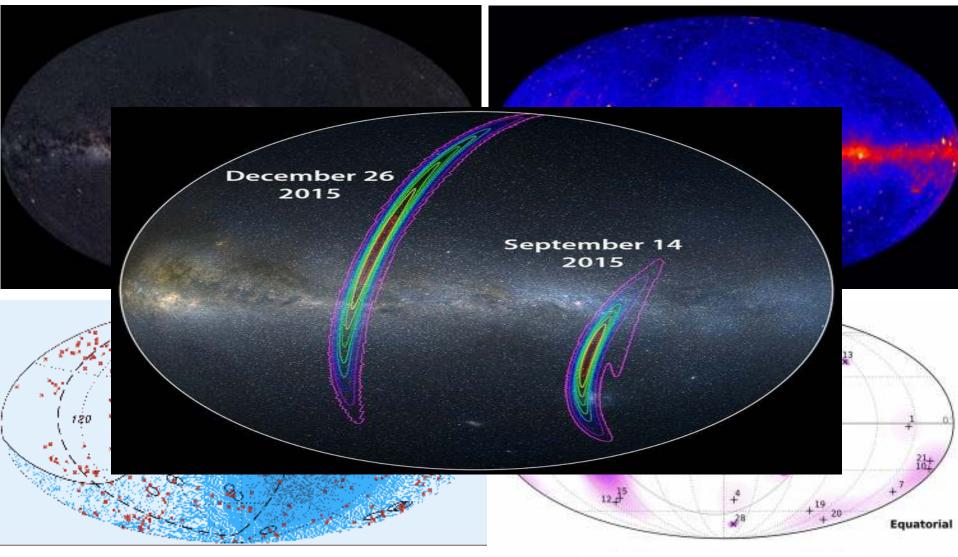
Gravitational Waves Physics and Techniques Part III: first results & multimessenger connections

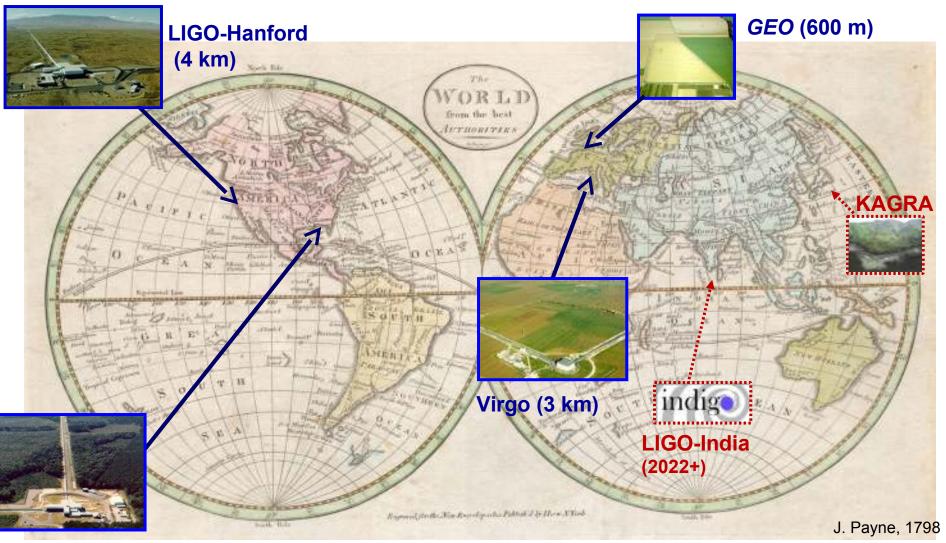

> M. Razzano University of Pisa & INFN-Pisa

IDPASC School – 20-30 June 2017

The multi-messenger sky today

Optical (APOD)

Gamma rays > 0.1 GeV (Fermi-LAT, 2013)



Cosmic rays > 57 Eev (Auger, 2007)

Neutrinos > 30 Tev (Icecube, 2013)

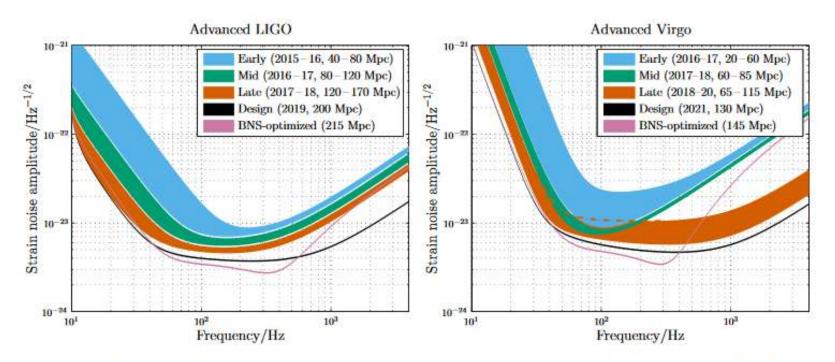
M. Razzano

The era of Advanced GW detectors

LIGO-Livingston (4 km)

Advanced LIGO now in its second observing run (O2) Virgo planned to join soon

M. Razzano


The era of Advanced GW detectors

Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo

Abbott, B. P. et al.

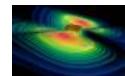
The LIGO Scientific Collaboration and the Virgo Collaboration (The full author list and affiliations are given at the end of paper.) email: lsc-spokesperson@ligo.org, virgo-spokesperson@ego-gw.it

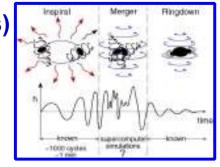
> Accepted: 22 January 2016 Published: 8 February 2016

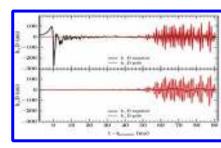
Abbott+16, LRR 19,1

The frontier of multimessenger astronomy

Complementary information:

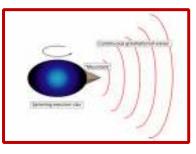

- GWs: mass distribution
- EM: emission processes, acceleration mechanisms, environment
- Neutrinos: hadronic/nuclear processes, etc


- Give a precise (arcmin/arcsecond) localization
 - Localize host galaxy of a merger
 - Identify an EM counterpart with timing signature (e.g. pulsars)
 - EM follow-up to get simultaneous observations


Provide a more complete insight into the most extreme events in the Universe

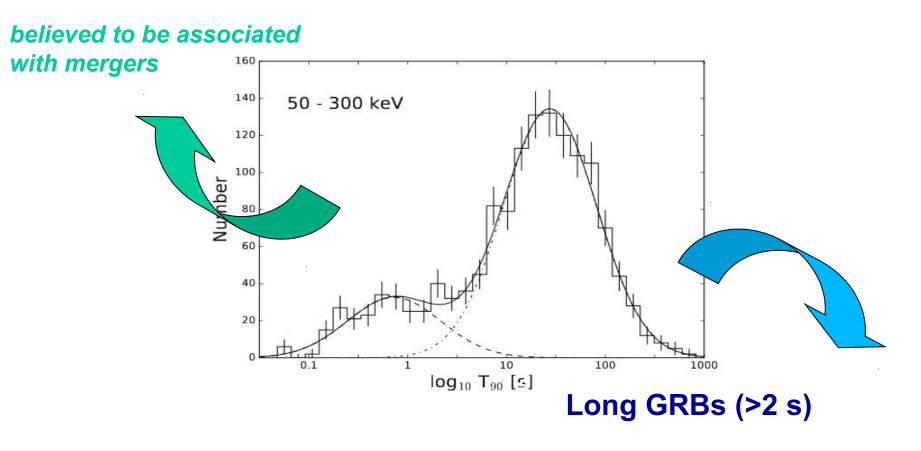
Expected multimessengers sources by Advanced LIGO/Virgo

- Coalescence of compact binary systems (NSs and/or BHs)
- Known waveforms (template banks)
- E_{aw}~10⁻² Mc²
- Core-collapse of massive stars
 - Uncertain waveforms
 - $E_{aw} \sim 10^{-8} 10^{-4} \text{ Mc}^2$

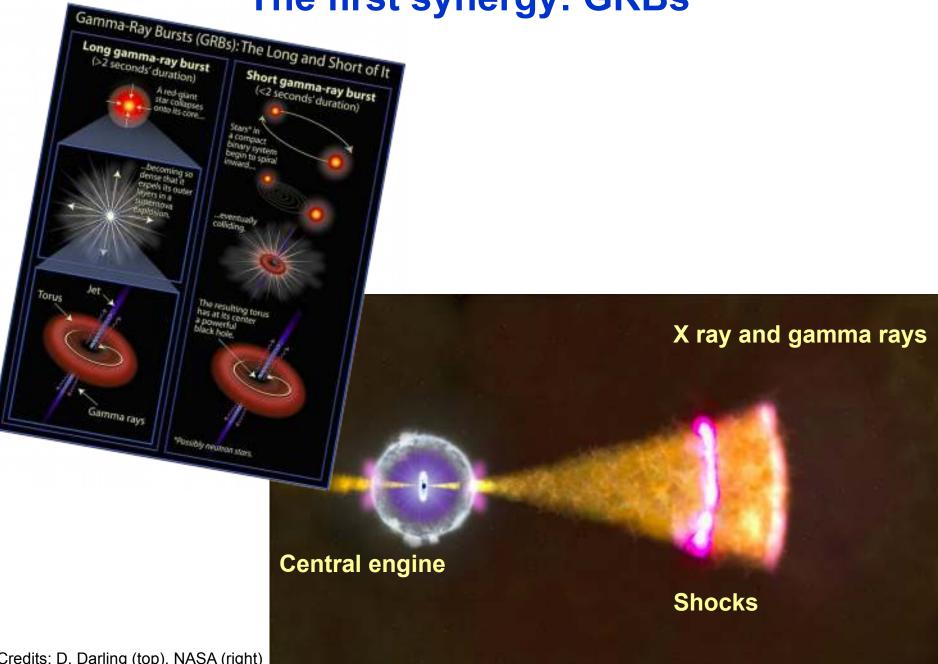


Ott, C. 2009

ransients


• Rotating neutron stars

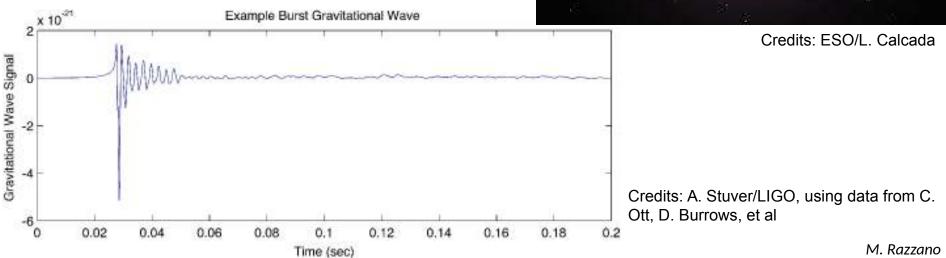
- Quadrupole emission from star's asymmetry
- Continuous and Periodic
- Stochastic background
 - Superposition of many signals (mergers, cosmological, etc)
 - Low frequency


Science case for EM follow-up: the GRB connection

Short GRBs (<2 s)

3rd GBM catalog Narayana Bhat+, ApJS,223 (2016) Believed to be associated with core-collapse of massive stars

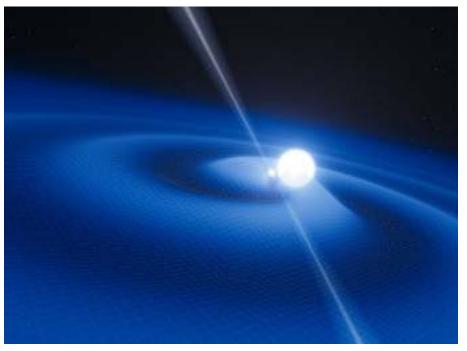
The first synergy: GRBs

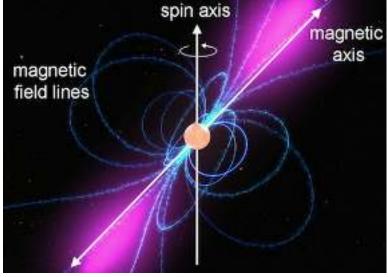


Other transients – Supernovae

Stellar explosions

- What is the physical mechanisms behind Supernovae?
- What is the structure/asymmetry during collapse?
- Many inputs beyond GW are required
- X and MeV energies observations are very important

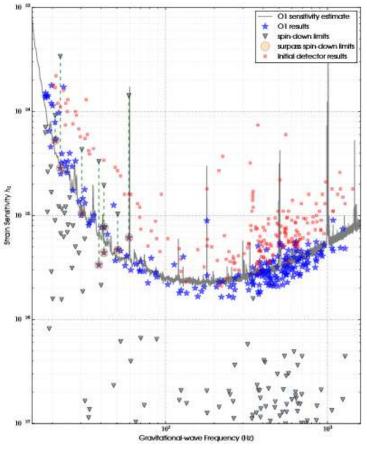




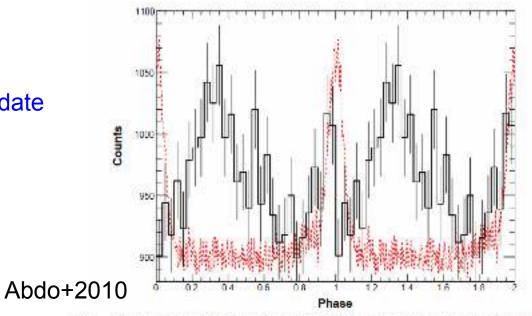
Continuous sources– Neutron Stars

Continuous Waves

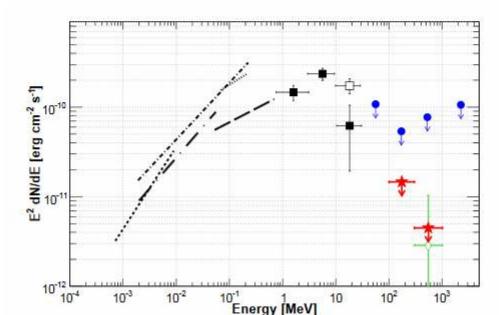
- Non-linear instabilities and NS evolution
- Explore the nature of the NS crust
- Glitches
- Gamma-ray monitoring very useful to search for GWs from known pulsars

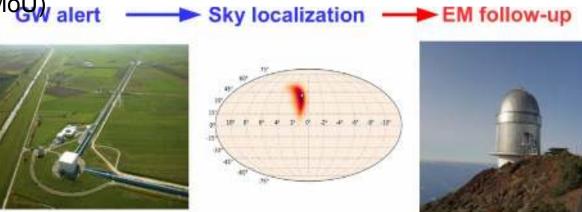


Credits: NASA


Credits: ESO/L. Calcada

Continuous sources– Neutron Stars


- High-B pulsars at MeV energies
- PSR B1509-59 is one of the candidate

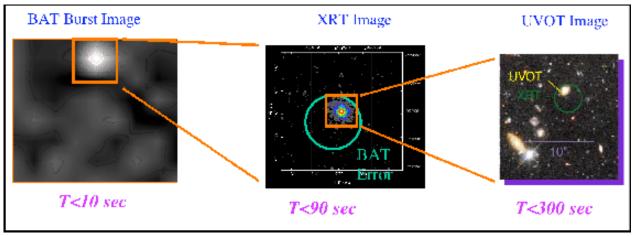


Pitt. 1... Light curve of the pulsar PSR B1009–58 above 30 MeV within an energy-dependent dreader region, as described in Sect. B 1.3. The light curve public is binned to 1/30 of pulsar phase. The radio profile (red dashed line) is everlaid in arbitrary units. The mean peak of the radio pulse seen at 1.4 GHz is at phase 6. Two cycles are shares.

Back to the EM follow-up...

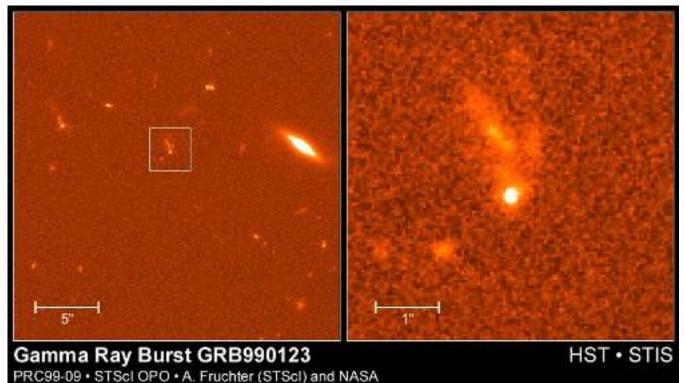
- Past experiences (2009-2010)
 - ~30 min latency, optical telescopes+Swift
 - Centralized organization
- Now (2015-)
 - Few mins latency
 - GCN alerts for EM partners (MoU) alert
 - Broadband coverage

EM event	EM band	Timescale
Prompt emission	Gamma rays	<seconds< td=""></seconds<>
Afterglow	X-ray, optical, radio	Hours-days
Kilonova-macronova	Optical-near IR	Days-weeks
Radio blast wave	Radio	Months-years


A needle in a haystack: an example from the past

Find a counterpart is not easy!

- EM Transients might be
 - Fast
 - Faint
 - Too many
 - Finding counterparts of GRBs was quite difficult
 - For GWs, the situation is worse...

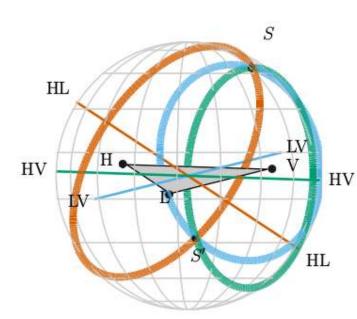

www-jolyon colur

Credits: NASA

EM follow-up : key challenges

- What is the best observing strategy?
 - Scan the full error box?
 - Look only to specific regions (e.g. potential galaxy hosts?)
 - How to identify the potential host?
- If there is more than one candidate...
 - How can we uniquely identify it?
 - How can models help us?

Sky Localization of GW transients

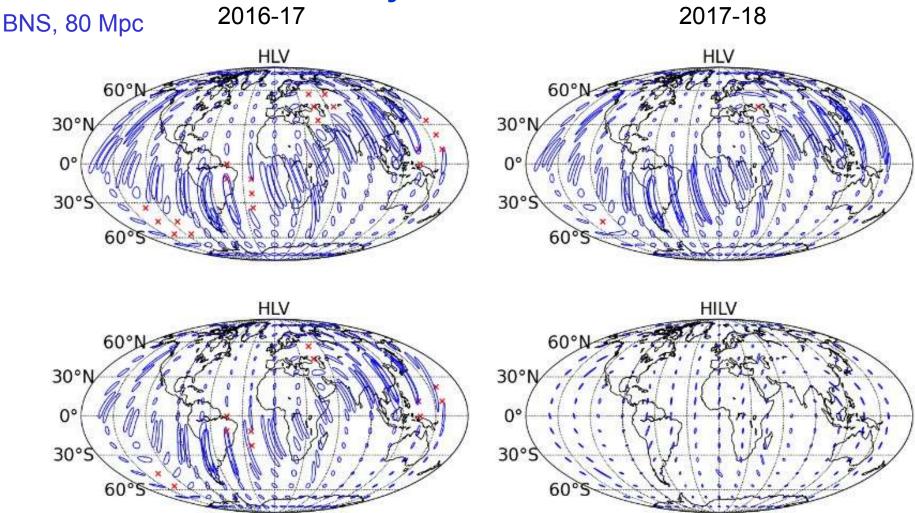

Posterior prohability density/deg-2

• "Triangulation" using temporal delays

5×10

Posterior probability density/deg-1

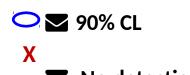
- Depends on the SNR
- Low SNR → large error box (tens hundreds sq deg)
- Wide-fov telescopes are required!



Abbott+16, LRR 19,1

BNS system, SNR ~13.2 LALINFERENCE (left), BAYESTAR (right)

15


Sky Localization

2019+

2022+

BNS, 160 Mpc

Abbott+16, LRR 19,1

EM follow-up: the role of gamma-ray telescopes

GRBs are very energetic phenomena

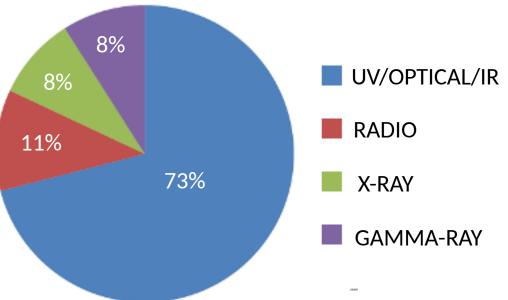
- Best candidates for GWs from NS/NS system
- Clearly, strong HE emitters too

Gamma-ray telescopes are very useful

- Large FoV & good localization
- Kev-MeV-GeV energy coverage
- Gamma sky not so crowded as optical one
- However, detection required jet alignment (cuts event rate) (e.g. Patricelli,MR+16)

Why an EM follow-up program?

- EM follow-up is key to find counterparts (and do great science)
 - GW analysis and checks require time
 - Need to avoid misinformation/rumors
 - Encourage multiwavelength coverage
 - LV-EM follow-up program
 - Standard MoU to share information promptly while maintaning confidentiality for event candidates
 - GW alerts sent to partners through private GCN notices/circulars
 - Once first few (>=4) detections, prompt alerts will be made public for high-significance detections (FAR<1/100 yrs)
 - Status
 - 85 groups have signed MoU with LIGO & Virgo
 - From radio to gamma rays
 - Special LVC GCN Notices and Circulars with distribution limited to partners


LIGO and Virgo EM follow-up program

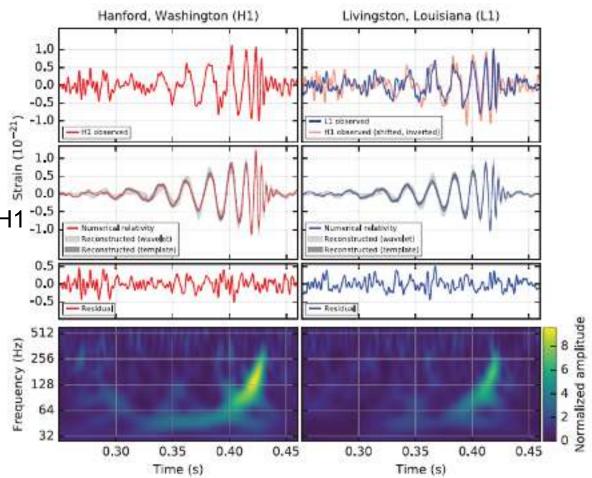
Now 85 MoUs involving

160 instruments

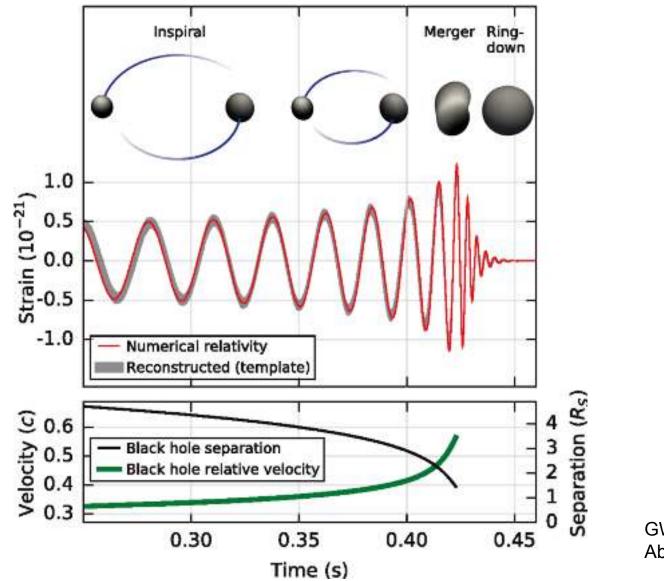
(space and ground-based facilities) Broadband, radio – VHE gamma rays

Astronomical institutions, agencies and large/small groups of astronomers (20 countries)

In 2012, LVC agreed policy on releasing GW alerts

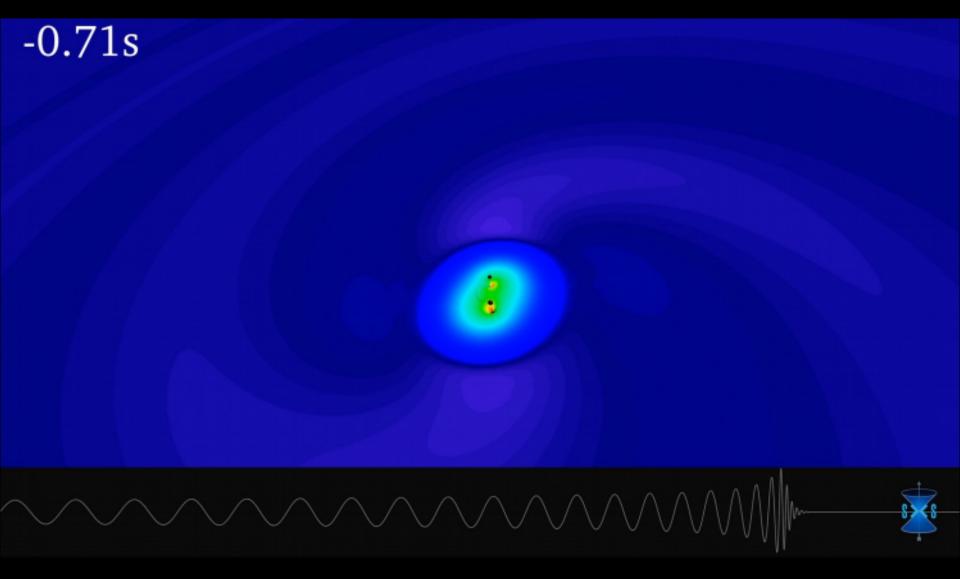

"Initially, triggers (partially-validated event candidates) will be shared promptly only with astronomy partners who have signed a Memorandum of Understanding (MoU) with LVC involving an agreement on deliverables, publication policies, confidentiality, and reporting.

After four GW events have been published, further event candidates with high confidence will be shared immediately with the entire astronomy community, while lower-significance candidates will continue to be shared promptly only with partners who have signed an MoU."


- First (2014), second (2015) and third (2016) open calls for participation in GW-EM follow-up program **85 MoUs signed**
- http://www.ligo.org/scientists/GWEMalerts.php

Opening the GW window

- GW150914
- Abbott+16, PRL116,6
- Sep 14, 2017 9:50 UTC
- Delay 7ms between L1 and H1⁻⁰₋₁
- Duration 0.2 s
- Freq: 35 -150 Hz
- $M_{chirp} \approx 30 M_{sol}$



GW150914

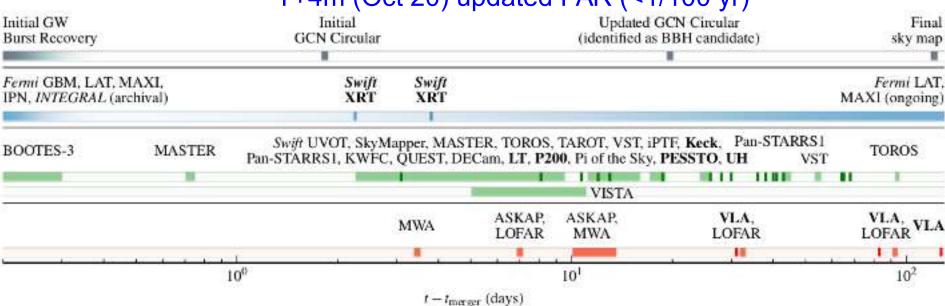
GW150914 Abbott+16, PRL116,6

GW150914 simulation

Facts about GW150914

GW150914:FACTSHEET

BACKOROUND IMAGES: TIME-EREQUENCY TRACE (TOP) AND TIME-SERIES (BOTTOM) IN THE TWO LIGO DETECTORS; SIMULATION OF BLACK HOLE HORIZONS (MIDDLE-TOP), BEST FIT WAVEFORM (MIDDLE-BOTTOM)


first direct detection of gravitational waves (GW) and first direct observation of a black hole binary

observed by	LIGO L1, H1	duration from 30 Hz	~ 200 ms
source type	black hole (BH) binary	# cycles from 30 Hz	-10
date	14 Sept 2015	peak GW strain	1 x 10 ²¹
time	09:50:45 UTC	peak displacement of	
likely distance	0.75 to 1.9 Gly	interferometers arms	±0.002 fm
	230 to 570 Mpc	frequency/wavelength	150 Hz, 2000 km
redshift	0.054 to 0.136	at peak GW strain peak speed of BHs	- 0.6 c
signal-to-noise ratio	24	peak GW luminosity	3.6 x 10 ⁵⁶ arg s ⁻¹
false alarm prob.	< 1 in 5 million	radiated GW energy	2.5-3.5 Ma
false alarm rate	< 1 in 200,000 yr	remnant ringdown free	a. ~ 250 Hz
Source Mas	sos Mo	remnant damping tim	and the second second
total mass	60 to 70	remnant size, area	180 km, 3.5 x 10 ³ km ²
primary BH	32 to 41	consistent with	passes all tests
secondary BH	25 to 33	general relativity?	performed
remnant BH	58 to 67	graviton mass bound	< 1.2 x 10 ⁻²² eV
mass ratio	0.6 to 1	coalescence rate of	2 to 400 Gpc ² yr ¹
primary BH spin	< 0.7	binary black holes	
secondary BH spin	< 0.9	online trigger latency	-3 min
remnant BH spin	0.57 to 0.72	# offline analysis pipelin	nes 5
signal arrival time	arrived in L1 7 ms	CPU hours consumed	- 50 million (=20,000
delay	before H1		PCs run for 100 days)
Ekely sky position likely orientation resolved to	Southern Hemisphere face-on/off =600 sq. deg.	papers on Feb 11, 2016 # researchers	13 1000, 80 institutions in 15 countries

Detector noise introduces errors in measurement. Parameter ranges correspond to 90% credible bounds. Acronyms: L1+LIGO Livingston, H1+LIGO Hanford; Gly-giga-Tghryear -9.46 x 10¹ km; Moc-maga parance3.2 million lightysar, Opc-10² Mpc, Interferencemeter-10¹² m, ME=1 solar mease-2 x 10²⁸ kg GW150914 Abbott+16, PRL116,6

The GW150914 follow-up

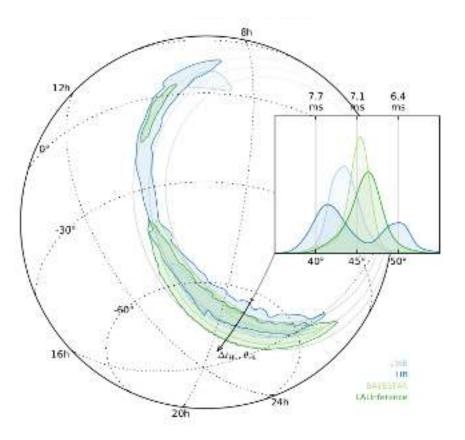
- t+few minutes: cWB & oLIB pipelines
 - T+17 min 14 hr (skymaps)
 - T+2d: first alert (after many checks)
 - T+3w (Oct 3): BBH identification

• T+4m (Oct 20) updated FAR (<1/100 yr)

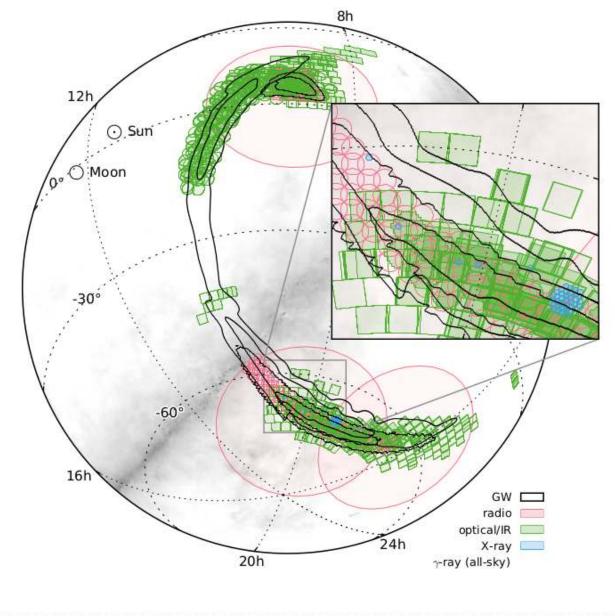
Abbott+16, ApJ 826, 13

GW150914 sky maps

Localization pipelines


- cWB: constrained ML on sky grid
- LIB: bayesian inference
- BAYESTAR: triangulation (based on CBC pipelines, here offline)
- LALInference: full details

	Area ⁿ					iparison ^t	rison ^t	
	10%	50%	90%	$\theta_{\rm HL}{}^{\rm b}$	cWB	LIB	BSTR	LALInf
cWB	10	100	310	43^{+2}_{-2}	-	190	180	230
LIB	30	210	750	45^{+6}_{-5}	0.55	-	220	270
BSTR	10	90	400	45^{+2}_{-2}	0.64	0.56		350
LALInf	20	150	620	46^{+3}_{-3}	0.59	0.55	0.90	


⁴ Area of credible level (deg²). Note that the LALInference area is consistent with but not equal to the number reported in <u>Abbott et al. (2016e</u>) due to minor differences in sampling and interpolation.

^b Mean and 10% and 90% percentiles of polar angle in degrees.

^c Fidelity (below diagonal) and the intersection in deg² of the 90% confidence regions (above diagonal).

GW150914 coverage

- 25 teams involved
- 19 orders of magnitudes in wavelenghts
- Repointing (optical)
- Archival (X & gamma)
- Deep follow-up (optical/radio) Abbott+16, ApJ 826, 13

X-rays and gamma rays

Facility/				Contained Probability (%)					
Instrument	Band ^a	Depth ^b	Time ^c	(deg ²)	cWB	LIB	BSTR ^d	LALInf	GCN
			Gan	uma-ray					
Fermi LAT	20 MeV- 300 GeV	1.7×10^{-9}	(every 3 hr)	-	100	100	100	100	18709
Fermi GBM	8 keV-40 MeV	0.7-5 × 10 ⁻⁷ (0.1-1 MeV)	(archival)	777	100	100	100	100	18339
INTEGRAL	75 keV-1 MeV	$1.3 imes 10^{-7}$	(archival)	<u>- 225</u> 7	100	100	100	100	18354
IPN	15 keV-10 MeV	1×10^{-7}	(archival)		100	100	100	100	<u> </u>
			X	(-ray					
MAXI/GSC	2-20 keV	$1 imes 10^{-9}$	(archival)	17900	95	89	92	84	19013
Swift XRT	0.3-10 keV	5×10^{-13} (gal.)	2.3, 1, 1	0.6	0.03	0.18	0.04	0.05	18331
		$2-4 \times 10^{-12}$ (LMC)	3.4, 1, 1	4.1	1.2	1.9	0.16	0.26	18346

G198841 - 36885

- Fermi GBM: 1 candidate ~1.9σ, ~0.4 s (Connaughton+16)
- Fermi LAT : no candidates (Ackermann+16)
- AGILE: no candidates (Tavani et al+16)
- INTEGRAL: no candidates (Sevechenko+16)
- Swift: candidates, but no new sources (Ewans+16)

Abbott+16, ApJ 826, 13

Optical, IR, radio

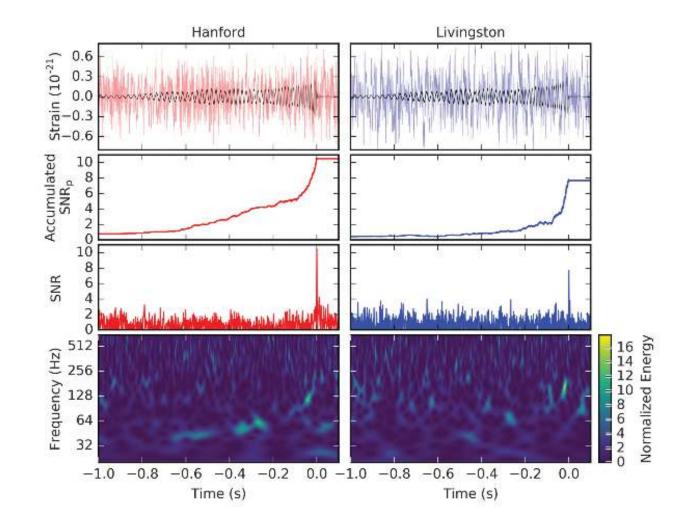
Optical

- Tiled and galaxy-oriented
- Tens of candidates, later observed deeper
- Candidates compatible with normal population of SNe, AGN, etc..
- Radio coverage up to t+4 months

Abbott+16, ApJ 826, 13

Facility/			Area			ntained	Probabili		
Instrument	Band ^a	Depth ^b	Time ^c	(deg^2)	cWB	LIB	BSTR ^d	LALInf	GCN
			Optical	l					
DECam	i, z	i < 22.5, z < 21.5	3.9, 5, 22	100	38	14	14	11	18344, 18350
iPTF	R	R < 20.4	3.1, 3, 1	140	3.1	2.9	0.0	0.2	18337
KWFC	i	i < 18.8	3.4, 1, 1	24	0.0	1.2	0.0	0.1	18361
MASTER	С	< 19.9	-1.1, 7, 7	590	56	35	55	49	18333, 18390, 18903, 19021
Pan-STARRS1	i	i < 19.2 - 20.8	3.2, 21, 42	430	28	29	2.0	4.2	18335, 18343, 18362, 18394
La Silla–QUEST	g,r	r < 21	3.8, 5, 0.1	80	23	16	6.2	5.7	18347
SkyMapper	i, v	i < 19.1, v < 17.1	2.4, 2, 3	30	9.1	7.9	1.5	1.9	18349
Swift UVOT	u	u < 19.8 (gal.)	2.3, 1, 1	3	0.7	1.0	0.1	0.1	18331
	u	$u < 18.8 ({ m LMC})$	3.4, 1, 1						18346
TAROT	С	R < 18	2.8, 5, 14	30	15	3.5	1.6	1.9	18332, 18348
TOROS	С	r < 21	2.5, 7, 90	0.6	0.03	0.0	0.0	0.0	18338
VST	r	r < 22.4	2.9, 6, 50	90	29	10	14	10	18336, 18397
			Near Infra	red					
VISTA	Y, J, K_S	J < 20.7	4.8, 1, 7	70	15	6.4	10	8.0	18353
			Radio	Į					
ASKAP	863.5 MHz	5-15 mJy	7.5, 2, 6	270	82	28	44	27	18363, 18655
LOFAR	145 MHz	12.5 mJy	6.8, 3, 90	100	27	1.3	0.0	0.1	18364, 18424, 18690
MWA	118 MHz	200 mJy	3.5, 2, 8	2800	97	72	86	86	18345

Doing it again!

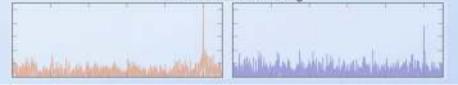

GW151226 Abbott+16, PRL116,24

Dec 26, 2017, 3:38 UTC

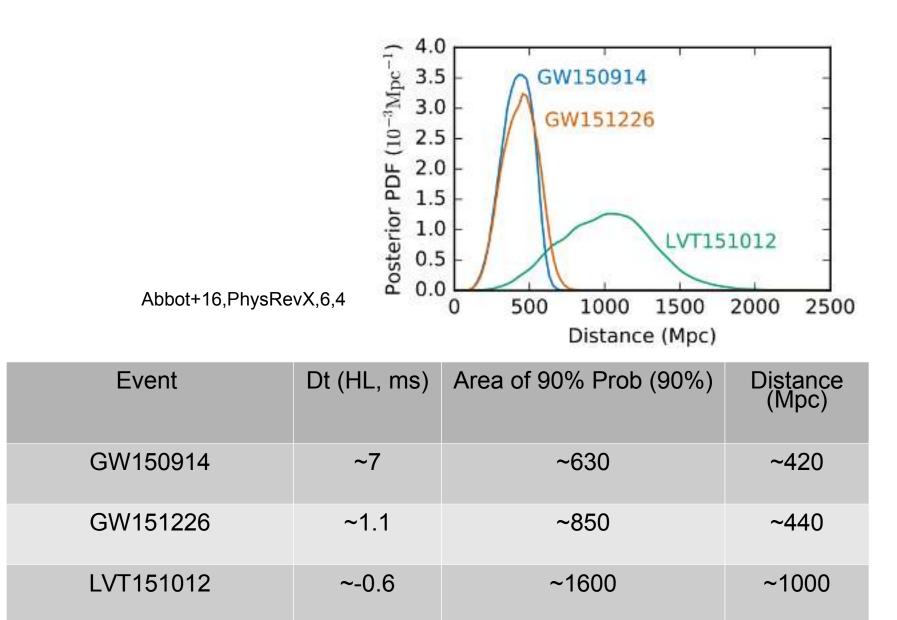
Delay 1.1 ms

Duration 1 s

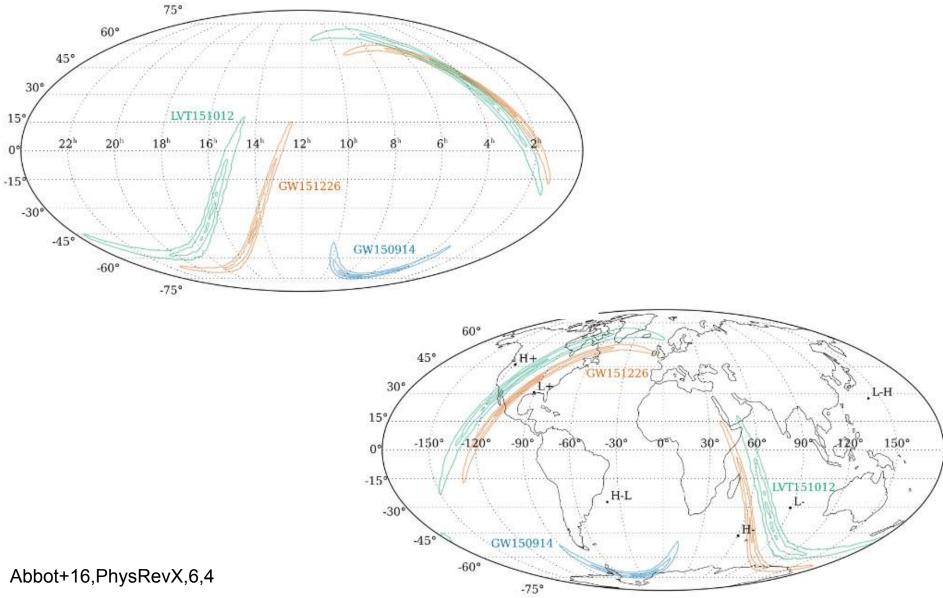
From 35 to 450 Hz


Comparing GW150914 and GW151226

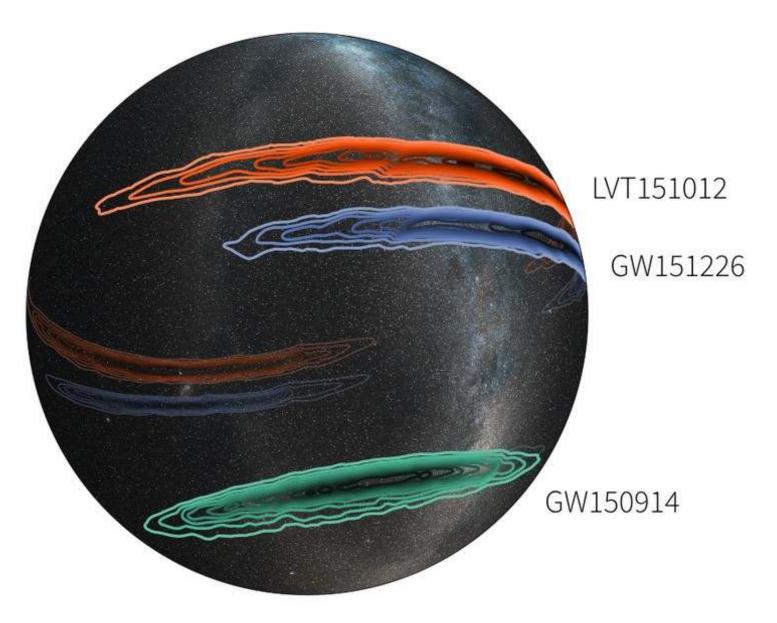
GW151226:FACTSHEET


BACKGROUND IMAGES: TIME-FREQUENCY TRACE (TOP) AND SIGNAL-TO-NOISE RATIO TIME-SERIES (BOTTOM) IN THE TWO LIGO DETECTORS: EXAMPLE WAVEFORM (MIDDLE)

observed by	LIGO L1, H1	duration from 35 Hz	1.0 s		
source type black hole (BH) binary		# cycles from 35 Hz	55		
date	26 Dec 2015	signal arrival time	arrived in H1 1 ms		
time	time 03:38:53 UTC		after L1		
likely distance	250 to 620 Mpc	peak GW strain	3.5 x 10 ⁻³²		
redshift	0.05 to 0.12	peak displacement of	±0.7 am		
signal-to-noise ratio	13	interferometers arms	20.7 am		
false alarm prob.	~ 1 in 10 million	frequency/wavelength at peak GW strain	420 Hz, 710 km		
Source Ma	sses Mo	peak speed of BHs	~ 0.6 c		
total mass	20 to 28				
primary BH	11 to 23	peak GW luminosity	3.3 x 10 ⁵⁶ erg s ⁻¹		
secondary BH	5 to 10	radiated GW energy	0.8-1,1 Mo		
	19 to 27	remnant ringdown freq.	~ 750 Hz .		
mass ratio	> 0.28	remnant damping time	0.00 ~ 1.3 ms		
primary BH spin	> 0.2	remnant size, area	60 km, 3.5 x 104 km²		
remnant BH spin	0.7 to 0.8	online trigger latency	~ 3 min		
resolved to	-850 sq. deg.	# offline analysis pipelines	2		


Parameter ranges correspond to 90% credible bounds. Acronyms: L1/H1=LIGO Livingston/Hanford: Mpc=mega parsec=3.2 million lightyear, am=attometer=10⁻¹⁸ m, M0=1 solar mass=2 x 10³⁰ kg

GW151226 & LVT151012



GW151226 & LVT151012

M. Razzano

Future perspectives: the role of Virgo

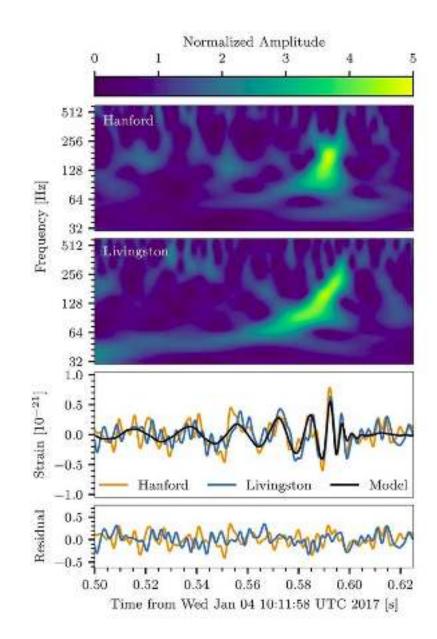
Credit: LIGO (Leo Singer) /Milky Way image (Axel Mellinger)

Future perspectives: the role of Virgo

LVT151012 +virgo

GW151226 +virgo

GW150914 +virgo


Assuming Virgo horizon 36 Mpc

Virgo will help in localization and parameter estimation

Credit: LIGO (Leo Singer) /Milky Way image (Axel Mellinger)

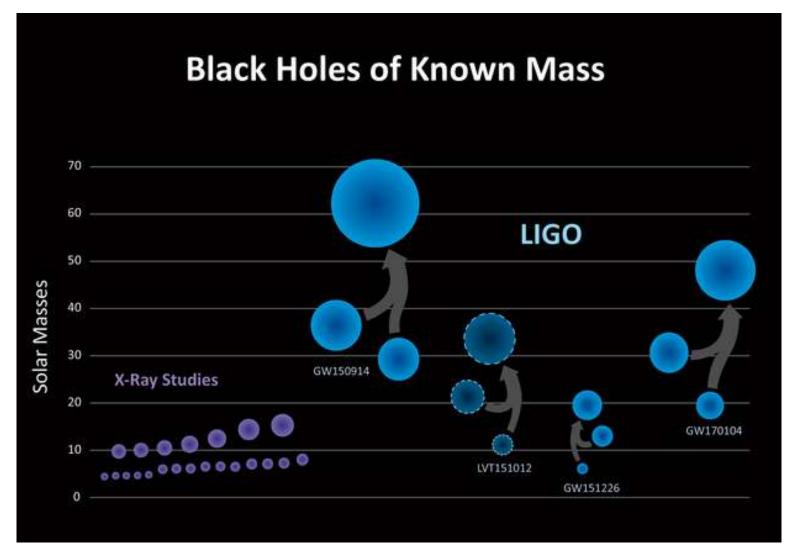
And a third one!

GW170104 Abbott+17, PRL118

GW170104 Abbott+17, PRL118

GW170104:FACTSHEET

Background Images: time frequency trace (top), H1 and L1 time series and masseum likelihood binary black hole model (middle top), residuals between data and best-fit model (middle bottom), reconstructed waveforms from wavelet and binary black hole analyses (bottom)


observed by	LIGO L1, H1	duration from 30 Hz	~ 0.30 to 0.48 s
source type	black hole (BH) binary	# of cycles from 30 Hz	- 13.8 to 16.3
date	04 Jan 2017	a second	arrived at H1
time	10:11:58.6 UTC	signal arrival time delay	3 ms before L1
signal-to-noise ratio	13	credible region sky area	1200 sq. deg.
false alarm rate	< 1 in 70,000 years	peak GW strain	- 5 × 10-22
probability of astrophysical origin	> 0.99997	peak displacement of	11 v v
22	1.6 to 4.3 billion	interferometer arm	- ± 1 am
distance	light-years	frequency at peak	160 to 199 Hz
redshift	0.10 to 0.25	GW strain	100 10 199 112
total mass	46 to 57 M _a	wavelength at peak GW strain	1510 to 1880 km
primary BH mass	25 to 40 Ma	A A A.	30
secondary BH mass	13 to 25 M.	peak GW luminosity	1.8 to 3.8 × 10 ⁵⁶ erg s ⁻¹
mass ratio	0.36 to 0.94	radiated GW energy	1.3 to 2.6 M
remnant BH mass	44 to 54 M _a	remnant ringdown freq.	297 to 373 Hz
remnant BH spin	0.39 to 0.7	remnant damping time	2.5 to 3.2 ms
remnant size (effective radius)	123 to 150 km	consistent with general relativity?	passes all tests
remnant area	1.9 to 2.8 x 10 ⁵ km ²	graviton mass	performed
allowith a safe management	er -0.42 to 0.09	combined bound	\$ 7.7 x 10 ⁻²³ eV/c ²
effective spin paramet	-0.42 10 0.09	evidence for	
effective precession spin parameter	unconstrained	dispersion of GWs	none

Parameter ranges correspond to 90% credible intervals.

Acronyms:

L1/H1=LIGO Livingston/Hanford, am=attometer=10⁻¹⁸ m, M_{\pm} =1 solar mass=2 x 10²⁰ kg

And a third one!

GW150914 Abbott+17, PRL118

And a third one!

LIGO/Caltech/MIT/Leo Singer (Milky Way image: Axel Mellinger)

GW150914 Abbott+17, PRL118

Conclusions

- GW and photons provide complementary information
 - Multimessenger observations extremely promising
- Multimessenger approach is key to study the most extreme objects in the Universe
 - Natural laboratories to probe fundamental physics
 - Transients (e.g. GRBs)
 - Also, other sources (e.g. neutron stars)
- First GW events provided first tests for EM follow-up campaign
 - Great synergy and coverage
 - No expected EM emission from BBHs, but new interesting models arising
- Gamma-ray telescopes are important
 - Emission from GRBs and other HE sources
 - Large FoV
- Present & Future
 - Not just BBH: what about BNS/NSBH?
 - Advanced LIGO O2 ongoing
 - Advanced Virgo in commissioning

Let's get some pratice !

• Online Python tutorial provided by LIGO Open Science Data Center

https://losc.ligo.org/tutorials/

What do you need?

• A wifi connection

- Python installed (with the basic packages (numpy, scipy, etc)
 - Jupyter Python notebooks
 - Also, Azure and mybinder options are available!

Take your time and play a bit with one of these events!