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OUTLINE OF THE 2 LECTURES
•  Basic notions of cosmology for “particle astrophysics” 
• Gravitational evidence for Dark Matter

•“Particle Cosmology”: Classification & properties of DM candidates 
• freeze-out production mechanism (hot, cold), WIMPs 
• freeze-in 
• asymmetric case (mentioning baryogengesis)

• A cosmological cross-check: BBN vs CMB

L. 1

L. 2



BASIC NOTIONS OF  
(SMOOTH) COSMOLOGY



PILLARS OF STANDARD COSMOLOGICAL MODEL

error bars?

wrong units!

‣ Galaxies sufficiently far away from us recede with v=Hd (Hubble law)

‣The Universe is permeated by an almost perfect blackbody radiation, with T~2.73 
K (Cosmic Microwave Background, CMB)

‣ Yields of light elements (notably Deuterium and Helium) way larger than what 
expected from “stellar” phenomena: if extrapolated way backwards, the early universe 
was a hot enough place to host thermonuclear reactions! 



STANDARD COSMOLOGICAL MODEL

Natural units : c = ~ = kB = 1

Based on:
! General Relativity (GR): metric theory of gravitation
! Cosmological Principle (spatial homogeneity & isotropy on large scales)
! “Standard Physics”, in particular Kinetic Theory of Fluids, Particle &
Nuclear Physics, Plasma Physics, Atomic Physics.

Evolving the expanding universe backwards in time 
➙ picture of hot Early Universe, made of a “gas” 

which has been cooling while expanding. The CMB 
and light elements are the “atomic plasma” and 

“nuclear plasma” ashes of the early time

Basic (not unique!) task of cosmology: to understand 
what the universe is made of, now & in the past (the 

“mixture” can and does evolve with time…) 

Will use them, but for quoting some astrophysical results



EXERCISE WITH NATURAL UNITS

If you are unfamiliar with them… or just for fun:

! Compute your typical body temperature (assuming you are still alive) in eV. 
! Check the working frequency of your mobile phone. Rephrase it into eV.
! Compute your height in eV-1

!  Compute your age in eV-1

! Compute your density in eV4

(Experimental guidance: estimate within ~10% error from what happens when 
you jump into Annecy lake+ Archimedes law)



BACHELOR COSMOLOGY
Consider the Newtonian toy model of  a 
sphere of dust. The acceleration is

by integration

In general relativity, the spacetime itself is dynamical, the key quantity is its metric 
(generalizing the Minkowski one  ημν) which responds to all types of energy (& pressure). 
Knowing the metric = restricted by the Cosmological principle to a single independent 
function of time, a(t), describing the “stretching” of space as function of time, and a single 
number k=1,0,-1 describing the curvature of the 3D space. 



Consider the Newtonian toy model of  a 
sphere of dust. The acceleration is

by integration

This naïve model reproduces correctly one of 
the 2 independent GR equations in the FLRW 
metric=(implementing the Cosm. Pr.) 

The additional independent equation 
implements “energy conservation” and 
contains a peculiar GR term

closed system if an Equation Of State P=P(ρ) is provided

BACHELOR COSMOLOGY



SOME GENERIC SOLUTIONS (K=0)
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Equation of State Behaviour of ρ Scale Factor

conservation of particles per comoving volume 
For radiation, further a-factor due to wavelength 
stretching, also called “redshift”

Cosm. constant

P ' 0
(T ⌧ m)

1 + z =
�
today

�
then

=
a
today

a
then



GETTING FAMILIAR WITH JARGON…
⇥c =

3

8�GN
H2

0
Compositions usually expressed in Ωi’s, ratios 
of density of i-species to “critical density” 

Ex: compute 𝝆c for 
H0=70 km/(s Mpc) 

For a flat case (k=0), favoured by current data, we can simply write:
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Ex: Knowing that today Ωm~0.28 ΩΛ~0.72, at which redshift z 
the matter and Cosmological constant contribution were equal?
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Ex. (postpone to later stage!): Infer the current value of Ωr from  TCMB ~2.73 K.
At which z there is matter-radiation equality? What if you add to Ωr  neutrinos, 
assuming they share the same temperature of CMB? What if their temperature is 2 K?

Ex.: Plot the RHS of the above equation, expressed vs. 1+z, in log-log scale. Also, plot 
the ratio of each term to the total RHS



MODERN DATA ON BACKGROUND TEMPERATURE

G. Hurier et al.,  A&A 561, A143 (2014)  [arXiv:1311.4694]

T inferred via:

• distortion effect due to scattering of CMB photons by hot electrons in clusters;

• absorption in clouds where the pumping to excited level depends on TCMB 

Universe really hotter in the past!



“THERMODYNAMICS”

f(E) =

1

exp[(E � µ)/T ]± 1

A+B $ C +D

µA + µB = µC + µD

Let’s introduce the phase space density f describing the occupation number of
microstates of different energies.   

The Universe is not a system in equilibrium with an external bath, need 
nonequilibrium theory tools. 

⇒ chemical potential μ vanishes for particles that can be freely created/annihilated, 

like photons; particles and antiparticles have opposite μ

T and μ: parameters maximizing the entropy under given constraints on the energy and 
number of particles present per unit volume, respectively.

 are fast enough

However, for sufficiently fast processes (wrt expansion rate) exchanging both energy & particles, 
locally the entropy gets maximized & “local equilibrium conditions” hold

! If energy is exchanged rapidly, different species share the the same T

a conservation rule holds

! Similarly, if particle changing 
reactions of the type



USEFUL RECIPE FOR LTE

p+ n $ � +D

T~ 1 eV (@ t~1013 s) 

Γ=n σ v vs. H Hubble  expansion 
rate

Rate of process 
of interest

Most of the interesting cosmological processes happen when those quantities  
become comparable (“freeze-out”): departures from equilibria! 

To know if LTE holds, compare

e+ p $ � +H

freezes-out: recombination, photons nowadays forming CMB decouple 

T~ 0.1 MeV (@ t~102 s)  

freezes-out: the “nuclear statistical equilibrium” ends, BBN takes place



TD IN THE EXPANDING UNIVERSE
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current density of particles
due to isotropy, only n0≠0internal (spin) dof

the covariant conservation of particle number follows

If f  is the phase space distribution function, homogeneity and isotropy imply
that it can only depend on t and |p|=p

OK with physical intuition of previous cartoon

“Kinetic theory” demands a dynamical equation for f (Boltzmann Eq.)
However, in most applications the whole energy spectrum is not needed and one can work 

with moments of f (and corresponding equations) 



SECOND MOMENT
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Bianchi identities (1 ind. eq.), “energy conservation”
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We recover the second Friedmann equation!

If we express f in terms of “T”, this equation provides a time-temperature relation!

In GR, the Einstein tensor depends on second moments of f
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EQUILIBRIUM EXPRESSIONS (  =0)
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Relativistic species

Non-relativistic species at LTE

applying comoving particle number 
conservation law we obtain a simple t(T)

we can use e.g.  photon “temperature” as “clock variable” for the epoch of the 
universe, at least after recombination when the # of photons does not change...

μ



ENTROPY
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Exercise: using f~exp[(μ-E)/T] in the parenthesis, check that 
at equilibrium & for a perfect fluid, this gives  

Remember Boltzmann’s formula? It naturally suggests the following 
formula for the entropy density/current (classical limit)  
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ENERGY IN RELATIVISTIC ERA
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Exercise: List the particles of the Standard Model. Check that at T>>1 MeV (Hint 1: 
enough to check if true for the mostly weakly coupled ones) the typical energy exchange 
and pair production processes (draw some reactions and estimate σ’s!) are at LTE. 
Compute and plot geff in the MeV-TeV range.  (Hint 2: start from high T)



DARK MATTER ENTERS THE SCENE...



DM “DISCOVERY” IN COMA CLUSTER (~1933)
Varna, Bulgaria

Remarkable application of  Virial Theorem (basically pioneered in astronomy only by Poincaré, 
previously!) and realized that this was a puzzle.

Die Rotverschiebung von extragalaktischen Nebeln*", Helvetica Physica Acta (1933) 6, 110–127.
"On the Masses of Nebulae and of Clusters of Nebulae*", ApJ (1937) 86, 217

~103galaxies in 
~1 Mpc radius region 

Bulletin of the Astronomical Institutes of the Netherlands 6, 249 (1932) 

Jan Oort had in fact found the need for “dark matter” already while studying the force ⊥ to the Galactic plane due 
to stars, but dismissively attributed to unaccounted gas or too dim bodies…

*Nebula=Early XXth century name for what we call now galaxy



RECAP OF VIRIAL THEOREM
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For Gravity, U~ r -1
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The average value of its time derivative must vanish if the system is bound  
(no particles “leave to infinity or acquire infinite velocity”)
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SKETCH OF THE METHOD

f rom doppler 
shifts in spectra

inferred from 
distance  
& angular size

Zwicky found 2-3 orders of magnitude larger M than expected from converting luminosity into mass!
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where m is the typical Galaxy mass, d  the 
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Alternatively, could directly estimate the gravitational potential 
energy of a self-gravitating homogeneous sphere of radius R
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weakly depends on geometry/distribution of Galaxies in the cluster



MODERN PROOFS FROM CLUSTERS: X-RAYS
We know today that most of the mass in clusters (not true for galaxies!) is in the form of hot, 

intergalactic gas, which can be traced via X rays: X-luminosity and spectrum provide mass profile!

ROSAT 

 See for example
Lewis, Buote, and Stocke, ApJ (2003), 586, 135

Again, a factor ~7 more mass 
than those in gas form is 

inferred (also its profile can 
be traced...)



SKETCH OF THE METHOD
Spherical symmetric, hydrostatic equilibrium for the gas: 

Newton’s law in the fluid limit (shell)

Use perfect gas EOS

Pg =
⇢g

µmp
kB Tg

dPg

dr
= �GN M(r) ⇢g(r)

r2dF = �GN M(r) ⇢g(r)S

r2
dr

The method does not depend on gas density normalization (which controls the baryonic mass)!
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FIG. 1.— Left Panel: Chandra radial gas density profile of A2029. For clarity, large open circles are centered on the data points (the smallest error bars are difficult
to see in the logarithmic scaling). Horizontal bars indicate the sizes of the annuli used to extract spectra, and the limits of the spherical shells in our de-projected
analysis. Overlaid are the best-fitting cusp model (solid curve), single β-model (dotted curve), and double β-model (dashed curve). Right Panel: Chandra radial
temperature profile of A2029. Overlaid are the best-fitting Bertschinger & Meiksin model (solid curve), and simple power-law model (dashed curve).

where k is Boltzmann’s constant, G is the constant of gravita-
tion, µ is the mean atomic weight of the gas (taken to be 0.62),
andmp is the atomic mass unit. To obtain the instantaneous log-
arithmic derivatives necessary to evaluate eq. 2, we fit parame-
terized models to both the density and temperature. By parame-
terizing the ρg and Tg data we derive a mass profile that may be
smoother than the true mass distribution. This approach, there-
fore, is best suited for interpreting average properties ofM(< r),
such as its radial slope and comparison with DM simulations
(also smooth), which are the focus of the present paper. Key
advantages of this method are that it is simple to implement,
and the mass profile is straightforward to interpret in terms of
the input ρg and Tg profiles.

3.1. Temperature and Density Profiles
We initially fit the gas density data with the ubiquitous β-

model:

ρg(r) = ρg0 [1+ (r/rc)2]−3β/2, (3)

where ρg0 is the central gas density, rc is the core radius, and
−3β is the slope of the profile at r ≫ rc. The result is over-
laid on the data as a dotted curve (Fig. 1, left panel). Due to
a peak in the profile at < 17h−170 kpc (the first 3 data points),
the β-model does not provide an acceptable fit (see Table 3.1
below).

Table 3.1: Gas Density and Temperature Fits

ρg-Model (χ2/dof) β rc[′′] αρ

cusp 6.6/3 0.54± 0.01 53.4± 4.4 0.55± 0.03
1-β 101.8/4 0.48± 0.01 26.4± 1.1 · · ·

2-β 2.0/1 0.34± 0.37 3.7± 4.0 · · ·

0.76± 0.14 53.2± 9.5 · · ·

Tg-Model (χ2/dof) T∞[keV] rc[′′] αT
B&M 14.3/4 11.1± 1.6 122.1± 125.3 0.36± 0.05
Power 19.8/5 · · · · · · 0.27± 0.01

NOTE.– For the cusp model, we find ρgc = 6.6± 0.8× 10−26g cm−3.
For the double-β model, ρg10 = 3.0± 0.5× 10

−25g cm−3 and ρg20 =
5.6± 1.8× 10−26g cm−3.
We explored two additional models: (1) the ‘cusp’ model,

which is a modified β model given by

ρg(r) = ρgc23β/2−αρ/2(r/rc)−αρ[1+ (r/rc)2]−3β/2+αρ/2, (4)
where ρgc ≡ ρg(rc), and the αρ parameter allows a steepening
of the profile at r< rc, and (2) a double-β model (e.g., Xu et al.
1998; Mohr et al. 1999) given by

ρg(r) =
√

ρ2g1 +ρ2g2, (5)

where ρg1 and ρg2 are each given by eq. 3.
The double-β and cusp models both provide satisfactory fits

to the data (dashed and solid curves, respectively, Figure 1,
left panel), though the reduced χ2 is slightly improved for the
double-β model. We present the results of the gas density fits
in Table 3.1. It is apparent that both the cusp and the double-β
models are sensitive to a break at≈ 53′′, and that the parameters
for the first component of the double-β model are not well con-
strained. We have chosen the cusp model as our “reference” fit
for the rest of our analysis for two reasons: (1) it provides a sim-
ilar quality fit with two fewer free parameters than the double-β
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FIG. 1.— Left Panel: Chandra radial gas density profile of A2029. For clarity, large open circles are centered on the data points (the smallest error bars are difficult
to see in the logarithmic scaling). Horizontal bars indicate the sizes of the annuli used to extract spectra, and the limits of the spherical shells in our de-projected
analysis. Overlaid are the best-fitting cusp model (solid curve), single β-model (dotted curve), and double β-model (dashed curve). Right Panel: Chandra radial
temperature profile of A2029. Overlaid are the best-fitting Bertschinger & Meiksin model (solid curve), and simple power-law model (dashed curve).

where k is Boltzmann’s constant, G is the constant of gravita-
tion, µ is the mean atomic weight of the gas (taken to be 0.62),
andmp is the atomic mass unit. To obtain the instantaneous log-
arithmic derivatives necessary to evaluate eq. 2, we fit parame-
terized models to both the density and temperature. By parame-
terizing the ρg and Tg data we derive a mass profile that may be
smoother than the true mass distribution. This approach, there-
fore, is best suited for interpreting average properties ofM(< r),
such as its radial slope and comparison with DM simulations
(also smooth), which are the focus of the present paper. Key
advantages of this method are that it is simple to implement,
and the mass profile is straightforward to interpret in terms of
the input ρg and Tg profiles.

3.1. Temperature and Density Profiles
We initially fit the gas density data with the ubiquitous β-

model:

ρg(r) = ρg0 [1+ (r/rc)2]−3β/2, (3)

where ρg0 is the central gas density, rc is the core radius, and
−3β is the slope of the profile at r ≫ rc. The result is over-
laid on the data as a dotted curve (Fig. 1, left panel). Due to
a peak in the profile at < 17h−170 kpc (the first 3 data points),
the β-model does not provide an acceptable fit (see Table 3.1
below).

Table 3.1: Gas Density and Temperature Fits

ρg-Model (χ2/dof) β rc[′′] αρ

cusp 6.6/3 0.54± 0.01 53.4± 4.4 0.55± 0.03
1-β 101.8/4 0.48± 0.01 26.4± 1.1 · · ·

2-β 2.0/1 0.34± 0.37 3.7± 4.0 · · ·

0.76± 0.14 53.2± 9.5 · · ·

Tg-Model (χ2/dof) T∞[keV] rc[′′] αT
B&M 14.3/4 11.1± 1.6 122.1± 125.3 0.36± 0.05
Power 19.8/5 · · · · · · 0.27± 0.01

NOTE.– For the cusp model, we find ρgc = 6.6± 0.8× 10−26g cm−3.
For the double-β model, ρg10 = 3.0± 0.5× 10

−25g cm−3 and ρg20 =
5.6± 1.8× 10−26g cm−3.
We explored two additional models: (1) the ‘cusp’ model,

which is a modified β model given by

ρg(r) = ρgc23β/2−αρ/2(r/rc)−αρ[1+ (r/rc)2]−3β/2+αρ/2, (4)
where ρgc ≡ ρg(rc), and the αρ parameter allows a steepening
of the profile at r< rc, and (2) a double-β model (e.g., Xu et al.
1998; Mohr et al. 1999) given by

ρg(r) =
√

ρ2g1 +ρ2g2, (5)

where ρg1 and ρg2 are each given by eq. 3.
The double-β and cusp models both provide satisfactory fits

to the data (dashed and solid curves, respectively, Figure 1,
left panel), though the reduced χ2 is slightly improved for the
double-β model. We present the results of the gas density fits
in Table 3.1. It is apparent that both the cusp and the double-β
models are sensitive to a break at≈ 53′′, and that the parameters
for the first component of the double-β model are not well con-
strained. We have chosen the cusp model as our “reference” fit
for the rest of our analysis for two reasons: (1) it provides a sim-
ilar quality fit with two fewer free parameters than the double-β

Lewis, Buote, & Stocke, 
ApJ (2003), 586, 135
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MODERN PROOFS FROM CLUSTERS: LENSING

CL0024+1654,    
Hubble space telescope 

Consistent inference done from clusters of Galaxies: 
Presence of Dark Matter smoothly distributed in-

between galaxies is required 
(and actually must dominate total potential)

its gravitating mass distribution 
inferred from lensing tomography



MORE SPECTACULAR: SEGREGATION!

bullet cluster

Baryonic gas gets “shocked” in the collision and stays behind. The mass causing lensing 
(as well as the subdominant galaxies) pass trough each other (non-collisional)

(most of the) Mass is not in the collisional gas, as would 
happen if law of gravity had been altered! 



ANOMALOUS GALAXY ROTATION CURVES
H.W. Babcock (1939), PhD Thesis                  

(& Lick observatory bulletin # 498 (1939) 41)           
building upon works by Slipher (1914), Pease (1918)…
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FLAT GALAXY ROTATION CURVES

Vera Rubin

A few decades later, after a number of developments (radioastronomy, 21 cm indicators, improved 
spectroscopic surveys…) starting from around ~1970 astronomers like V. Rubin, W. K. Ford Jr. et al. 

embarked in a campaign to obtain rotational curves of Spiral Galaxies to their faint outer limits

  V. C. Rubin and W. K. Ford, Jr.,
  “Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions,''

  ApJ 159, 379 (1970) [… ] V. C. Rubin, N. Thonnard and W. K. Ford, Jr.,
“Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to 

UGC 2885 /R = 122 kpc/,”   ApJ  238, 471 (1980).
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 By the ’80, many people started to take the dark matter problem seriously 
(partly due to technical refinements, part sociology?)



WHERE’S THE PROBLEM?
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! observed (equate centripetal acc. & Newton’s law)

! predicted based on visible light

Data are well described by an additional component 
extending to distance >> visible mass scale, with a profile 

The determination of “local” (Galactic) DM properties requires a  
multi-parameter fit including stellar disk, gas, bulge yielding 

Such techniques, as well as analogous ones used to infer DM in other systems (like 
dwarf Galaxies) are extremely important for direct and indirect searches of DM, 

�� ' 0.4GeV/cm3

(clearly not valid at asymptotically large r!)

not the most crucial or unambiguous ones to infer DM existence and properties

but people often
forget about it…

…yet often presented 
as “smoking gun”!



GROWTH OF STRUCTURES

Key argument
‣ Before recombination: baryons & photons coupled, “share perturbations” 
‣  We measure amplitude ~10-5 at recombination, i.e. when e and p form atoms (picture above)
‣ Evolving forward in time, insufficient to achieve collapsed structures as we see nowadays,
unless lots of gravitating matter (not coupled to photons) creates deeper potential wells!

This picture, plus some (linear) theory is a robust proof for the existence of DM!

δT/⟨T⟩ in CMB 

(Planck Satellite)



IN GRAPHIC TERMS

109 5. Structure Formation

Exercise.—Explain the asymptotic scalings of the matter power spectrum

P�(k) =

�
⇤

⇥

k k < keq

k�3 k > keq
. (5.2.35)

5.2.4 Baryons�

Let us say a few (non-examinable!) words about the evolution of baryons.

Before Decoupling

At early times, z > zdec � 1100, photons and baryons are coupled strongly to each other via

Compton scattering. We can therefore treat the photons and baryons a single fluid, with v� = vb

and �� = 4
3�b. The pressure of the photons supports oscillations on small scales (see fig. 5.5).

Since the dark matter density contrast �c grows like a after matter-radiation equality, it follows

that just after decoupling, �c ⇥ �b. Subsequently, the baryons fall into the potential wells

sourced mainly by the dark matter and �b ⇤ �c as we shall now show.

baryons

photons

CDM

photons

baryons

CDM

de
ns

ity
 p

er
tu

rb
at

io
ns

Figure 5.5: Evolution of photons, baryons and dark matter.

After Decoupling

After decoupling, the baryons lose the pressure support of the photons and gravitational insta-

bility kicks in. Ignoring baryon pressure, the coupled dynamics of the baryon fluid and the dark
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• Ignore evolution at very early times (stuff not in causal contact).

• When causally connected, until the baryonic gas is ionized, it is coupled to radiation & oscillates, 
as pressure prevents overdensities from growing. The (uncoupled, pressureless) CDM mode 
instead grows, first logarithmically during radiation domination, then linearly in the matter era.

• After recombination,  baryons behave as CDM, quickly fall in their “deep” potential wells... but, 
had not been for CDM, they would need much longer to reach the same density contrast!
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Density contrast for a 
“mode” (in Fourier space).

Indep. evolution in linear theory,
its “variance” is the power 

spectrum P(k)



WHAT IF ONLY BARYONS PRESENT?

No structure non-linear by now & pattern of 
“clumpiness” would be very different!

Models where “baryonic gravity is enhanced” so to 
“boost” growth have do not get the right shape!

Credibility of our understanding 
reinforced since we see the residual

“oscillations” due to coupling of 
subleading baryons with photons (BAO)!

Anderson et al,
arXiv:1203.6594

See pedagogical discussion in S. Dodelson, 1112.1320

Power spectrum: Fourier transform of 2 point 
correlation function (“variance”) of large scale 

structures, as traced by Galaxies)



AN INDEPENDENT TEST: BBN

The agreement between the two is a
Great success of cosmology!

CMB data sensitive to baryons via e.m. coupling with photons (plus gravity)
But the baryon/photon number density ratio η also determines at which T nuclei depart from thermal 
nuclear equilibrium, eventually determining the pattern of light nuclei emerging from primordial plasma.

Exercise: prove η≡ nb/nγ = 2.74 x 10-8Ωbh2

CMB provides a measurement ηCMB~6x10-10 

(from atomic physics, T~eV)

Big Bang Nucleosynthesis theory, plus 
spectroscopic observation e.g. of deuterium/
hydrogen abundance in old  clouds systems, 
determines ηBBN (from nuclear physics,T~0.1 MeV)

h=H0 /100 km /s/Mpc ~0.7



INITIAL CONDITIONS AND NSE
T>> 1 MeV: nucleons & nuclei are in thermal (kinetic & chemical) equilibrium

" high entropy per baryon → negligible fractions of all but p & n (which in turn
 easily intercovert into each other)

Abundance mostly controlled by 

BA= binding energy ≅ few MeV x A

 η≡ nb/nγ = 2.74 x 10-8Ωbh2

Boltzmann thermal distribution

Impose mass balance and chemical equilibrium



DEUTERIUM BOTTLENECK
D formation crucial for triggering further nuclear reactions, since multi-body (as 
opposed to 2-body) processes as 2n+2p→4He are inhibited by the low density: 

@ T=0.1 MeV baryon density ~ air density

Two competing processes
• fusion:               n+p→D+γ 
• photodissociation:             γ+D →n+p  
 
One expects that when T drops below ~ BD= 2.23 MeV, photodissociation 
processes become ineffective. However: too many photons!!

D formation starts only when η exp(BD/T*)~1 ⇒ T* ~BD/(23-ln η10)~0.1 MeV

Despite availability of high-T,  BBN starts late and ends soon, it’s an incomplete/
inefficient combustion, leaving fragile nuclear ashes behind! η controls what's left!



SUMMARY OF WHAT WE LEARNED

✤ A number of observations, collected over the past century, show the need for 
“some dark stuff” contributing dominantly to the dynamics of bound objects 
from sub-Galactic to Cluster scales, and which is also needed to explain the 
timely formation of non-linear scales via gravitational instabilities starting from 
tiny fluctuations as inferred from CMB temperature perturbations.

✤ Whatever it is, it cannot be made by “hidden baryons” (like dim stars, gas, 
planets) because we can measure the amount of baryons at a time where the 
universe was smooth (no stars, no planets…) via electromagnetic/gravitational 
coupling and via purely nuclear effects: the measurements agree, and point to a 
too low amount of baryons

✤ We can anticipate that this stuff must have quite peculiar properties, since it 
behaves so differently from ordinary stuff. In the following, we’ll learn what 
astrophysical and cosmological observations tell us about those!


