we have introduced the collision partner density N

0 and the rate of the

collisional e�ciency Qnm, expressing the frequency of e↵ective collisions for a

gas of unit density (therefore measured in cm3s�1).

With this distinction and an isotropic radiation field, we can set up the

steady state equation for each level n:

Nn

(
X

m

Bnm
4⇡
c

I⌫ +
X

m<n

Anm + N

0
X

m

Qnm

)
=

=
X

m

NmBmn
4⇡
c

I⌫ +
X

m>n

NmAmn + N

0
X

m

NmQmn. (62)

The complete solution of the level populations is achieved by solving Eq. (62) for

all the levels, together with the transport equation, accounting for the presence

of the radiation field, which, in this case, becomes:

dI⌫

ds

= �
h⌫nm

c

BmnNm

✓
1�

gmNn

gnNm

◆
 (⌫)I⌫ +

h⌫nm

4⇡
AnmNn (⌫). (63)

We shall see later on how these equations can be used to solve some specific

problems, under suitable assumptions for the cases of astrophysical environ-

ments.

3 Scattering processes and kinetic temperature

3.1 The cross-section of collisional interactions

In §2.2, while comparing the processes that can occur in astrophysical plasmas,

we met the concept of cross-section. In general, a cross-section is the area that

must be hit in order for a certain process to take place. For particle interac-

tions, we can practically define the particle cross-section as a surface having the

same radius as the particle radius. The particle radius, in its turn, is defined as
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Figure 8: A test particle q approaching a target particle Q with initial velocity

v1.

the minimum distance that can be reached by a particle of the same sign, ap-

proaching from infinity with a velocity v1. Considering the situation illustrated

in Fig. 8, the minimum distance is reached when the initial kinetic energy of

the approaching particle has been fully converted into positional energy in the

target particle’s field:
mqv

2
1

2
=

zZe

2

r

2
0

. (64)

Solving for r0, it is:

r0 = 2
zZe

2

mv

2
1

(65)

and the cross-section is simply � = ⇡r

2
0.

It can be immediately seen that the cross-section depends on the particle

potentials and relative velocities. Let’s assume that, in a gaseous nebula, the

ions (or molecules) and their collisional partners have, respectively, the average

velocities vA and vS . Clearly, their relative velocity will be v = vA � vS . If

�(v) is the cross-section of the ions with respect to their collisional partners,

the volume swept by one particle in a second is:

V = �(v)v (66)

and, being N

0 the density of collisional partners, the rate of collisions becomes:

C(v) = N

0
v�(v). (67)

The quantity C(v)/N 0 has the same dimensions of the rate of collisional e�-
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ciency Q(v), thus we can define:

Q(v) = v�(v) (68)

and write:

C(v) = N

0
Q(v).

When we are dealing with inelastic scattering, we express the cross-section of

the transition n ! m as �nm(v) and the related coe�cients Qnm are obtained

averaging over all the relative velocities between atoms and their collisional

partners. If we only had elastic scatterings, the distribution of relative velocities

would become a Maxwellian function. Deviations from this distribution are

due to the inelastic scatterings that can occur when collisional excitations are

followed by radiative de-excitations. This process subtracts energy from the gas

and, for this reason, the high energy tail of the velocity field is missing.

Concerning the rates of collisional e�ciency, we said that Qmn =< v�mn(v) >.

For particles such as H I, H II, He I and He II that interact with e

�, the collisions

are elastic up to energies of ⇠ 10 eV and anelastic scatterings, due to collisions

with heavier ions or molecules, are less frequent, because of their lower abun-

dances. As a consequence, in H I and H II regions we should expect relative

variations from a Maxwellian distribution of velocities to be in the order of

⇠ 10�5. In addition, within a volume of a few mean free paths, all the particles

have the same kinetic temperature, so that we can assume that all the kinds

of particles present follow a Maxwellian velocity distribution. This is of funda-

mental importance, because it implies that also the relative velocities v follow

the same distribution, given by:

�(v, T )dv =
1

�

3(2⇡)3/2
e

� v2

2�2 dvxdvydvz, (69)

or, in polar coordinates:

�(v, T )dv =
4⇡

�

3(2⇡)3/2
v

2
e

� v2

2�2 dv, (70)

where we have:

v

2 = v

2
x + v

2
y + v

2
z

1
2

mAme

mA + me
v

2
x =

1
2
kBT

�

2 = v

2
x =

✓
1

mA
+

1
me

◆
kBT ⇡

kBT

me
.
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3.2 The rate of collisional e�ciency

Taking into account the transition n ! m (n > m), the rate of collisional

e�ciency is given by:

Qnm = v�nm(v) =
Z 1

0

v�nm(v)�(v, T )dv. (71)

If excitations and de-excitations are dominated by collisional processes, we can

assume the system to be in thermodynamic equilibrium and we can derive a gen-

eral relation between Qnm and Qmn. Indeed, from the balance of the processes,

we have:

QnmNnNe = QmnNmNe (72)

and, since the population ratio is again following the Boltzmann distribution:

Qmn

Qnm
=

Nn

Nm
=

gn

gm
e

�h⌫nm
kBT

. (73)

In the case of collisions of atoms or ions with electrons, due to the low

electron mass, with respect to that of any atom, and since

Ee = EA ! ve� =
mA

me
vA

we can consider the atoms as non moving targets and take the relative velocities

to be coincident with the electron velocities. If we consider a collision in which

the kinetic energy of the electron is higher than the excitation energy of the

ion’s first excited level, part of the kinetic energy is converted into ion excitation

energy and the electron flies away with a lower velocity (energy). In conditions

of thermodynamic equilibrium, the number of excitation per unit volume and

time, which occur by collisions with electrons in a particular energy range, must

be equal to the number of de-excitations per unit volume and time, which send

back the electrons to the same energy range (super-elastic scattering). If this

happens in the range

v1 � v1 + dv1 for incoming e

�

v2 � v2 + dv2 for outcoming e

�

then:

NeN1v1�12(v1)�(v1)dv1 = NeN2v2�21(v2)�(v2)dv2. (74)
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Given that, in thermodynamic equilibrium it is:

N2

N1
=

g2

g1
e

� �21
kBT (75)

and, from the energy balance:

1
2
mev

2
1 = �21 +

1
2
mev

2
2 (76)

we can derive:

v1dv1 = v2dv2, (77)

introducing Eq. (75) and (77) into Eq. (74), we get:

�12(v1)�(v1) =
g2

g1
e

� �21
kBT

�21(v2)�(v2). (78)

Recalling Eq. (70), we can calculate the ratio:

�(v2)
�(v1)

=
✓

v2

v1

◆2

exp
✓

me(v2
2 � v

2
1)

kBT

◆
=
✓

v2

v1

◆2

exp
✓
�21

kBT

◆
. (79)

Finally, we can write:

�12(v1) =
g2

g1

✓
v2

v1

◆2

�21(v2). (80)

The interaction cross-section of a collisional excitation is known from quan-

tum mechanics to be:

�12(v1) =
⇡h̄

2

m

2
ev

2
1

⌦(1, 2)
g1

, (81)

where the quantity ⌦(1, 2) is called the collisional strength and gives the prob-

ability that the wavelength associated with the electron motion (� = h/p =

h/mv) can interact with the ion at di↵erent distances during the encounter.

Comparing Eq. (80) and (81), we can also write:

�21(v2) =
⇡h̄

2

m

2
ev

2
2

⌦(1, 2)
g2

. (82)

The collisional de-excitation e�ciency coe�cient is, then:

Q21 =
Z 1

0

v�21(v)�(v)dv =

=
Z 1

0

v


⇡h̄

2

m

2
ev

2
2

⌦(1, 2)
g2

�
·

"
4
p

⇡

✓
me

2kBT

◆3/2

v

2 exp
✓
�

mev
2

2kBT

◆#
dv =

=
4⇡1/2

h̄

2

g2m
1/2
e (2kBT )3/2

Z 1

0

⌦(1, 2) exp
✓
�

mev
2

2kBT

◆
dv. (83)
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Plugging in the numbers, we get:

Q21 =
8.629 · 10�6

T

1/2

< ⌦(1, 2) >

g2
. (84)

Assuming that the factor < ⌦(1, 2) > /g2 lies between 1 and 10, and for

temperatures in the range 104 K – 2·104 K (achieved when photo-ionization is the

main heating mechanism), it is found that Q21 ⇠ 10�7 cm3 s�1. For the typical

densities of gaseous nebulae (Ne ⇠ 104 cm�3), we have that Q21Ne ⇠ 10�3 s�1.

Even in the high density environment of the cores of Active Galactic Nuclei,

where Ne ⇠ 109 cm�3, it is Q21Ne ⇠ 102 s�1 and the emission of radiation

through spontaneous radiative decays, which has a probability coe�cient A21 ⇠

108s�1, turns out to be 106 time more e�cient in de-populating the first excited

level of H.

4 Study of the population ratio in a two-level

system

4.1 Dilution of radiation

The dilution factor is defined to account for the weakening of the radiation

field at large distances from the source. If a star has radius R

⇤ and the field

is evaluated at a distance r from its center (r >> R

⇤), then the solid angle

subtended by the star, as seen from the point of observation, is:

⌦⇤ =
⇡R

⇤2

r

2
. (85)

If the flux received in the observation point is �⌫(r), then the mean specific

intensity of the stellar disk at distance r is:

I

⇤
⌫ (r) =

�⌫(r)
⌦⇤

. (86)

Therefore, at the surface of the star, we have:

I

⇤
⌫ (R⇤) =

�⌫(R⇤)
⇡

(87)

but, because of energy conservation, we also have:

I

⇤
⌫ (r)

I

⇤
⌫ (R⇤)

=
�⌫(r)⇡r

2

�⌫(R⇤)⇡R

⇤2 = 1 (88)
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i. e. the specific intensity does not depend on distance. The energy

density is defined as:

U⌫ =
1
c

Z

⌦⇤
I

⇤
⌫d⌦ =

I

⇤
⌫

c

⌦⇤ (89)

and it is not isotropic. For use in the statistical equations, however, we have

to deal with the radiation field as it were actually isotropic, so we define an

equivalent isotropic radiation field I⌫ , having the same energy density of the

real one:
4⇡
c

I⌫ =
⌦⇤

c

I

⇤
⌫ , (90)

having:

I⌫ =
⌦⇤

4⇡
I

⇤
⌫ , (91)

where we define the dilution factor:

W =
⌦⇤

4⇡
. (92)

The dilution factor can be easily interpreted as the percentage of the celestial

sphere that is covered by the source, as seen from the observing point.

We can compute, as an example, the dilution factor of the Sun, at the

distance of the Earth. Since ⌦� = ⇡R

2
�/r

2, from Eq. (92) we have

W =
⇡R

2
�

4⇡r

2
⇡

(7 · 105km)2

4 · (150 · 106km)2
⇡ 5.5 · 10�6

It turns out that the dilution factors of radiation fields in the optical are gener-

ally very small numbers, as soon as the distance from the source exceeds a some

tens of source radii. In other frequency ranges, on the other hand, the situation

can be very di↵erent. In the radio domain, for instance, the dilution factor is

W ⇠ 1 because nearly the entire sky can be source of radiation.

4.2 The two-level system in the optical range

Ions and molecules are characterized by complex energy structures, with many

levels connected by di↵erent transitions. However, the mechanisms which are at

the basis of spectral line formation and propagation can be better understood

if we consider the transitions as independent from each other, sending back the

treatment of further details to later sections. A single transition can be generally

represented by only 2 levels (departure and arrival, with, in our notation, E2 >

E1). We also make the following simplifying assumptions:
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1. there are no ionizations or recombinations

2. the transitions 1 *
)

2 occur in the optical range

3. the radiation field which surrounds the atom is a diluted black body of the

form:

I⌫ = WB⌫(T ⇤), (93)

where W << 1 (because of assumption 2) is the dilution factor.

Under such assumptions, in the statistical equilibrium between the two lev-

els:

N1

✓
NeQ12 +

4⇡
c

I⌫B12

◆
= N2

✓
A21 + NeQ21 +

4⇡
c

I⌫B21

◆
(94)

we can neglect all the terms in which there is a contribution from I⌫ and write:

N1NeQ12 = N2(A21 + NeQ21), (95)

that gives:
N2

N1
=

NeQ12

NeQ21 + A21
. (96)

Since in thermodynamical equilibrium it is:

N1Q12 = N2Q21 (97)

we have that:

Q12 = Q21
g2

g1
e

�h⌫12
kBT

, (98)

substituting Q12 in Eq. (95) and dividing by NeQ21 yields:

N2

N1
=

1
1 + A21/NeQ21

g2

g1
e

�h⌫12
kBT

. (99)

We can therefore define a departure coe�cient from thermodynamic equilibrium

in the level n as:

bn =
Nn

N

⇤
n

, (100)

where N

⇤
n is the equilibrium population of level n. From Eq. (99), it turns out

that the ratio:
b2

b1
=

1
1 + A21/NeQ21

(101)

represents the deviation from thermodynamic equilibrium. Indeed, if collisional

processes dominate over radiative ones, it is NeQ21 >> A21 and b2/b1 ⇠ 1,
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meaning that the relative populations of the two levels set as they would be in

equilibrium. When, on the contrary, A21 = NeQ21 half of the de-excitations

of collisionally excited levels occur via spontaneous radiative decay. For each

transition, thus, we can define a critical density:

Nc =
A21

Q21

such that if Ne > Nc collisional de-excitations dominate and we do not see

photons emitted in the line, while, if Ne < Nc the spontaneous radiative decays

can take place and the line is emitted by the medium. Therefore, the simple

presence or absence of a spectral line is already an indicator of the density range

where the ion species we are studying lies in.

4.3 The departure coe�cients of permitted and forbidden

lines

The most abundant element in the Universe is H. The transition 22
p ! 12

s

leads to the emission of a photon of frequency ⌫ = 2.46 · 1015 Hz (� = 1216 Å,

Lyman ↵), with an average lifetime of the excited level of t ⇠ 10�8 s. The

transition probability is given by the inverse lifetime and it is A21 ⇠ 108 s.

These orders of magnitude apply fairly well to permitted transitions. If the gas

temperature approaches the typical value of a photo-ionized nebula (T ⇠ 104 K)

the collisional de-excitation was estimated in Q21 ⇠ 10�7 cm3 s�1 (cfr. §3.2)

and, with an electron density Ne ⇠ 104 cm�3, we have:

b2

b1
=

1
1 + A21/NeQ21

⇠ 10�11

and all the atoms are in their ground level.

If we now consider a di↵erent ion, that is commonly found in photo-ionized

nebulae, namely O III, there is a complex transition system, that is illustrated

in the Grötrian diagram of Fig. 9. The transitions plotted on the diagram are

forbidden by violation of the illustrated selection rules. The involved levels, that

are called metastable, are not populated via cascade recombination from higher

levels, since we do not observe the corresponding emission lines, neither they

can be excited by absorption of radiation, because the transition is forbidden.

Therefore, they can only be populated by collisional excitation from the ground
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Figure 9: Grötrian diagram for the forbidden transitions of [O III] in the optical

spectrum.

level (a bound-bound process). Under the assumption of a diluted radiation

field, we can still neglect ionizations and recombinations, and just take collisions

into account.

Assuming again T ⇠ 104 K and Ne ⇠ 104 cm�3 and considering the transi-

tion system 2! 1, for which we have:

A21(5007) ⇡ 2.1 · 10�2s�1

A21(4959) ⇡ 0.7 · 10�2s�1

it is:
b2

b1
=

1
1 + A21/NeQ21

⇠ 10�1

which is 10 good orders of magnitude than the value that we found for the

permitted transitions of H. This means that the population of the excited level

of an ion with forbidden transitions is favored by a factor 1010 with respect to

the case of permitted transitions. If we compare the emission coe�cients of the

forbidden and permitted lines, we find that:

✏

L
⌫ (permitted)

✏

L
⌫ (forbidden)

=
(N2A21)(permitted)

(N2A21)(forbidden)
⇠ 1

(remember the fundamental assumption of low density radiation field), meaning

that, in the case of a line emitting nebula of proper density, we can expect the

forbidden lines to be as strong as the permitted ones.
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4.4 Conditions for the emission of forbidden lines

In the case of photons arising from forbidden lines, the nebula is transparent

and the radiation we observe is the whole radiation produced by all the ions in

the nebula. As a consequence there is no need to solve the transport equation

and we simply get:

I⌫ =
Z ⌧⇤⌫

0

S⌫d⌧⌫ + I⌫0, (102)

where we called I⌫0 the intensity of the continuum under the emission line.

Recalling the definition of the source function and the expression of the opti-

cal depth (Eq. 32), since radiation is not re-absorbed, from Eq. (102) we can

estimate the intensity of the emission line as:

I

L
⌫ = I⌫ � I⌫0 = ✏⌫r

⇤ (103)

and what we observe is the real intensity of the line over the continuum pro-

duced throughout the nebula. Introducing the expression of the line emission

coe�cient (Eq. 49):

I

L
⌫ =

1
4⇡

N2A21h⌫21 (⌫)r⇤. (104)

Therefore, the intensity of a forbidden line depends on the population of the

excited level and on the coe�cient of spontaneous emission.

We can try to estimate the number of emitted photons per ion J . This

number will be equal to the number of collisional excitations that are not sub-

sequently de-excited by another collision and can, therefore, decay through a

spontaneous radiative emission. Put into equations, this is:

J =
N2A21

N1
�

N2NeQ21

N1
. (105)

Eq. (105) can also be expressed as:

J =
N2

N1
(A21 �NeQ21) = (A21 �NeQ21)

g2

g1

e

�h⌫12
kBT

1 + A21/NeQ21
, (106)

from which we get:

J =
(A21 �NeQ21)
(A21 + NeQ21)

NeQ21
g2

g1
e

�h⌫21
kBT

. (107)

The zeroes of Eq. (107) can be obtained for:

NeQ21 = 0 NeQ21 = A21
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while we get a maximum for:

NeQ21 = 0.41A21.

So, for Ne = 0.41Nc we have the maximum line intensity (flash of I

L
⌫ ). At

lower densities, the line intensity decreases because the excited levels are not

su�ciently populated, while, for Ne � Nc the emission line is again suppressed,

because of collisional de-population of the excited level.

Summarizing, there are 3 fundamental conditions to produce a strong for-

bidden emission line:

1. a temperature T high enough to provide the electrons with the required

kinetic energy to populate the metastable levels

2. an electron density in the range 0.1Nc  Ne  Nc

3. a diluted radiation field (otherwise the metastable levels could be easily

destroyed, since an optical-UV photon may be energetic enough to further

ionize the excited ion).

4.5 The two-level system at radio frequencies

In the case our ion or molecule has two energy levels that are connected by

a transition in the radio domain, because of the di↵use background radiation

(mainly the Cosmic Microwave Background CMB), the radiation field comes

from all directions and it has a dilution factor W ⇠ 1. Using again the Rayleigh-

Jeans approximation of the black body function (holding at low frequencies),

we have a thermal source with specific intensity:

I⌫ = 2
⇣
⌫

c

⌘2

kBTS , (108)

where TS is the radiation temperature.

In these new conditions, the general statistical equilibrium of the two levels,

described by Eq. (94), becomes:

N2

N1
=

g2

g1

N

0(Q21/A21)e�(h⌫21/kBT ) + W [e(h⌫21/kBTs)
� 1]�1

1 + N

0(Q21/A21) + W [e(h⌫21/kBTs)
� 1]�1

, (109)

where N

0 is the density of the collisional partners, that, in this case, are mainly

other ions and molecules. Using the approximation:

e

x
⇡ 1 + x
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that applies when x << 1, we can re-arrange Eq. (109) in:

N2

N1
=

g2

g1

e

�(h⌫21/kBT ) + (A21/N
0
Q21)(kBTS/h⌫21)

1 + (A21/N
0
Q21) + (A21/N

0
Q21)(kBTS/h⌫21)

. (110)

In the limit of A21/N
0
Q21 << 1 (dominating collisions), Eq. (110) reduces to

the Boltzmann formula and we have thermodynamic equilibrium.

We can notice that Eq. (110) involves two di↵erent temperatures:

• T the kinetic temperature of the collisional partners

• TS the radiation temperature

We introduce a third artificial definition of temperature, called the excitation

temperature TE , such that the population ratio is:

N2

N1
=

g2

g1
e

�(h⌫21/kBTE)
. (111)

Since we are in the radio regime, it turns out that

h⌫21 << kBTE < kBTS < kBT

and, given that

e

�(h⌫21/kBTi)
⇡ 1�

h⌫21

kBTi

for any i, we can introduce the quantity:

x =
A21

N

0
Q21

kBTS

h⌫21
. (112)

Combining Eq. (111) and (110), with the use of Eq. (112) and the exponential

approximation, we get:
1

TE
=

(x/TS) + (1/T )
1 + x

. (113)

Looking at the expression of x, we see that:

x =
(N 0

Q21)�1

(A21kBTS/h⌫21)�1
=

tu

tS

i.e. x represents the ratio of the average lifetimes of the excited level against

the collisional and the radiative decays. Indeed, recalling the general equation

of statistical equilibrium for a two-level system (Eq. 94), we have that:

tu =
1

N

0
Q21

(114)
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is the mean lifetime in presence of collisional processes only, while:

tS =
1

A21 + B214⇡I⌫/c

(115)

is the mean lifetime in presence of radiative processes only. Using Eq. (56a) to

remember that:

A21 =
8⇡h⌫

3

c

3

and estimating I⌫ as in Eq. (108), we can express the denominator of Eq. (115)

as:

B21
4⇡
c

I⌫ + A21 = A21

✓
c

3

8⇡h⌫

3

4⇡
c

I⌫ + 1
◆

=

=
✓

kBTS

h⌫

+ 1
◆

A21 ⇡
kBTS

h⌫

A21 (116)

from which Eq. (115) is justified. Eq. (113) can be, therefore, re-written in

terms of mean lifetimes:

1
TE

=
(tu/TS) + (tS/T )

tu + tS
. (117)

We see immediately that, in the limit tS >> tu the collisional processes dom-

inate, then the excitation temperature coincides with the kinetic temperature

of the collisional partners (thermodynamical equilibrium). On the other hand,

if tu >> tS , radiative processes are dominating and we get TE ⇡ TS .

Even in the radio case, based on the lifetimes of the considered energy levels,

we can determine the level population, if we assume that Eq. (111) applies, with

TE giving either an estimate of T or TS , depending on the ratio tu/tS .

4.5.1 The H I 21 cm line

H I emits a very important line, arising from a hyper-fine structure transition,

involving an inversion of the electron spin vector, with respect to the nuclear

spin. The energy gap is �E = 5.9 · 10�6 eV, corresponding to a frequency

⌫ = 1420 MHz, the excited state is the one with both the electron and nuclear

spin pointing in the same direction, while the ground state is the one where

the two vectors are opposed. This line is originated in H I regions (outside

the border of H II regions, where all the ionizing photons have been absorbed,

as we shall discuss later on), where the ionization is low. In these regions the

collisional partners are other H I atoms and the following conditions apply:

T ⇠ 100 K Q21 ⇠ 10�10 cm3 s�1
A21 ⇡ 2.87 · 10�15s�1
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Measuring the energy gap in eV, it is:

kBTS

h⌫

=
TS

11600�E

and

x =
(NHQ21)�1

(A21kBTS/h⌫)�1
= 4 · 10�4 TS

NH

Considering only the background radiation at TS ⇡ 3 K, we have that x << 1

implies NH > 10�3 cm�3, that, at the typical densities of an atomic cloud

(0.1 cm�3
 NH  1 cm�3) is certainly satisfied. The H I excitation temper-

ature is called spin temperature and it gives a reliable estimate of the kinetic

temperature of particles in the cloud.

4.5.2 The CO line at 2.6 mm

Let’s now move to the case of a molecular cloud and consider the CO emission

line at 2.6 mm. The most frequent collisional partners are H2 molecules and the

environmental conditions are:

TK ⇠ 10� 30 K Q21 ⇠ 2 · 10�12 cm3 s�1
A21 ⇡ 6 · 10�8s�1

and the line corresponds to a rotational transition with �E = 4.8 · 10�4 eV.

Putting all the numbers together, we have that:

x ⇡ 5 · 103 TS

N

0

In very dense clouds, we can easily reach N

0
� 5 · 104 cm�3 and the level pop-

ulation is again governed by the kinetic temperature of the collisional partners.

In the intermediate cases, both the kinetic and radiation temperature a↵ect the

distribution of the level populations.

4.6 H I column densities from measurements of the 21 cm

emission line

Due to the hyper-fine structure of the H I fundamental level, we can consider

the term 12
s1/2 as a doublet with an excited stage F = 1 and a ground level

F = 0. The lifetime of the level F = 1 is t ⇡ 3.5 · 1014 s (forbidden transition).

The emission coe�cient is, as usual:

✏

L
⌫ =

N1

4⇡
h⌫10A10 (⌫) (118)
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and, since H I is characterized by the spin temperature, we can assume that,

within the line:
✏

L
⌫

k

L
⌫

= B⌫(Tspin) ⇡ 2
⇣
⌫10

c

⌘2

kBTspin, (119)

where we used the Rayleigh-Jeans approximation, holding in the radio domain.

From the observations of the radio line, we can measure the so-called brightness

temperature:

I

L
⌫ (Tb) = 2

⇣
⌫10

c

⌘2

kBTb. (120)

If the radiation is entirely produced by emission of H I along the line of sight,

it is:

I

L
⌫0 =

Z ⌧⇤

0

✏

L
⌫

k

L
⌫

e

�⌧⌫ d⌧⌫ , (121)

that, using Eq. (119) and (120), becomes

2
⇣
⌫10

c

⌘2

kBTb = 2
⇣
⌫10

c

⌘2

kBTspin(1� e

�⌧⇤),

which yields

Tb = Tspin(1� e

�⌧⇤).

If there is no absorption (⌧⇤ << 1) and the emission arises from atoms with

constant spin temperature:

Tb = Tspin⌧
⇤
.

Dividing Eq. (118) by Eq. (119), we get the line absorption coe�cient:

k

L
⌫ =

N1 (⌫)
8⇡(⌫10)2

✓
h⌫10

kBTspin

◆
A10c

2
, (122)

so that we can evaluate the optical depth within the line:

⌧

⇤
⌫ =

Z s⇤

0

k

L
⌫ ds =

A10c
2

8⇡⌫2
10

✓
h⌫10

kBTspin

◆Z s⇤

0

N1ds, (123)

where the quantity:

n1 =
Z s⇤

0

N1ds (124)

is called column density and express the number of ions which lie in a column

of unit base along the line of sight and is measured in cm�2. To evaluate n1,

we consider the Boltzmann equation in the form:

n1

n0
=

g1

g0
e

�(h⌫10/kBTspin)
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with the statistical weights:

F = 1! g1 = (2F + 1) = 3

F = 0! g1 = (2F + 1) = 1

so that:
n1

n0
= 3e

�0.07/Tspin
⇡ 3.

For the total H I column density, we have:

nH = n0 + n1 =
n1

3
+ n1 =

4
3
n1

so that, in the whole column:

⌧

⇤
⌫ =

A10c
2

8⇡⌫2
10

✓
h⌫10

kBTspin

◆
3
4
nH

and, therefore:

nH =
4
3
⌧

⇤
⌫

8⇡⌫2
10

A10c
2

✓
kBTspin

h⌫10

◆
=

=
32⇡
3

✓
kBTspin

hc�10
A10

◆
⌧

⇤
⌫ ⇡ 2.8 · 1014

⌧

⇤
⌫ Tspin.

Since the quantity actually measured is ⌧⌫⇤Tspin = Tb, we can estimate the

column density as:

nH ⇡ 2.8 · 1014
Tb

and, given an estimate on the dimension of the cloud, we can draw a lower limit

to the gas density NH of the cloud.

4.7 Line intensity as a function of density and tempera-

ture

To determine the intensity of a line, we must solve the transport equation:

dI⌫

d⌧⌫
= I⌫ �

✏

L
⌫

k

L
⌫

for which we need an expression of the source function:

S

L
⌫ =

✏

L
⌫

k

L
⌫

=
2h⌫

3

c

2


gnNm

gmNn
� 1
��1
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together with the statistical equations:

Nn

(
X

m

Bnm
4⇡
c

I⌫ +
X

m<n

Anm + N

0
X

m

Qnm

)

| {z }
departures from level n

=

=
X

m

NmBmn
4⇡
c

I⌫ +
X

m>n

NmAmn + N

0
X

m

NmQmn

| {z }
arrivals to level n

If we consider the case of a diluted radiation field, we can neglect induced emis-

sion and radiative excitation and only take into account collisional excitations,

collisional de-excitations and spontaneous emissions. In such circumstances we

do no longer have to solve the radiative transport equation. This condition is

actually verified for:

• lines arising from collisional excitation of heavy ions

• the optical recombination lines for an optically thin gaseous nebula

We recall that for the expression of the specific intensity of an emission line:

I

L
⌫ =

Z ⌧⇤⌫

0

S

L
⌫ e

�⌧⌫ d⌧⌫

since it is:

S

L
⌫ d⌧⌫ = ✏

L
⌫

in the optically thin case we can write:

I

L
⌫ =

Z r⇤

0

h⌫nm

4⇡
NnAnm (⌫)dr, (125)

where we used the line emission coe�cient defined in Eq. (49). If we assume

constant density and temperature and we take into account two emission lines,

departing from di↵erent excited levels n and n

0, but with the same lower level

m and the same profile  (⌫), their intensity ratio will be:

I

L
nm

I

L
n0m

=
✓
⌫

L
nm

⌫

L
n0m

◆✓
A

L
nm

A

L
n0m

◆✓
Nn

Nn0

◆
. (126)

Since, for optically thin lines in diluted radiation field, we can express the pop-

ulation ratio as in Eq. (99):

Nn

Nm
=

gn

gm

e

�h⌫nm/kBT

1 + Anm/NeQnm
,
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Figure 10: The transition scheme of [O III].

so that:

I

L
nm

I

L
n0m

=
gn

gn0

✓
⌫nm

⌫n0m

◆✓
Anm

An0m

◆✓
1 + Anm/NeQnm

1 + An0m/NeQn0m

◆
exp


�

h(⌫nm � ⌫n0m)
kBT

�
.

(127)

4.7.1 Determination of the gas density

If we consider an emission line doublet, with the two excited levels very close in

energy (⌫nm ⇡ ⌫n0m), the exponential term of Eq. (127) is of the order of ⇠ 1

and the intensity ratio only depends on Ne:

I

L
nm

I

L
n0m

=
gn

gn0

Anm

An0m

✓
1 + Anm/NeQnm

1 + An0m/NeQn0m

◆
. (128)

For the high density limit (Ne >> 1 cm�3), Eq. (128) reduces to:

I

L
nm

I

L
n0m

=
gn

gn0

Anm

An0m
,

while, for the low density regime (NeQ << A), we have:

I

L
nm

I

L
n0m

=
gn

gn0

Qnm

Qn0m
=

< ⌦(n, m) >

< ⌦(n0, m) >

,

where we made use of the general expression for the rate of the collisional

processes Qnm given in Eq. (84).

4.7.2 Determination of the gas temperature

In order to determine the gas temperature, we need a system of forbidden emis-

sion lines arising from two di↵erent and distant metastable levels. In this case,
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indeed, the dependence of the intensity ratio on temperature of Eq. (127) be-

comes very strong. A similar case is produced by the [O III] transition system,

that we report again in Fig. 10. This is a three-level system that, in absence of

radiative excitation and induced emission, has a statistical equilibrium of the

form:

(N1Q12 + N3Q32)Ne + N3A32 = N2A21 + N2Ne(Q21 + Q23) (129)

for level 2 (1d2) and:

(N1Q13 + N2Q23)Ne = N3(A31 + A32) + N3Ne(Q32 + Q31) (130)

for level 3 (1s0). Eq. (129) and (130) can be solved together, for the level

occupation numbers, and they yield:

N2 =
N1Ne{Q12[A31 + A32 + Ne(Q31 + Q32)] + Q13(NeQ32 + A32)}

NeQ23(NeQ32 + A32) + [A21 + Ne(Q21 + Q23)][A31 + A32 + Ne(Q31 + Q32)]

N3 =
NeN1Q13 + NeN2Q23

A31 + A32 + Ne(Q32 + Q31)
.

For this particular ion, we have:

A31(2321) = 2.3 · 10�1 s�1

A32(4363) = 1.6 s�1

A21(5007) = 2.1 · 10�2 s�1

A21(4959) = 0.7 · 10�2 s�1

which implies A32 >> A31. In addition, due to the fact that I

L
⌫ (4363) is very

small at low density, the 3rd level is charged by collisions. However, since

Q13 << Q23, due to the larger energy gap, and that Q32 and Q31 do not play

a major role, because level 3 decays radiatively to level 2 (and it is very rare

to have collisional excitations 2 ! 3 at low density), the the solution of the

statistical equations reduces to:

N2 =
N1NeQ12

A21 + NeQ21

N3(A31 + A32) = NeN1Q13.

40



With the appropriate substitutions,2 it is:

N3

N2
=

⌦13

⌦12

A21

A32 + A31

✓
1 + 1.73 · 10�4

x

⌦12

A21

◆
e

��32/kBTe
, (131)

with:

x = 10�2
NeT

�1/2
e .

5 Recombination lines

5.1 Population of the levels

The recombination lines are the lines emitted by the permitted radiative transi-

tions, which follow the recombination of an electron with an ion. In the photo-

ionized gas of H II regions we can realistically assume that the population of a

particular level n only occurs through:

• direct recombination to n

• recombinations to higher levels, followed by a radiative transition cascade

to n

In a low density environment, interacting with a diluted radiation field, this, in

turn, implies that:

• there is no stimulated emission

• the level n is not populated via collisions or radiative excitations through

absorptions of radiation (i. e. the nebula is optically thin)

• the neutral atoms are in their fundamental level and they are ionized from

there

From the observations of H II region spectra, we know that there is statistical

equilibrium (otherwise the emission lines would be subject to strong variations

that are never seen) and we can, therefore, set up a system of statistical equa-

tions, accounting for the relevant processes:

Nn

n�1X

m=1

Anm

| {z }
departures from level n

=
1X

m=n+1

AmnNm + NpNe↵0n(Te)

| {z }
arrivals to level n

, (132)

2
see appendix A for the calculation.
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where ↵0n(Te) is the coe�cient of direct recombination to level n as a function

of the electron temperature Te, while Np represents the density of the most

abundant ion, namely H II.

If we were in conditions of thermodynamical equilibrium, we could use the

the equations of Saha and Boltzmann (Eq. 22 and 12) to describe the system:

NpNe

N1
=

(2⇡mekBT )3/2

h

3
e

��0/kBT

Nn

N1
=

2n

2

2
e

��0n/kBT

that can be combined in:

NpNe

Nn
=

(2⇡mekBT )3/2

h

3
n

�2
e

�(�0��0n)/kBT
, (133)

which would give:

Nn = NpNen
2

✓
h

2

2⇡mekBT

◆3/2

e

(�0��0n)/kBT
. (134)

Though in general we cannot assume thermodynamical equilibrium, the result

of Eq. (133) can still hold by simply introducing the departure coe�cient of

level n:

Nn = bnNpNen
2

✓
h

2

2⇡mekBT

◆3/2

e

(�0��0n)/kBT
. (135)

Substituting this expression of the level populations into the statistical equations

Eq. (132), we have a system of equations to determine the bn coe�cients:

↵0n(Te)
n

2

✓
2⇡mekBT

h

2

◆3/2

e

�(�0��0n)/kBT +
1X

m=n+1

bmAmne

�(�0m��0n)/kBT =

= bn

n�1X

m=1

Anm. (136)

In this case (that we remind is an optically thin nebula), the coe�cients bn are

only a function of T . This happens because at low densities the only processes

that can originate the lines are captures of free electrons in the excited levels,

followed by radiative cascades to the lower levels. The system of Eq. (136) is not

trivial, but numerical solutions indicate that bn increases with n, so that, when

the energy level is high enough, bn ! 1. This happens because the average

lifetime of high excitation stages are longer and there are more probabilities to

achieve thermodynamical equilibrium.
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5.2 Intensity of the optical recombination lines of H I

In the optically thin case

I

L
⌫ =

h⌫nm

4⇡
 (⌫)Anm

Z r⇤

0

Nndr. (137)

Introducing Eq. (135) into Eq. (137) for the population of level n, we can write:

I

L
⌫ = Fnm(Te)

Z r⇤

0

NpNedr, (138)

where we grouped all the characteristics of the transition into the factor Fnm(Te).

Applying quantum mechanics considerations, that are beyond the purpose of

these notes, the intensity can be expressed as:

I

L
⌫ = 34.24

gnm

n

3
m

3

bn

T

3/2
e

exp
✓

15800
n

2
Te

◆
E

1 + N(He+)/Np
, (139)

where we needed the Gaunt factor of the transition gnm and we introduced the

emission degree:

E =
Z r⇤

0

N

2
e dr. (140)

Eq. (139) expresses the dependence of the intensity of a H I recombination

line on the energy levels connected by the transitions and the environmental

conditions.

5.3 Intensity of the radio recombination lines

In the cases with n ⇠ 100 we have a departure coe�cient bn ⇠ 1 (there is

approximately thermodynamical equilibrium) and:

S

L
⌫ = B⌫(Te).

If we again consider an optically thin medium, it is:

I

L
⌫ =

Z r⇤

0

B⌫(Te)kL
⌫ dr, (141)

with (see Eq. 57):

k

L
⌫ =

h⌫nm

c

 (⌫)NmBmn

✓
1�

gmNn

gnNm

◆
. (142)

In this expression, we can isolate the factor:
✓

1�
gmNn

gnNm

◆
= 1�

bn

bm
e

�h⌫/kBTe
⇡ 1�

bn

bm
, (143)
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where the last step applies to the low frequency regime of the radio domain. In

some cases, it can happen that the factor of Eq. (143) may become negative,

resulting in a negative absorption coe�cient. This is the MASER e↵ect, that

occurs when the stimulated emission overweighs the radiation absorption, lead-

ing to an enhancement of the radiation field intensity due to the path travelled

by the beam through the gas.

As opposed to the optical case, in the radio domain the continuum is strong

enough to produce induced emission (due to the thickness of H II regions in

radio):

I⌫0 � I

L
⌫

and the factor:

Bnm
4⇡
c

I⌫

must be included in the statistical equations (136) to determine bn.

6 Continuous emission and absorption

6.1 Sources of continuous emission and absorption

The dominant processes that give rise to continuous absorptions and emissions

in the interstellar gas are due to:

• free - free transitions (in the radio domain or in the optical and X-rays for

the thermal bremsstrahlung of hot plasmas)

• bound - free transitions (absorption of ionizing radiation in the UV and

re-emission in the optical, without significant contributions from the radio)

• acceleration of free electrons of the non-thermal cosmic radiation in inter-

stellar magnetic fields (synchrotron radiation in all the frequency intervals)

It is very important to remember that the recombination cross-section is � / v

�2

(cfr. Eq. 65), so that recombination is more likely to a↵ect the slowest electrons

of the velocity distribution. We shall later see that in ionization equilibrium,

the photo-ionization processes generally produce fast electrons (depending on

the average energy of the ionizing photons), that must be slowed down before
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recombining. The slowing process transfers the electron kinetic energy into the

gas, so that ionization turns out to be a globally heating mechanism.

6.2 Free-free transitions of thermal electrons

When an electron moves close to another charged particle (most commonly a

positive ion), according to the classical theory it emits a peak of radiation. If

the plasma consists of hydrogenoid ions of charge Ze and with a Maxwellian

distribution of velocity, the emission coe�cient is:

✏

k
⌫(f � f) =

8
3

✓
2⇡
3

◆1/2
Z

2
e

6

m

3/2
e c

3(kBT )1/2
gffNeNi exp

✓
�

h⌫

kBT

◆
, (144)

where gff is tha Gaunt factor of the free - free transition. Numerically speaking,

Eq. (144) is:

✏

k
⌫(f � f) ⇡ 5.44 · 10�39 Z

2
gff

T

1/2
NeNi exp

✓
�

h⌫

kBT

◆
. (145)

Due to the exponential factor, at the typical temperatures of H II regions (T ⇠

104 K) the emission occurs in the radio and far IR domains.

When the radiation frequency is appreciably larger than the plasma fre-

quency (i. e. the frequency at which plasma particles oscillate after being

perturbed by an external electric field):

⌫ >> ⌫p =
✓

e

2
Ne

⇡me

◆1/2

the Gaunt factor can be expressed as:

gff =
p

3
⇡


ln

(2kBT )3/2

⇡Ze

2
m

1/2
e ⌫

� 1.443
�

=
p

3
⇡


ln

T

3/2

Z⌫

+ 17.7
�

(146)

In the radio range:

gff ⇡ T

0.15
⌫

�0.1
. (147)

With these expressions, we can integrate Eq. (144) over all the frequencies and,

assuming isotropy, derive the total emission coe�cient:

4⇡✏ff = 4⇡
Z 1

0

✏

k
⌫(f � f)d⌫ = 1.426 · 10�27

Z

2
T

�1/2
NeNigff . (148)

For 104 K  T/Z

2
 106 K we have that 1.25  gff  1.45, therefore always in

the order of unity.
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The absorption coe�cient k

k
⌫ (f � f) can be computed directly from the

✏

k
⌫(f � f) if we assume that there is thermodynamical equilibrium. From:

✏⌫

k⌫
= 2

⌫

2

c

2
kBT,

we have:

k

k
⌫ (f � f) =

✏

k
⌫c

2

2⌫2
kBT

/ T

�1.35
⌫

�2.1
, (149)

where we used the result ✏k⌫ / T

�0.35
⌫

�0.1, derived combining Eq. (145) and

(147).

We can now define the optical depth of the free-free process:

⌧

k
⌫ (f �f) =

Z r⇤

0

k

k
⌫ (f �f)dr = 8.24 ·10�2

Z

2
T

�1.35
⌫

�2.1

Z r⇤

0

NeNidr

| {z }
emission degree E

. (150)

We can immediately see that ⌧k
⌫ (f � f) is a decreasing function of T and ⌫,

while it increases with the emission degree E. From Eq. (149) and (150) we

infer that the gaseous nebulae become optically thick at low frequencies. As an

example, in a H II region with

Ne = Np = 102 cm�3
Z = 1 T ⇠ 104 K r

⇤
⇠ 10 pc

we have that ⌧K
⌫ � 1 for ⌫  200 MHz.

6.2.1 The thermal radio continuum

When the particle velocity distribution is Maxwellian, in the radiative transport

equation:
dI⌫

ds

= �I⌫ +
✏⌫

k⌫

we can apply the identity:
✏⌫

k⌫
= B⌫(Te),

with:

B⌫(Te) = 2
⌫

2

c

2
kBTe

If the source function is spatially constant (i. e. Te is not a function of position)

and there is no background source (I⌫0 = 0), we had the solution in the form of

Eq. (37):

I⌫ = S⌫(1� e

�⌧⇤⌫ ), (151)
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Figure 11: The thermal radio continuum in the optically thick and optically

thin regimes.

with S⌫ = B⌫(Te). Eq. (151) has two limits:

⌧

⇤
⌫ > 1 ! I⌫ = B⌫(Te) ! I⌫ / ⌫

2
Te

⌧

⇤
⌫ << 1 ! I⌫ = ⌧

⇤
⌫ B⌫(Te) ! I⌫ / ⌫

�0.1
T

�0.35
e ,

where we made use of Eq. (150) to express the dependence of ⌧⇤⌫ on frequency and

temperature. The two limits imply that the thermal radio continuum appears

similar to the one illustrated in Fig. 11, with two di↵erent regimes. In the

optically thick regime, at low frequency, the continuum reproduces the shape of

a black body function and a measurement of specific intensity in this region gives

the electron temperature Te. Moving at higher frequencies, the gas becomes

optically thin and the continuum is nearly independent from temperature and

frequency itself. A measurement of the intensity in this region yields an estimate

of the emission degree E, that, given some constraints on the size of the cloud,

results in a lower limit on the electron density Ne.
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6.3 Bound-free and free-bound transitions in the optical

- UV

If we consider H and hydrogenoid atoms, we can define the free state through a

continuous variable x depending on the kinetic energy of the free electron:

Ek =
1
2
mv

2 =
RhZ

2

x

2
, (152)

where

R =
2⇡e

4
me

h

2
= 3.29 · 1015 Hz

is the Rydberg constant in frequency units. The absorption coe�cient for a

transition n! x is:

k

k
⌫ (b� f) =

64⇡4
mee

10Z

4

3
p

3ch

6
n

5
⌫

3
gnfN0n ⇡ 3 · 1029 Z

4

n

5
⌫

3
gnfN0n, (153)

where gnf is the Gaunt factor (⇠ 1 with a weak dependence on ⌫ in the optical)

and N0n is the density of neutral atoms in the excitation level n. From Eq. (153)

it is important to notice that absorptions are disfavored in the high excitation

levels and it is inversely proportional to the 3rd power of the ionizing radiation

frequency. This is very important because, provided that photons must

carry enough energy to cover the ionization threshold, more energetic

photons are less likely to be absorbed.

For the recombination of a free electron with velocity in the range v�v +dv

to a bound energy level n, we can derive an emission coe�cient starting from

the expression of the line emission coe�cient of Eq. (49):

✏

L
⌫ =

h⌫nm

4⇡
 (⌫)AnmNn

and write in analogy:

✏

k
⌫(x� n)dv =

h⌫

4⇡
Ne(v)dvQxn(v)N1, (154)

where:

Ne(v)dv = Ne�(v, T )dv

Qxn(v) = v�xn(v)

. If elastic collisions dominate, �(v, T ) is a Maxwellian distribution and:

✏

k
⌫(f � b) =

m

1/2
e h

2
⌫

(2⇡kBT )3/2
v

2
�xn(v)NeN1 exp

✓
�

h⌫ � xn

kBT

◆
. (155)
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To express the emission coe�cient, we need an estimate of the factor v

2
�xn(v).

In thermodynamic equilibrium we must have:

✏

k
⌫

k

k
⌫

= B⌫(T ) =
2h⌫

3

c

2

1
e

h⌫/kBT
� 1

and the Saha equation between the two ionization stages:

N1

N0n
pe = 2

g11

g0n

(2⇡me)3/2(kBT )5/2

h

3
e

�xn/kBT

so that, taking the ratio of Eq. (154) and (153) and performing all the substi-

tutions we get:

v

2
�xn(v) =

✓
h⌫

mec

◆2
g0n

g11

k

k
⌫ (b� f)
N0n

. (156)

Introducing the expression of k

k
⌫ (b� f) of Eq. (153), we have:

v

2
�xn(v) =

64⇡4
e

10Z

4
gnf

3
p

3mec
3
h

4

1
⌫n

3
, (157)

that can be introduced in Eq. (155) to evaluate ✏k⌫(f � b).

6.4 Continuum emission from recombination

In the visible and UV spectral ranges we have the Balmer and Paschen continua

(those arising from direct recombinations to levels 2 and 3, respectively). To

calculate the coe�cient we can start from the e↵ective recombination cross-

sections:

�xn =
64⇡4

e

10Z

4

3
p

3mec
3
h

3

1
n

3

1
v

2

gnf

�n + mev
2
/2| {z }

h⌫

. (158)

For the emission coe�cient, we have:

✏xn(⌫)d⌫ = h⌫

✓
me

2⇡kBT

◆3/2

�xnv

3
e

�mev2/kBT
NeNpdv,

which becomes:

✏xn(⌫) =
128⇡4

e

10megnf

c

3
h

2(6⇡mekBT )3/2

1
n

3
exp

✓
�

h⌫ � �n

kBT

◆
NeNp =

= 1.7 · 10�33
gnfT

�3/2
n

�3

✓
�

�E

kBT

◆
NeNp. (159)

The total energy emitted in the continuum for a recombination to the level n

has a luminosity density given by:

4⇡✏xn = 4⇡
Z 1

⌫n

✏xn(⌫)d⌫ =
4.5 · 10�22

T

1/2
n

3
NeNp.
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For the direct recombinations to the ground level n = 1 in a photo-ionized

nebula with T = 104 K and 1 cm�3
 Ne  108 cm�3:

4⇡✏1 = 4.5 · 10�24
� 4.5 · 10�8 erg cm�3 s�1

and a free-free emission coe�cient (Eq. 148):

4⇡✏ff =
1.426 · 10�27

Z

2
NeNpgff

T

1/2
= 1.4 · 10�29

� 1.4 · 10�13 erg cm�3 s�1
,

therefore the recombination continuum is usually the dominant contribution.

6.5 The 2-photon emission

The transition between levels 2s ! 1s in H is forbidden, but it can occur

through the temporary formation of a short-lived intermediate energy level and

the emission of two continuum photons, provided that:

h⌫

0 + h⌫

00 = h⌫21 = 10.2 eV.

The transition has a probability coe�cient A(2s! 1s) = 8.26 s�1 and it results

in the emission a a symmetric continuum peak, centered at � = 2431 Å(�E =

5.1 eV), which becomes observable when Ne < 104 cm�3.

7 Ionization equilibrium

7.1 Statistical equilibrium in ionized nebulae

We know from observations that ionized nebulae are characterized by emission

line spectra. The lines are originated by a source of ionization (either a shock

front or a ionizing radiation field) and by subsequent recombinations. The

existence of the emission lines is possible when the ionization and recombination

processes achieve an equilibrium in which the number of ionizations is balanced

by the number of recombinations. Without this balance, the gas would evolve

towards a state of full ionization or complete neutrality and no emission lines

would be produced. In the equilibrium condition, instead, there is a constant

degree of ionization, meaning that a fraction of the atoms is always ionized and

the population of the free levels is constant.
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If we only consider ionization and recombination processes in which only 1

electron is released or captured, the ionization equilibrium can be described as:

Ni(Ri,i+1 + Ci,i+1) = Ni+1(Ri+1,i + Ci+1,i), (160)

with:

Ri,i+1 photo-ionization rate

Ci,i+1 collisional ionization rate

Ri+1,i radiative recombination (cooling process)

Ci+1,i 3-body recombination (recombination of an electron with energy

transferred to a second electron)

It is intuitive to derive that:

Ri+1,i / Ne

Ci+1,i / NeN
0 negligible at low densities

7.1.1 Radiative ionization

For a nebula mainly consisting of Hydrogen atoms, Eq. (160) becomes:

N0(R01 + C01) = N1R10. (161)

To estimate the photo-ionization rate R01 we need to compute the integral:

N0R01 = 4⇡
Z 1

⌫0

k

k
⌫ (1� f)I⌫

h⌫| {z }
number of absorbed photons

d⌫, (162)

where we assumed that ionizations occur only from the ground level. This

assumption is reasonable because in interstellar conditions all neutral atoms are

in their ground level (cfr. §4.3 for the case of permitted lines) and we can use

N0 = N01. From Eq. (153) we know that the absorption coe�cient is:

k

k
⌫ (1� f) ⇡ 3 · 1029 Z

4

n

5
⌫

3
gnfN01

that, for H becomes:

k

k
⌫ (1� f) ⇡ 3 · 1029 N01

⌫

3

and setting:

I⌫ = WB⌫(T )
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with W ⇠ 10�16 (diluted radiation field) and T ⇡ 4 · 104 K (ionization from hot

stars), we do not need to solve the transport equation. Eq. (162) becomes:

N01R01 =
3 · 1029

· 4⇡N01W

h

Z 1

⌫0

B⌫(T )
⌫

4
d⌫. (163)

Using the Stefan-Boltzmann law:

B⌫(T ) =
�T

4

4⇡
, (164)

with � = 2⇡5
k

4
B/15h

3
c

2 being the Stefan-Boltzmann constant, we can numeri-

cally estimate Eq. (163), obtaining:

R01 ⇠ 10�8s�1
.

This means that the typical lifetime of a neutral atom in the diluted radiation

field of hot stars is t = 108 s. In H II regions all atoms are ionized from the

ground level and the ionization of a neutral atom by absorption of radiation

occurs every 108 s. Ionizations are nonetheless globally frequent, because of the

large number of atoms available in the cloud.

7.1.2 Additional sources of ionization

At large distances from the hot stars the main sources of ionization are:

• the di↵use component of the cosmic radiation (mainly the X-ray back-

ground)

• the collisional ionization due to the high energy particles of the cosmic

radiation

For what concerns the X-ray background, we have to recall that the absorp-

tion coe�cient is k

k
⌫ (1 � f) / ⌫

�3. It turns out that R01 ⇠ 10�17 s�1 for low

energy photons (0.2 keV  E  1 keV) while it is R01 = 0 for the high energy

ones (E � 1 keV).

The collisions with particles of the cosmic radiation can be described by a

collisional ionization rate C01 which is comparable to the low energy radiative

ionization rate (C01 ⇠ 10�17 s�1) for particles with kinetic energy E < 100 MeV

and null above this limit.

In addition, in regions with T >> 104 K, such as the hot plasmas from

which the emission lines of O IV arise (e. g. the hot intra-cluster medium, with
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T ⇠ 106
� 107 K) the kinetic energy of thermal electrons can reach values as

high as E ⇠ 102
� 103 eV, for which we have a rate of collisional e�ciency of:

Q01 ⇡ 10�11
p

T cm3 s�1
.

7.1.3 Recombination

The recombination rate with subsequent emission of photons is:

Ri+1,i = Ne↵i, (165)

where:

↵i =
X

n

↵in

is the total recombination coe�cient and

↵in =
Z 1

0

v�xn(v)�(v, T )dv

is the recombination coe�cient at level n. From Eq. (157) we have:

v

2
�xn(v) =

64⇡4
e

10Z

4

3
p

3mec
3
h

4

1
⌫

gnf

n

3

and, in the case of hydrogenoid atoms with a Maxwellian distribution of velocity

corresponding to the kinetic temperature of the electrons, using:

h⌫ =
1
2
mev

2 + (�0 � �0n)

we get:

↵0n =
29
⇡

5
e

10Z

4

m

2
ec

3
h

3

✓
me

6⇡kBT

◆3/2

exp
✓
�

�n

kBT

◆
F

✓
�n

kBT

◆
gnf

n

3
, (166)

with �n representing the ionization energy from level n and

F (x) =
Z 1

x

e

�t

t

dt.

We define the partial recombination coe�cient:

↵

(j)
0 =

1X

n=j

↵0n, (167)

so that:

↵

(1)
0 = ↵0 ↵

(n)
0 = ↵0 �

n�1X

i=1

↵0i
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For hydrogenoid atoms, it is:

↵

(j)
0 =

2.06 · 10�11
Z

2

T

1/2
�j

✓
�1

kBT

◆
. (168)

This coe�cient is useful because nebulae are nearly transparent for recombina-

tions to levels n > 1 (since all the neutral atoms are in the ground level), while

recombinations to the ground level itself produce photons that can re-ionize

other atoms. These are re-absorbed after traveling a certain distance, which,

if smaller than a significant fraction of the cloud size, can be neglected in the

so-called on the spot approximation.

Considering only H atoms (Z = 1) in a H II region with T = 104 K and

Ne = 103 cm�3 we have:

↵

(1)
0 ⇠ 4 · 10�13 cm3 s�1

↵

(2)
0 ⇠ 2.6 · 10�13 cm3 s�1

and from the statistical equilibrium equation:

N1

N0
=

R01 + C01

Ne↵
1
0

it turns out that:
N1

N0
⇠ 25.

In the hot component of the ISM (like the thin clouds far away from the ionizing

sources detected through their O IV lines) with

T ⇠ 106 K Q01 ⇡ 10�11
p

T R01 ⇠ 10�17 s�1
Ne = 4 · 10�3 cm�3

↵

(1)
0 ⇠ 10�14 cm3 s�1

we have:
N1

N0
⇠ 106

that is full ionization.

7.2 Ionization equilibrium in H II regions

Let’s consider ionization equilibrium in the presence of a hot star. Indicating

with
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N0 the number of neutral atoms

N1 the number of ions

NH = N0 + N1 the total H abundance

if H is much more abundant than the heavier elements it is also the only relevant

source of free electrons. This implies that:

Ne = N1. (169)

Since:

R01 ⇠ 10�8 s�1

C01 ⇠ 10�17 s�1
!

N0R01 = N1R10

R10 = Ne↵
1
0 = Ne↵0

we can neglect the ionization due to collisions (and that produced by the back-

ground radiation) and the ionization equilibrium is:

N0R01 = N1Ne↵0. (170)

From this expression, we get:

N1

N0
=

R01

Ne↵0
. (171)

Taking into account a central star belonging to the first spectral types (T⇤ ⇠

104 K), we have:

R01 ⇠ 10�8 s�1
↵0 ⇡ 4 · 10�13 cm3 s�1

that, put into Eq. (171), gives:

N1

N0
=

2.5 · 104 cm�3

Ne
,

so that, using the identity of Eq. (169), we finally have:

N0 =
N

2
e

2.5 · 104 cm�3
. (172)

If we know the value of N0 = N01 we can evaluate the bound-free absorption

coe�cient. Starting again from the expression of Eq. (153), it is:

k

k
⌫ (n� f) ⇡ 3 · 1029 Z

4

n

5
⌫

3
gnfN0n

that, for H atoms in their ground level, reduces to:

k

k
⌫ (1� f) ⇡ 3 · 1029 N01

⌫

3
. (173)
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We recall that ionization can occur only above the threshold frequency:

⌫0 = ⌫(912 Å) = 3.2895 · 1015 Hz,

so that, at the threshold frequency, we find:

k

k
⌫ (1� f) = 8.4 · 10�18

N01.

Therefore, for gaseous nebulae with electron densities in the range 102 cm�3


Ne  103 cm�3, using Eq. (172), we get

3.4 · 10�18 cm�1
 k

k
⌫ (1� f)  3.4 · 10�16 cm�1

.

An optical depth of ⌧⌫0 = 1 is reached after a mean free path of the order of k

k
⌫
�1,

which ranges approximately from 0.1 pc, for Ne = 102 cm�3, down to 0.001 pc,

for Ne = 102 cm�3.3 Since the typical dimensions of a nebula largely exceed

1 pc, this means that the ionizing photons are absorbed within a very small

geometrical path, thus satisfying the on the spot approximation. In particular,

we have demonstrated that photo-ionized nebulae are optically thick to

the Lyman continuum.

7.3 The di↵use ionizing radiation

The optical thickness of photo-ionized nebulae to the Lyman continuum intro-

duces some additional complications in the expression of the photo-ionization

equilibrium. Indeed, we have to take into account the fact that direct recom-

binations to the level with n = 1 produce a di↵use radiation field with ⌫ > ⌫0,

which contributes to the ionization. The expression of R01, that we derived from

Eq. (162), must be corrected for this e↵ect, by the introduction of the di↵use

radiation component in the radiation field specific intensity:

I⌫ = I

s
⌫ + I

d
⌫ .

We can try to estimate the fraction of direct recombinations to the ground

level:

N1R10 = N1Ne↵0 = N1Ne(↵
(2)
0 � ↵01), (174)

3
Remember that 1 pc ⇡ 3 · 10

18
cm.
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with:

↵01 = 1.4 · 10�13 cm3 s�1
↵

(2)
0 = 2.6 · 10�13 cm3 s�1

↵0 = 4 · 10�13 cm3 s�1
.

From these quantities, it turns out that the fraction of recombinations at the

ground level is ↵01/↵0 = 35%, while the fraction of recombinations at levels with

n � 2 is ↵2
0/↵0 = 65%. These ratios imply that the di↵use radiation field has a

non-negligible role and we cannot neglect the contribution of ionizing photons

from the environment. Introducing the distinction between the source and the

di↵use radiation fields in Eq. (162), we have:

N01R01 = 4⇡
Z 1

⌫0

k

k
⌫ (1� f)(Is

⌫ + I

d
⌫ )

h⌫

d⌫. (175)

Separating the contribution of direct recombinations to the ground level, the

ionization equilibrium of Eq. (175) can be written as:

N1Ne↵
(2)
0 + {N1Ne↵01} = 4⇡

Z 1

⌫0

k

k
⌫ (1� f)Is

⌫

h⌫

d⌫ +
⇢

4⇡
Z 1

⌫0

k

k
⌫ (1� f)Id

⌫

h⌫

d⌫
�

.

(176)

If the on the spot approximation holds, the two terms in curly braces of Eq. (176)

are exactly balanced and cancel out.

If we define the ionization degree as:

x =
N1

N0 + N1
(177)

recalling that NH = N0 + N1 it turns out that:

Ne = N1 = xNH . (178)

The ionization equilibrium becomes then:

N01R01 = NeN1↵
(2)
0 ,

that, in terms of x, is:

(1� x)NH · 4⇡
Z 1

⌫0

k

k
⌫I

s
⌫

h⌫

d⌫ = x

2
NH

2
↵

(2)
0 , (179)

where we used an absorption coe�cient per atom:

k

k
⌫ =

k

k
⌫ (1� f)

N01
.
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7.4 The ionization front

The transport equation expressed in polar coordinates becomes:

@I⌫

@r

cos ✓ �
@I⌫

@✓

sin ✓
r

= �k⌫I⌫ + ✏⌫ , (180)

where ✓ is the angle with respect to the radial coordinate. In the case of spherical

symmetry, since:

�⌫ =
Z

4⇡

I⌫(✓) cos ✓d⌦, (181)

we have:
d�⌫

dr

+
2
r

�⌫ =
1
r

2

d
dr

(r2�⌫) = �4⇡k⌫I⌫ + 4⇡✏⌫ , (182)

where the factor 4⇡ arises from the fact that we define the intensity of the

isotropic radiation field as:

4⇡I⌫ = ⌦⇤I⇤⌫

with:

I

⇤
⌫ =

�⌫(r)
⌦⇤

being the average intensity of the stellar disk, that does not depend on distance.

Due to the absorption along the path from the surface of the star to the distance

r, we have to make the substitution I

⇤
⌫ ! I⌫ ⇤ e

�⌧⌫ , with ⌧⌫ determined by:

d⌧⌫ = k

k
⌫ atomN0dr = k

k
⌫ a(1� x)NHdr. (183)

Since k

k
⌫ / ⌫

�3 (for ⌫ � ⌫0), the optical depth increases at low frequencies. In

particular, it is:

⌧

⇤
⌫ = k

k
⌫ atom(1� x)NHr

⇤
/

(1� x)
⌫

3
NHr

⇤
.

Due to the pronounced dependence of the opacity on frequency, we have that

the radiation at low frequency is considerably weakened and the intensity dis-

tribution appears shifted toward the higher frequencies. Another important

consequence is that high energy photons penetrate deeper layers of the cloud

and they are the last ones to be absorbed.

In the case of a photo-ionized nebula, we have to consider, in addition to the

stellar radiation, also the di↵use radiation field, with an emission coe�cient ✏d⌫ .
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With this distinction, if we divide Eq. (182) by h⌫, multiply by 4⇡ and integrate

over frequency, we get

d
dr


4⇡r

2

Z 1

⌫0

�s
⌫ + �d

⌫

h⌫

d⌫
�

= 4⇡r

2


�4⇡

Z 1

⌫0

k⌫(Is
⌫ + I

d
⌫ )

h⌫

d⌫ + 4⇡
Z 1

⌫0

✏

d
⌫

h⌫

d⌫
�

.

(184)

Instead of trying to solve Eq. (184) it is better to understand the meaning of

its di↵erent members. For the flux of the source radiation field, we have:

�s
⌫ = I

⇤
⌫e

�⌧⌫ ⌦⇤.

By definition, it is:

4⇡I

s
⌫ = ⌦⇤[I⇤⌫e

�⌧⌫ ]

and we have:

I

s
⌫ = I

⇤
⌫e

�⌧⌫
⌦⇤

4⇡
= I

⇤
⌫e

�⌧⌫
W.

The member in the left hand side of Eq. (184) is:

Lc(r) = 4⇡r

2

Z 1

⌫0

�s
⌫ + �d

⌫

h⌫

d⌫, (185)

that represents the number of ionizing photons produced by the star and by the

di↵use radiation field. In the right hand side of the equation, instead, we have:

4⇡
Z 1

⌫0

✏

d
⌫

h⌫

d⌫ = x

2
N

2
H↵01,

meaning that the number of photons produced in the di↵use radiation field is

equal to the number of direct recombinations to the ground level n = 1. If the

photons of the Lyman continuum are re-absorbed on the spot, then:

4⇡
Z 1

⌫0

k⌫I

d
⌫

h⌫

d⌫ = x

2
N

2
H↵01

meaning that the number of absorbed photons, too, is equal to the recombi-

nations at n = 1 and �d
⌫ = 0. With these assumptions, we can re-define the

number of ionizing photons produced by the star of Eq. (185) as:

Lc(r) = 4⇡r

2

Z 1

⌫0

�s
⌫

h⌫

d⌫, (186)

and re-write Eq. (184) as:

d
dr

Lc(r) = 4⇡r

2[�x

2
N

2
H↵0 + x

2
N

2
H↵01],
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Figure 12: Ionization degree as a function of distance from the ionizing radiation

source.

which, using the definition of the partial recombination coe�cients of Eq. (167),

becomes:
d
dr

Lc(r) = �4⇡r

2
x

2
N

2
H↵

(2)
0 . (187)

Eq. (187) tells us that the variation in the number of ionizing photons with

distance from the source is equal to the number of recombinations at levels

n  2.

Due to the variation of the number of ionizing photons, the ionization degree

itself is a function of the distance from the source x = x(r). This function can

be determined solving the following set of equations:

(1� x)NH4⇡
Z 1

⌫0

k

k
⌫I

s
⌫

h⌫

d⌫ = x

2
N

2
H↵

(2)
0

I

s
⌫ = I

⇤
⌫e

�⌧⌫
R

2
⇤

4r

2

⌧⌫(r) = k

k
⌫ · (1� x)NHr.

If we know NH , R⇤, I

⇤
⌫ and we use k

k
⌫ (1 � f)H = 3 · 1029

⌫

�3, it is found that

x(r) is nearly constant and very close to 1 (full ionization) where the ionizing

photons are still available, while it quickly drops to 0 at the distance where
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all the ionizing photons have been absorbed, as it is shown in Fig. 12. The

distance where the absorption of all the ionizing photons is carried out is called

the Strömgren radius rS and it can be obtained from integration of Eq. (187)

with the condition:

Lc(rS) = 0.

Using x(r) = 1 for r < rS , the integral of Eq. (187) is:

Lc(rS)� Lc(R⇤) = �Lc(R⇤) = �
4⇡
3

N

2
H↵

(2)
0 (r3

S �R

3
⇤). (188)

Since R⇤ << rS , it can be neglected in the right hand side of Eq. (188), obtain-

ing:

Lc(R⇤) =
4⇡
3

N

2
H↵

(2)
0 r

3
s . (189)

The luminosity is given by:

Lc(R⇤) =
Z 1

⌫0

�s(R⇤)
h⌫

4⇡R

2
⇤d⌫

and since:

�s = 4⇡I

⇤
⌫

we can solve Eq. (189) for rS :

rS =

"
3R

2
⇤⇡

N

2
H↵

(2)
0

Z 1

⌫0

I

⇤
⌫

h⌫

d⌫

#1/3

. (190)

The integral:

NL =
Z 1

⌫0

I

⇤
⌫

h⌫

d⌫

is the flux of ionizing photons at the surface of the star, and, recalling that at

T ⇠ 104 K it is:

↵

(2)
0 = 2.6 · 10�13 cm3 s�1

,

the Strömpgren radius expressed in pc is:

rS = 1.23 · 10�7

✓
R⇤
R�

◆2/3

N

1/3
L N

�2/3
H . (191)

For x = 1 we have:

N1 >> N0

⌧⌫ = (1� x)NH
3 · 1029

⌫

3
⇡ 0.
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Table 1: List of common element ionization potentials.
Element 1st ionization 2nd ionization

potential (eV) potential (eV)

H 13.6 –

O 13.6 34.9

N 14.5 29.5

Ne 21.6 41.1

He 24.6 54.4

If x decreases to 0.5, the optical depth increases steeple, so that the mean free

path of a photon with ⌫ = ⌫0 becomes smaller and smaller (` ⇠ 10�3 pc for

NH = 102 cm�3 and ` ⇠ 10�4 pc for NH = 103 cm�3).

As it is shown in Fig. 12, the ionization degree quickly drops to zero at a

distance approximately corresponding to the Strömgren radius. In this transi-

tion region, we have an overlapping of neutral and ionized gas. For this reason,

this region hosts free electrons and ion species such as H I, H II, O I and O II

(the first ionization potential of O is approximately equal to that of H). This

region is very important, because its the only place where a significant emis-

sion of forbidden lines from [O I] can arise. If the ionizing radiation source is

non-thermal (as, for example, in the case of AGNs or other power-law spectrum

sources), there is an excess of high energy photons (Fig. 4), which are absorbed

at the border of the nebula, because of their smaller absorption cross-section.

This results in a smoother transition from the ionized region to the neutral one,

therefore producing a larger transition region. In this case the intensity of the

emission lines, coming from the transition region, are enhanced and we are able

to discriminate the nature of the ionizing radiation source from the emission

line intensity ratios.

7.5 Stratification of ionization

In the spectra of photo-ionized nebulae we can observe emission lines produced

by H and several other elements. In Table 1 we report the first ionization

potentials of the elements emitting the brightest lines. The most abundant
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Figure 13: Ionization stratification for the cases of stars with T  40000 K and

T > 40000 K.

element after H is He, with:
N(He)
N(H)

⇡ 0.1

and, since �0(He) >> �0(H), He can be present in H II regions either as He I or

as He II. If there are not enough photons to ionize He, then there can be neither

O III nor NIII. It is convenient to subdivide the UV radiation in two bands:

1. 13.6 eV  h⌫  24.6 eV has photons that can only ionize H (and O)

2. h⌫ > 24.6eV has photons that can ionize all the elements

Though the high energy band photons can in principle ionize every element,

they will rather be absorbed by heavy ions, instead of H, in spite of its higher

abundance. This happens because of the photo-ionization cross-section, which,

above the ionization threshold, decreases as ⌫�3. Therefore, the H I atoms are

very small targets for this kind of photons, that are much more likely to interact

with an heavy element. Moreover, if there are photons in the low energy band,

they can only be absorbed by H I atoms, leaving only the heavy ions with the

possibility to absorb the high energy photons.

If the source of ionizing radiation is a thermal source with T  40000 K,

the ionizing photons are mainly belonging to the low energy band. A thermal
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source with T > 40000 K, instead, produces a significant number of photons with

h⌫ > 24.6 eV and the ionization structure that is observed in the surrounding

medium di↵ers in the two cases, as it is shown in Fig. 13.

7.6 Extinction by dust grains

From observations in the IR, we know that dust is present in the densest H II

regions. As a consequence, UV radiation is absorbed and the Strömgren radius

becomes smaller. Since it can be assumed that the dust / gas ratio is constant,

the dust content of the nebula increases with density. If we call r

0
S the dust

reduced Strömgren radius, we define the decrease factor as the ratio

r

0
S

rS
.

Calling ⌧⌫S the optical depth due to dust at the distance of r

0
S and AV the visual

extinction in the H II region, there is an empirically verified relation, stating

that:

⌧⌫S = 4AV .

7.7 H I regions

All the stars belonging to the O and B spectral classes are surrounded by H II

regions. Photons with h⌫ > 13.6 eV cannot escape from these regions, but

lower energy photons can still ionize heavy elements in the neutral gas, like,

for example, C I (�0 = 11.26 eV), Si I (�0 = 8.15 eV) and Fe I (�0 = 7.87 eV).

In addition, a residual ionization of H is still possible, due to collisions with

particles of the cosmic radiation (C01 ⇠ 10�17 s�1 for E < 100 MeV) and to

interactions with the X-ray background (R01 ⇠ 10�17 s�1 for h⌫ < 1 keV). The

resultant ionization degree can be evaluated through the statistical equilibrium:

N0(R01 + C01) = N1R10, (192)

with R10 = Ne↵
(2)
0 (on the spot re-absorption of all the Lyman continuum

photons).

In a neutral medium, we have:

N1 << N0 = N(H I),
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so that the electron density is:

Ne = N1 + x0N(H I), (193)

where we caled x0 the abundance of electrons coming from other sources (heavy

elements) relative to H I. Eq. (192) becomes then:

N(H I)(R01 + C01) = N1[N1 + x0N(H I)]↵(2)
0

and:

(R01 + C01) = N(H I)

"✓
N1

N(H I)

◆2

↵

(2)
0 + x0

✓
N1

N(H I)

◆
↵

(2)
0

#
. (194)

In this case, the quantity:

y =
N1

N(H I)

is a measurement of the ionization degree (since it is equivalent to x = N1/(N0+

N1) for N1 << N0). The statistical equation Eq. (194) in terms of y is:

N(H I)↵(2)
0 y

2 + N(H I)↵(2)
0 y � (R01 + C01) = 0, (195)

that, solved for y gives:

y =
�x0↵

(2)
0 +

q
N

2(H I)x2
0↵

(2) 2
0 + 4N(H I)x0↵

(2)
0

2N(H I)↵(2)
0

,

that is:

y =
N1

N(H I)
=

x0

2

2

4
 

1 + 4
R01 + C01

N(H I)x2
0↵

(2)
0

!1/2

� 1

3

5
.

In the case of complete ionization of C I, Si I and Fe I, for normal chemical

compositions, it is x0 ⇡ 5 · 10�4.

7.7.1 Cold dense neutral cloud

We now consider, as an example, the physical conditions of a cold dense cloud

of neutral gas. The typical parameters of this environment are:

T ⇠ 100 K N(H I) ⇡ 20 cm�3 (R01 + C01) ⇠ 10�17 s�1

↵

(2)
0 ⇡ 6.8 · 10�12 cm3 s�1
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For the ionization degree, we get:

N1

N(H I)
⇡ 1.2 · 10�4

,

corresponding, through Eq. (193), to an electron density of:

Ne = (1.2 · 10�4 + 5 · 10�4)N(H I) ⇡ 1.24 · 10�2 cm�3
.

7.7.2 Hot tenuous neutral cloud

Another set of physical conditions is found in the hot tenuous neutral regions of

the gas, which surround, for example, photo-ionized clouds. Here we generally

find:

T ⇡ 4000 K N(H I) ⇠ 1 cm�3 (R01 + C01) ⇠ 10�17 s�1

↵

(2)
0 ⇡ 5.21 · 10�13 cm3 s�1

It results that y ⇡ 4 · 10�3 and:

Ne ⇡ 4.6 · 10�3 cm�3
,

i. e. the electron density is lower in the hot gas.

7.8 Heating and cooling mechanisms

The thermodynamical state of the interstellar gas depends on its kinetic tem-

perature. The temperature, in its turn, is controlled by the heating rate �

(measured in erg cm�3 s�1) and by the cooling rate ⇤ (expressed in the same

units). If the system is in thermal equilibrium, the temperature must be con-

stant and both heating and cooling have to occur with the same rate:

� = ⇤.

Both the rates depend on gas density and temperature, though their e�ciency

may change, due to the di↵erent processes that are at work.

The main processes which contribute to interstellar gas heating are:

• photo-ionization

• ionization by cosmic rays

• shock waves
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• heating by dust grains

• evaporation of H2 formed on the surface of dust grains

The main cooling mechanisms, instead, are:

• collisional excitation of metastable levels, followed by radiative de-excitation

(with photons that escape the nebula, because their absorption is forbid-

den)

• free-free emission from thermal electrons (mainly e↵ective at very high

temperatures T ⇠ 106 K)

The metastable cooling is very e↵ective plasmas with T ⇠ 104 K, where the free

electrons have the proper energy to charge the excited levels by collisions. In

higher temperature plasmas, or in the case of extremely metal poor gas, cooling

by excitation is not possible, because the ions are destroyed or they are not

even available. In these cases, free-free becomes dominant, but equilibrium can

only be achieved when it is really e↵ective. We shall now consider some cases

of interest.

7.8.1 Photo-ionization heating in H II regions

Photo-ionization is the main heating source of a H II region. The mean energy

of the electrons that are released can be expressed as:

Ee =

R1
⌫0

h(⌫ � ⌫0)kk
⌫I⌫/h⌫d⌫

R1
⌫0

k

k
⌫I⌫/h⌫d⌫

(196)

and it depends on the shape of the ionizing radiation spectral energy distribu-

tion, but not on its intensity. If the temperature of the source is T

⇤ and we can

assume:

I⌫ = WB⌫(T ),

then the initial temperature of the released electrons settles to:

T0 =
2
3
T

⇤
,

provided that h⌫0 > kBT

⇤.

Due to the photo-ionization cross-section (�ion / ⌫

�3), the most energetic

photons are absorbed far away in the nebula. For this reason, if T

⇤
> 40000 K,
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though there are many high energy photons, the initial temperature, close to the

star, is relatively low (T0 < T

⇤), while, if T

⇤
⇠ 10000 K, the high energy photons

are rarer, but absorptions are more frequent and the average energy of the

free electrons (and, consequently, T ) is higher. However, within the Strömgren

radius, where all the ionizing photons have been absorbed, the average energy

is larger for the hot stars.

From the emission lines of [O II] or of [S II] we can derive estimates of the

gas density and try to measure T at the border of the nebula. If we are able to

resolve the line emitting region, we can perform such measurements at di↵erent

positions. In ionization equilibrium, it will be:

NeN1↵0 = NeN1

X

n

v�xn, eqno(197)

so that we can derive the balance between the energy gain:

NeN1↵0Ee

and the energy loss:
1
2
meNeN1

X

n

v

3
�xn

resulting in the expression of heating as:

� = NeN1↵0Ee �
1
2
meNeN1

X

n

v

3
�xn. (198)

7.8.2 Cooling from metastable level transitions

To evaluate the e�ciency of cooling by excitation of metastable levels, we have

to balance the number of collisional excitations:

NeNi1Q1m

with that of collisional de-excitations:

NeNimQm1

and consider that only the ions which, after having been collisionally excited,

decay through a radiative transition actually take part to the cooling of gas.

The cooling rate is, therefore:

⇤ = Ne

X

m

(Em � E1)(Ni1Q1m �NimQm1). (199)
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If the electron density is low (Ne < Nc), we can neglect the collisional de-

excitations and find:

⇤ = Ne

X

m

(Em � E1)Ni1Q1m. (200)

In the case when no heavy ions are available, the only e↵ective coolant is

the free-free emission of thermal electrons. This implies:

⇤ff = 4⇡✏ff

with:

✏ff ⇡ 1.43 · 10�27
Z

2
T

1/2
NeNigff

and:

gff / T

0.15
⌫

�0.1

(cfr. §6.2 Eq. 147). This mechanism is always at work, but it is far less e�-

cient than the emission of forbidden lines, when the ions are available. If the

temperature grows, the e�ciency of the free-free also increases, until it eventu-

ally achieves equilibrium with the heating mechanism at some high temperature

value.

7.9 Thermal equilibrium in H II regions

In H II regions the thermal balance is mainly achieved by equilibrium between

photo-ionization heating and metastable level cooling, as shown in Fig. 14. The

mean energy produced by photo-ionization is expressed through Eq. (196), which

holds throughout the nebula. Close to the star, Eq. (196) can be evaluated in:

Ee =
3
2
kBT0,

with T0 initial temperature of the electrons. In this case, we can neglect the

di↵use component of the radiation field I

d
⌫ and, considering k⌫ / ⌫

�3, we can

apply the Wien regime:

I⌫ = WB⌫(T ⇤) = W⌫

3
e

�h⌫/kBT⇤
,

that can be integrated to get:

Ee =  0T
⇤
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Figure 14: Thermal balance between the main heating and cooling mechanisms

working in a H II region. The equilibrium temperatures correspond to the

values where the e�ciencies of heating and cooling processes (here expressed in

erg cm�3 s�1) become equal.

with  0 = 0.98 for T

⇤
⇡ 4000 K and  0 ⇡ 0.87 for T

⇤
⇡ 30000 K. For low

temperature stars, we have few ionizing photons with energy very close to the

ionization threshold that are absorbed immediately in the nebula. For this

reason the kinetic energy of the electrons is very close to the temperature of the

source.

The photo-ionization rate in photo-ionization equilibrium is:

�ph = NeN1

 
↵0Ee �

1
2
me

1X

n=1

< v

3
�xn >

!
,

so that, close to the star, we have:

N1 = Np = Ne

↵0 = ↵

(1)
0 =

2.5
T

1/2
�1

✓
�1

kBT

◆
· 10�11

Ee =  0T
⇤

and if �(v) is a Maxwell-Boltzmann distribution:

� =
2.9 · 10�27

NeNp

T

1/2
[T ⇤ 0�1(T )� T 1(T )],
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with:

 1(T ) = const.

X
v

3
�xn.

Solving the transport equation in radiation dilution with the on the spot as-

sumption, we can get Ee at each point in the nebula. If we consider the nebula

as a whole, it results:

Ee =  kBT

⇤
,

with  = 1.05 for T

⇤ = 4000K and  = 1.35 for T

⇤ = 30000K. In this case we

measure T > T

⇤ because we only see the e↵ect of the highest energy photons.

In a pure H nebula, thermal equilibrium is achieved at a temperature T ⇡

3 ·104 K, while, in the presence of heavy elements, we have T ⇠ 104 K. However,

if we increase the electron density of the gas, approaching the critical density of

the forbidden lines, the temperature increases again, because the e�ciency of

radiative de-excitation through the emission of forbidden lines becomes smaller.

8 Extinction

The most evident e↵ect of the interstellar dust is extinction of the light produced

by faraway stars and nebulae. Extinction in the visual band is mainly due to

scattering (light subtracted from our line of sight) and partially to absorption

(photons re-processed and emitted at di↵erent frequencies). If we call I�0 the

intrinsic intensity of a source and I� its observed intensity, then we have:

I�

I�0
= e

�⌧�
. (201)

Interstellar extinction is characterized by the value of ⌧� along the path from

the source to the observer. It is computed from spectro-photometric measure-

ments of pairs of stars belonging to the same spectral type. If we label the two

stars as number 1 and 2, the ratio between their fluxes is:

F�(1)
F�(2)

=
F0�(1)
F0�(2)

e

�[⌧�(1)�⌧�(2)] =
D

2
2

D

2
1

e

�[⌧�(1)�⌧�(2)]
, (202)

where D1 and D2 are the distances to the two stars. It is convenient to choose

the two stars in such a way that one is reddened and the other not. This is

possible if the not reddened star is a very close one. Let’s assume, for example
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⌧�(2) ⇠ 0, so that Eq. (202) becomes:

F�(1)
F�(2)

=
D

2
2

D

2
1

e

�⌧�(1)
, (203)

which yields:

⌧� = 2ln
D2

D1
� ln

F�(1)
F�(2)

.

The logarithm of the flux ratios increases with � and it becomes approxi-

mately constant at very long wavelengths. The logarithm of the distance ratio,

instead, is independent on � and it is generally unknown, though it can be esti-

mated from measurements of F� at very long wavelengths, where ⌧� ⇠ 0. From

measurements of the ratio F1/F2 taken at di↵erent wavelengths we can extract

the extinction curve. It turns out that:

• ⌧� is approximately the same function of wavelength for all stars in every

direction

• only the normalization of the curve is a function of direction

This result is the consequence of the fact that the dust has the same physical

properties throughout the interstellar medium (at least in our own Galaxy) and

that it is found approximately in the same ratio with respect to gas, except

for some notable situations (such as dense molecular clouds, that are generally

more dusty). We can, therefore, write:

⌧� = Cf(�), (204)

where C depends on the distance from the source and f(�) is the same in every

direction. With this expression, we can evaluate Eq. (201) at two di↵erent

wavelengths:
I(�1)
I(�2)

=
I0(�1)
I0(�2)

e

�C[f(�1)�f(�2)]
. (205)

The e↵ect of interstellar extinction is to change the observed intensity ratio of

two lines, with respect to their intrinsic value in the original nebula.

f(�) is normalized in such a way that:

⌧H� � ⌧H↵ = 0.5.

Setting C = 1 we have:

f(�) =
0.68
�

� 0.39 for� � 0.437µm
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f(�) =
0.36
�

+ 0.31 for� < 0.437µm,

resulting in:

f(H�) = 1.

If we know the theoretical intensity ratios of some emission lines, like in the

case of the hydrogen Balmer lines, we can calculate the value of C and apply

an extinction correction to the other line intensity ratios of, for example, [O III]

etc. Indeed, since it is:

e = 100.434
,

Eq. (205) becomes:

I(�)
I(H�)

=
I0(�)

I0(H�)
10�0.434(⌧��⌧H�) =

I0(�)
I0(H�)

10�c[f(�)�f(H�)]
, (206)

where c = 0.434C. Now, since we have:

I(�)/I0(�)
I(H�)/I0(H�)

=
10�cf(�)

10�cf(H�)
(207)

and f(H�) = 1, taking separately the numerator and denominator of Eq. (207),

we infer:

log
I(H�)
I0(H�)

= c.

Going to the magnitude scale:

A� = 2.5c = 2.5 log
I(H�)
I0(H�)

and, similarly:

A� = 2.5 log
I(�)
I0(�)

= 2.5cf(�).

It is a common use to take the e↵ective wavelength of the visual band V as

a reference. It is:

AV �A�

E(H� �H↵)
=

f(V )� f(H�)
f(H�)� f(H↵)

=
f(V )� 1
1� f(H↵)

= �0.425,

where E(H��H↵) is the color excess at the wavelengths of H� and H↵, defined

as:

E(H� �H↵) = [m(H�)�m0(H�)]� [m(H↵)�m0(H↵)].

It results:

AV = A� � 0.425E(H� �H↵)
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Figure 15: E↵ect of the extinction on the observed Balmer line intensity ratios

(c3 > c2 > c1).

and
E(B � V )

E(H� �H↵)
=

AB �AV

A� �A↵
=

f(B)� f(V )
f(H�)� f(H↵)

= 0.863.

Therefore:

E(B � V ) = 0.863E(H� �H↵).

The functional behavior of extinction can be obtained in the form:

log
I(H↵)
I(H�)

= log
I0(H↵)
I0(H�)

� c[f(H↵)� 1]

log
I(H�)
I(H�)

= log
I0(H�)
I0(H�)

� c[f(H�)� 1],

which, putting:

y = log
I(H↵)
I(H�)

� log
I0(H↵)
I0(H�)

x = log
I(H�)
I(H�)

� log
I0(H�)
I0(H�)

,

yields:
y

x

=
f(H↵)� 1
f(H�)� 1

,
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meaning that the logarithms of the line intensity ratios vary along a straight

line of fixed slope for di↵erent values of c (see Fig. 15). Therefore, the amount of

extinction can be estimated by the distance along the line between the observed

line ratio and the calculated value of the unextinguished ratio. If we estimate the

Balmer line intensity ratios for di↵erent values of c, assuming that the extinction

behaves in the same manner both in the Milky Way and in extra-galactic objects,

we can draw maps of the extinction originated in our own Galaxy and correct the

observations for this e↵ect. Later on, reporting the object’s line intensity ratios

on the theoretical diagram, we can estimate the amount of residual extinction,

that turns out to be the one intrinsically originated in the source itself.

A Solution of the [O III] statistical equilibrium

We start from the equation system:

NeN1Q12 = N2(A21 + NeQ21) (A1)

NeN1Q13 = N3(A31 + A32) (A2)

Taking the ratio of Eq. (A2) and (A1):

Q13

Q12
=

N3

N2

A32 + A31

A21 + NeQ21
. (A3)

Since for this system we can assume:

N1Q13 = N3Q31, (A4)

we get:

Q13 = Q31
N3

N1
= Q31

g3

g1
e

�h⌫31/kBTe (A5)

and, similarly:

Q12 = Q21
N2

N1
= Q21

g2

g1
e

�h⌫21/kBTe
. (A6)

The ratio of of Eq. (A5) and (A6) is:

Q13

Q12
=

Q31

Q21

g3

g2
e

�h⌫32/kBTe (A7)

We can introduce Eq. (A7) into Eq. (A3) and solve for the population ratio:

N3

N2
=

Q31

Q21

g3

g2
e

�h⌫32/kBT A21 + NeQ21

A32 + A31
, (A8)
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which, expanding the expressions of the collisional transition rates according to

Eq. (84), can be evaluated as follows:

N3

N2
=

⌦(3, 1)
⌦(2, 1)

g2

g3

g3

g2
e

�h⌫32/kBTe
A21 + NeQ21

A32 + A31
=

=
⌦(3, 1)
⌦(2, 1)

A21

A32 + A31

✓
1 +

NeQ21

A21

◆
e

�h⌫32/kBTe =

=
⌦(3, 1)
⌦(2, 1)

A21

A32 + A31

 
1 +

Ne

A21
· 8.63 · 10�6 ⌦(2, 1)

g2T
1/2
e

!
e

�h⌫32/kBTe
. (A9)

For this ion we have:

g2(1D) = (2S + 1)(2L + 1) = 1 ⇤ 5 = 5

therefore:

N3

N2
=

⌦(3, 1)
⌦(2, 1)

A21

A32 + A31

"
1 + 1.73 · 10�4 (10�2

NeT
�1/2
e )⌦(2, 1)
A21

#
e

�h⌫32/kBTe
,

that, after the introduction of the factor:

x = 10�2
NeT

�1/2
e

is the result of Eq. (131).
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