

CsI(NA) WAVELENGTH-SHIFTING FIBER GAMMA CAMERA USING SIPMS

Filipe Castro Departamento de Física & i3n Universidade de Aveiro

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTICULAS

LIP Lisboa Apr. 2012

IDPASC School on Digital Counting Photosensors for Extreme Low Light Levels

Ongoing and future work

MOTIVATION

Improve sensitivity of scintigraphy exams

The radiotracer, injected into a vein, emits gamma radiation as it decays. A gamma camera scans the radiation area and creates an image.

Gamma camera

- Better spatial resolution
- Better positioning with compact portable app.-specific camera
- Earlier detection of smaller tumours
- Reduce rate of negative biopsies

Typical radionuclide: 99m Tc (140 keV, T_{1/2} = 6.02 h)

Mammoscintigraphy images with ^{99m}Tc-MIBI:

Bénard and Turcotte, Breast Cancer Research (2005)

Design

- λ -shifting fibers to read out γ -rays' position of interaction in the crystal
- SiPMs to detect light from optical fibers (also Ma-PMTs)

CsI(NA) WAVELENGTH-SHIFTING FIBER GAMMA CAMERA

Photon detection components and characteristics

EXPERIMENTAL SETUP

Assembling and testing small prototype with 10x10 SiPMs (1cm²)

Motivation

CsI(Na)-WSF gamma camera

Exp. setup

Results

Ongoing and future work

EXPERIMENTAL SETUP

Readout electronics

With lower initial RC and no last stage

CH2 500 mV

2

3

CH3 500 mV

With larger initial RC and final CR-RC shaping

Ongoing and future work

CH1 500 mV

EXPERIMENTAL SETUP

Readout electronics

counts

Results

Ongoing and future work

With larger initial RC and final CR-RC shaping

RESULTS

Temperature influence

CsI(Na)-WSF gamma camera

Intro

Exp. setup

Results

Ongoing and future work

Motivation

Exp. setup

Results

Ongoing and

RESULTS - 10×10 SIPM PROOF-OF-CONCEPT PROTOTYPE

Imaging with ⁵⁷Co (122 keV)

future work

Motivation

CsI(Na)-WSF gamma camera

Exp. setup

Results

Ongoing and future work

RESULTS - 10×10 SIPM PROOF-OF-CONCEPT PROTOTYPE

Imaging with ⁵⁷Co (122 keV) : 4-hole Pb collimator

RESULTS - 10×10 SIPM PROOF-OF-CONCEPT PROTOTYPE

Imaging with ^{99m}Tc (140 keV)

Parallel-hole collimator from large FOV gamma camera

Syringe needle with ^{99m}Tc

Results

Ongoing and future work

Ongoing and future work

RESULTS - 10×10 SIPM PROOF-OF-CONCEPT PROTOTYPE

Imaging with ^{99m}Tc (140 keV)

Tiotivation

CsI(Na)-WSF gamma camera

Exp. setup

Results

Ongoing and future work

Larger prototype ($10 \times 10 \text{ cm}^2 \rightarrow 100 \times 100 \text{ SiPMs}$):

- larger crystal assembled with fibers glued to SiPM-coupling pieces
- 4 E-PMTs to read out crystal
- biasing SiPMs in groups of 8

16 channel SiPM power supply PCB developed by ISA S.A. (Coimbra), 8 bit DAC to adjust ~ 69-73 V

ONGOING AND FUTURE WORK

Larger prototype ($10 \times 10 \text{ cm}^2 \rightarrow 100 \times 100 \text{ SiPMs}$):

- biasing R6236 E-PMTs with individual compact PCB HV supplies
- readout with VA32HDR14.2 chips \rightarrow DAQ with X3-10M (also V_{bias} control)
- SiPM cooling
- Small animal or phantom studies, prototype characterization

THANKS FOR THE ATTENTION!

Questions?

Remarks?

Doubts?

Ideas?

Coffee? 🙂

 DRIM team @ UA (João Veloso, Carlos Azevedo, Ana Luísa, Lara, Moutinho, ...)

• A.J.D. Soares (project mentor)

Acknowledgments:

- Jorge Isidoro (Nuclear Medicine @ HUC)
- ISA S.A. (Rodrigo Ferreira, Miguel Ferreira)

Conventional gamma camera

Main components	Function
Collimator (Pb)	accept only γ-rays alligned with holes
Scintillation crystal, e.g. NaI(TI)	convert γ-rays into visible light
Photodetectors, e.g. PMT	convert light into electric signals
Electronics and software	signal processing and image formation

