Astroparticle Physics_4

Cosmic rays Charged particles Gamma rays Neutrinos Gravitational Waves ???

Alessandro De Angelis Mário Pimenta₁ 6/2017 Asiago

Cosmic ray detection in space

AMS

Particle identification

4

Electron, positron spectrum

Dark matter signal?

Wait for 2024 ...

anti-proton/proton ratio

Not easily explained by pulsars ...

elementary particles spectra

Nuclei ...

Fluorescence

air at 800 hPa and 293 K [9].

Fluorescence detectors measurements

The direction The X_{max} The Energy $E \propto Ne$ $\infty \int N(t)$

Fluorescence from space

JEM-EUSO

Fluorescence from Earth

Air shower stereo image

Ground arrays measurements

From (n_i, t_i): The direction The core position The Energy

The Pierre Auger Observatory

South Hemisphere

telescope building "Los Leones"

LIDAR station

communication tower

20

telescope building "Los Leones"

LIDAR station

communication tower

A 4 eyes hybrid event !

Energy E = (7.1± 0.2) 10¹⁹ eV

Depth of the maximum $X_{max} = (752 \pm 7) \text{ g/cm}^2$

26

Energy determination in Auger

Auger is running smoothly

The Swiss clock!

Fraction of Water Cherenkov Tanks in operation

Many and important results !

Energy spectrum

Energy spectrum

30

GZK or the exhaustion of sources ???

Composition is the key to disentangle the two scenarios!

X_{max} and the "beam composition"

32

Shower development

The "X_{max} distributions"

If % p > 20%, % He < 25%

Slightly lower than it was expected at the time by most of the models, but in good agreement with recent LHC data.

X_{max} distributions

As the energy increases the distributions become narrower !!!

A clear change above 3 10¹⁸ eV Beam composition ??? Hadronic interactions???

37

Xmax distribution and RMS

 $\langle X_{\rm max} \rangle$ vs. RMS

arXiv:1201.0018

Nuclei fraction from X_{max} distributions

almost no Fe and <10% of p at the highest energies

a no "standard" astrophysics scenario !

A Fit (spectrum, $\langle X_{max} \rangle$, RMS(X_{max})) is always possible but it requires a very unusual metallicity of the sources! 52

The "Particle Physics" interpretation ...

If just proton ...

 $\sqrt{s} = 100 \text{ TeV } !!!$

A dramatic increase in the proton-proton cross section

But no violation of the Froissart bound

The "number of μ_s

The "number of μ_s

$$S_{
m resc}(R_E,R_{
m had})_{i,j}\equiv R_E~S_{EM,i,j}\!+\!R_{
m had}~R_E^{lpha}~S_{
m had,i,j}$$

Tension between data and all hadronic interaction models !!!

Muon Production Depth (MPD)

L. Cazon, R.A. Vazquez, A.A. Watson, E. Zas, Astropart.Phys.21:71-86 (2004) L.Cazon, PhD Thesis (USC 2005)

Muon Production Depth (MPD)

<In A> from X_{max} and X^{μ}_{max}

 $(X_{max}\,,\,X^{\mu}_{max}\,)$ is sensitive to hadronic development of the shower (rapidity distributions, ...)

None of the present hadronic interaction models can describe fully our measurements at sqrt(s) ~ 100 TeV !!!

Auger Prime

- "Primary cosmic Ray Identification through Muons and Electrons"
- Two complementary detectors:
 - Scintillator on top of the tank: signal dominated by e.m. component
 - WCD sensitive to e.m. + muons
- The goal:
 - Enhance primary identification
 - Improve shower description
 - Reduce systematic uncertainties

Exciting times ahead us

