Astrophysical Neutrinos

Anna Franckowiak, DESY Zeuthen IDPASC Summer School

Content

- Prediction of the neutrino
- > First detection of neutrinos
- > Neutrinos from the sun
- Neutrinos from supernova 1987A

- Neutrino cosmic-ray connection
- > High-energy neutrino astronomy
- Multi-messenger astronomy with neutrinos

High-Energy Astrophysical Neutrinos

High-energy Neutrino CR connection

High-energy Neutrino CR connection

Hillas' Plot

- Which sources are capable of producing high-energy CR
- Sources need to confine CR

 $\varepsilon_{max} = qBR$ max. CR particle energy magnetic charge of CR particle

Salactic sources (e.g. supernova remnants too small for highest energy CR

CR and neutrino energy budget

$$\int E_{v} \frac{dN_{v}}{dE_{v}} dE = Z_{p \to v} \varepsilon_{v} \int E_{p} \frac{dN_{p}}{dE_{p}} dE_{p}$$

 $Z_{p \rightarrow v}$ = kinematic scale factor

 $\varepsilon \iff$ source environment

 $\varepsilon = \begin{cases} \ll 1 \text{ optically thin to } p - \gamma \\ >1 \text{ optically thick to } p - \gamma \end{cases}$

GZK Cutoff

Neutrino Energy Scale

Waxman Bahcall Bound

Energy density of extragalactic CR ρ_{CR} (>10EeV) ~ 10⁴⁴ ergs/yr/Mpc³

Waxman & Bahcall upper bound $\epsilon \le 1 \Rightarrow \rho_{\nu} \ge Z_{p \to \nu} \rho_{CR}$

- > assume that CRs lose some fraction ε of their energy through pion photoproduction before escaping the source
- Fraction of proton energy carried by neutrino produced in this way is about 5% independent of proton energy, so neutrino energy spectrum follows scaled-down version of proton spectrum
- > resulting bound is $E_v^2 \phi_v < 2 \times 10-8$ GeV cm-2 s⁻¹ sr⁻¹
- > 1 km³ volume is needed to probe this flux

Waxman Bahcall Bound

Energy density of extragalactic CR ρ_{CR} (>10EeV) ~ 10⁴⁴ ergs/yr/Mpc³

Waxman & Bahcall upper bound $\varepsilon \leq 1 \Rightarrow \rho_{v} \geq Z_{p \rightarrow v} \rho_{CR}$

1 km3 size detectors needed to reach WB bound

DUMAND (Deep Underwater Muon And Neutrino Detector)

AMANDA

- > 677 optical modules
- > 19 strings
- > Diameter 200 m, height 500 m
- > 1997 2009

NT200, Lake Baikal

NT200, Lake Baikal

Deployment at Lake Baikal

when lake Baikal is frozen

ANTARES, Mediterranean Neutrino Detector

DE	ŚY)

Deployment by boat

ANTARES

Manned submarine plugs in cable to junction box on the ground

Bioluminescence in Water

Bioluminescence in Water

Mainly bioluminescent plankton and bacteria

IceCube

DESY

IceCube - Deployment

South Pole in Summer

South Pole in Winter

			Average ter	nperature: ·	-72°F
Thursday 05/28	Friday 05/29	Saturday 05/30	Sunday 05/31	Monday 06/01	Tuesday 06/02
-67° -70°	-64° -67°	-65° -71°	-65° -67°	-52° -56°	-57° -62°
Overcast	Overcast	Overcast	Partly Cloudy	Overcast	Partly Cloudy
🟉 10% / 0 in	🥑 10% / 0 in	🟉 10% / 0 in	🥑 10% / 0 in	🟉 10% / 0 in	🟉 10% / 0 in

IceCube neutrino event signatures

- Muon track from CC muon neutrino interactions
 - Angular resolution < 1°</p>
 - dE/dx resolution factor 2-3

- Cascade from CC electron and NC all flavor interactions
 - Angular resolution ~10-20° at 100 TeV
 - Energy resolution ~15%

IceCube neutrino event signatures

Comparison of different detector media

Property	Lake Baikal	Mediterranean (ANTARES)	Antarctic ice
Absorption length (m)	20–24	50–70 (blue)	~100
Scattering length (m)	30–70	230–300 (blue)	~20
Depth	1370	2475	2450
Noise	Quiet	⁴⁰ K, bioluminescence	Quiet
Retrieve/ redeploy	Yes	Yes	No

Long scattering length for ANTARES implies better angular resolution; long absorption length for IceCube implies sparser instrumentation. Smaller depth implies larger atmospheric muon background.

Atmospheric Neutrinos

Atmospheric Neutrinos

> Are a background for astrophysical neutrino searches proton > But interesting for neutrino oscillation measurements c,(b) $E_v^2 \Phi_v$ [GeV cm⁻²s⁻¹sr⁻¹ 10 Super-Kv_u prompt $\begin{array}{l} \text{Frejus } \nu_{\mu} \\ \text{Frejus } \nu_{e} \end{array}$ 10 CON e,μ Ve,μ AMANDA v_{μ} 10 unfolding forward folding Ο π entional $\begin{array}{c} \text{IceCube } \nu_{\mu} \\ \text{unfolding} \\ \text{forward folding} \end{array}$ 10 μ 10 \vartriangle This Work ν_e 10 ν_{μ} prompt V_µ, V_e e 10-10 νμ conventional νe 10⁻⁹_1 3 5 6 2 4 log₁₀ (E_v [GeV]) ickowiak | Neutrino Astronomy | May 2016 | Page 36
Start of second lecture

Questions from yesterday

- > Tau neutrinos in IceCube
- Movement of glacier
- Neutrinos from GZK cutoff

Tau neutrinos in IceCube

- * "double bang signature"
- > No atmospheric background

Tau neutrinos in IceCube

- > average tau decay length roughly scales as 5 cm/TeV
- E > few hundred TeV needed to produce tau with sufficient decay length to find both "bangs"
- IceCube spacing: 17m between modules on each string, 125m between strings

Data samples	Events in 914.1 days (final cut)
Astrophysical ν_{τ} CC	$(5.4 \pm 0.1) \cdot 10^{-1}$
Astrophysical ν_{μ} CC	$(1.8 \pm 0.1) \cdot 10^{-1}$
Astrophysical ν_e	$(6.0 \pm 1.7) \cdot 10^{-2}$
Atmospheric ν	$(3.2 \pm 1.4) \cdot 10^{-2}$
Atmospheric muons	$(7.5\pm5.8)\cdot10^{-2}$

Movement of Glacier

> Accurate measurement of the detector geometry by "flasher" runs

Movement of Glacier

> 4-vector momentum

IceCube

DESY

IceCube neutrino event signatures

- Muon track from CC muon neutrino interactions
 - Angular resolution < 1°</p>
 - dE/dx resolution factor 2-3

- Cascade from CC electron and NC all flavor interactions
 - Angular resolution ~10-20° at 100 TeV
 - Energy resolution ~15%

IceCube neutrino event signatures

Detection of the first PeV neutrino events

Dedicated analysis looking for extremly high-energy events from GZK proton interactions

Detection of the first PeV neutrino events

Dedicated analysis looking for extremly high-energy events from GZK proton interactions

Reminder: Expected Neutrino Spectra

Detection of the first PeV neutrino events

Dedicated analysis looking for extremly high-energy events from GZK proton interactions

Significance: 2.8o

- Both downgoing
- Unbroken E⁻² spectrum would have made 8-9 events at higher energy → cut-off

Refined Analysis

- > High-energy starting events (HESE)
- Outer detector layer used a veto for incoming muon tracks
- > 400 Mt effective volume
- > Total charge > 6000 photoelectrons
- Sensitive to all flavors > 60 TeV

Self-Veto reduces background of atm. neutrinos

HESE Results

- First results: Ernie & Bert + 26 additional events (2 years of data)
- > Significance: 4.1σ

Likelihood Analysis

Maximize the likelihood L assuming a source at point x with energy spectrum $E^{-\gamma}$

TS is calculated for every point in the sky x

 $TS(x) = 2 \times \log \left(\frac{L(x)}{L(x)} \right)$

where $L_0 = L(x, n_s = 0)$

HESE Results

Science 342, 1242856 (2013)

HESE Results (Updated, 4 years)

> 54 events (14 track events)

> Significance: >10 σ

No significant clustering → extragalactic component very likely

HESE Results (Updated)

> Spectrum:

- Flux Level: ~1 x 10⁻⁸ E⁻² [/GeV/cm2/s/sr] per flavor
- Spectral index: -2.6

Saturates Waxman-Bahcall bound!

Indication of CR neutrino connection

Trying to find clustering including low E events

Trying to find clustering including low E events

Trying to find clustering including low E events

Point Source Flux Limit

Ways around:

- Extended sources?
- Transient sources?

Flavor composition: what do we expect?

Flavor composition: what do we measure?

the best fit flavor composition disfavors 1:0:0 at source at 3.6 σ

Extragalactic Source Candidates

- Sources need to be powerful particle accelerator
- Sources need to provide a target
- > Good candidates:
 - Active Galactic Nuclei
 - Gamma-ray Bursts
 - Supernovae

Active Galactic Nuclei

- > extremely bright centers
- > powered by accretion onto supermassive black hole
- Some accelerate relativistic bipolar jets of ejected material
 - speeds near the speed of light
 - stretch up to hundreds of kiloparsecs outside the host galaxy (milky way diameter ~30kpc)
- If jets point at us: blazars
 - extremely bright at all wavelengths, from radio to gamma rays

AGN - Example

- > Centaurus A
- > 3 Mpc distance (10 Mly)

Gamma-Ray Bursts (GRBs)

- Collapse of massive, rapidly rotating star
- Short flashes of gamma rays (ca. 50s)
- Highly relativistic jets, extreme energy release up to 10⁵⁴erg (the sun's mass turned into energy

GRBs

GRBs

GRBs models

Gamma-Ray Bursts (GRBs): The Long and Short of It

Failed GRB – chocked jet Supernovae

Supernova in dense circumstellar material (type IIn)

- > Spherical supernova ejecta collides with dense circumstellar medium → efficient particle acceleration
- Dense medium from smaller pre-outbursts
- Typically long lasting optical light curve
- Characteristic spectral features

Murase et al., PRD 84 (2011)

The Multi-Messenger Ansatz

No significant cluster of neutrinos found: Neutrinos alone do not (yet) reveal a source

If we know WHERE and/or WHEN to look we can increase our sensitivity (reduce trails factor!)

Electro-magnetic data can tell us WHERE and/or WHEN

Blazars

> Gamma rays tell us WHERE

IceCube Coll., arXiv:1502.03104

Blazars

IceCube Coll., arXiv:1502.03104

IceCube Coll., arXiv:1502.03104

Blazar Flares

- Gamma rays tell us WHERE and WHEN
- Major outburst of blazar PKS B1424-418 occurred in temporal and positional coincidence PeV neutrino
- single source has sufficiently high fluence to explain an observed coinciding PeV neutrino event
- 5% chance coincidence
- Distant source (z=1.5)

Kadler et al., Nature, 2016

Gamma-Ray Bursts (GRBs)

Gamma rays and X-rays tell us WHERE and WHEN

Gamma-Ray Bursts (GRBs)

- Extremely large energy release on the time-scale of 10⁻³-10³ seconds
- sum of WB spectra single WB spectrum Gamma rays and Xindividual burst spectra sum of individual spectra rays tell us WHERE 10 _E 10⁻² ∃ and WHEN $E^2 \times dN/dE [GeV cm^2]$ 10 10⁻² 10⁻³ dN/dl 4 years of IceCube 10 10⁻⁵ Northern sky data 10⁻⁶ correlated with 506 10⁻⁷ 10⁻¹⁰ GRBs

10³

10⁴

10⁵

E, [GeV]

10⁶

10⁷

10⁸

10⁹

10⁻⁸

Gamma-Ray Bursts (GRBs)

> Extremely large energy release on the time-scale of 10⁻³-10³ seconds

GRBs contribute less than 1% to observed diffuse neutrino flux. Potential large population of nearby low-luminosity GRBs not constrained.

IceCube Coll., ApJ 805, 2015

Supernovae (SNe)

Murase et al., PRD 84 (2011)

Supernovae (SNe)

Murase et al., PRD 84 (2011)

Anna Franckowiak | Neutrino Astronomy | May 2016 | Page 88

IceCube A&A 539, A60 (2012)

IceCube A&A 539, A60 (2012)

IceCube A&A 539, A60 (2012)

Multiplicity Trigger for Optical and X-ray Follow-up

Require at least 2 neutrinos (doublet) → Reduce background of atmospheric v-background 25 background doublets per year

Single high-energy neutrino event trigger

High-energy single event trigger (signal spectrum is harder than atmospheric background)

Optical Follow-Up Instruments: Need wide-field!

ROTSE Robotic Optical Transient Search Experiment

4 x 0.45m FoV 1.85° x 1.85° 25 alerts per year

Now retired

PTF Palomar Transient Factory

1 x 1.2 m FoV 3.5° x 2.3°

Spectroscopy of interesting candidates possible 10 alerts per year

Optical Follow-Up Instruments (Soon)

Zwicky Transient Facility (ZTF)

MASTER

ASAS-SN

LCOGT

Optical field of view

Optical Follow-up Program: Results after first Year

IceCube A&A 539, A60 (2012)

Optical Follow-up Program: Supernova Detection

- > PTF12csy, a very bright SNe IIn at 300 Mpc
- > Coincident with the most significant neutrino alert (two neutrinos detected only 1.6 s apart)
- > Chance probability 1.6%

IceCube & PTF Coll. ApJ, 811, 52 (2015)

Optical Follow-up Program: Supernova Detection

- > PTF12csy, a very bright SNe IIn at 300 Mpc
- > Coincident with the most significant neutrino alert (two neutrinos detected only 1.6 s apart)
- > Chance probability 1.6%
- SN 100 days old at time of neutrino detection

IceCube & PTF Coll. ApJ, 811, 52 (2015)

TeV Follow-up Program with MAGIC / Veritas

- > Aiming for detection of flaring sources on time scales of up to 3 weeks
- Predefined source list in the Northern Sky
 - Bright, hard and variable GeV sources
 - 21 blazars
 - Time clustering algorithm
- Southern Sky analysis in preparation
- Real time analysis of high-energy single events in preparation
 - Also with HESS

Gravitational Waves and Neutrinos

First Detection of Gravitational Waves

LIGO / Virgo Gravitational Wave Follow-Up

> Search for Neutrinos:

- +/- 500 sec around GW signal
- No neutrinos in Antares
- 3 neutrinos in IceCube, but none in spatial coincidence

LIGO / Virgo Gravitational Wave Follow-Up

Search for Neutrinos:

- +/- 500 sec around GW signal
- No neutrinos in Antares
- 3 neutrinos in IceCube, but none in spatial coincidence

GBM detectors at 150914 09:50:45.797 +1.024s

- Search for gamma-rays:
 - GBM found excess 0.4s after GW signal
 - False alarm probability 0.0022
 - chance coincidence of 1.0 × 10⁻³ for a signal to accidentally match the signature of GW150914-GBM in a 60 s period

Connaughton, arXiv:1602.03920

Anna Franckowiak | Neutrino Astronomy | May 2016 | Page 104

DESY

Astrophysical Multimessenger Observatory Network (AMON)

http://amon.gravity.psu.edu Smith et al., Astropart. Phys., 45 (2013)

Future Projects

KM3NeT

Distributed infrastructure (1km³)
KM3NeT-France (Toulon) ^{22500m}
KM3NeT-Italy (Capo Passero) ^{3400m}
KM3NeT-Greece (Pylos) ^{4500m}

Y

Construction started in France

μ

Gigaton Volume Detector, Lake Baikal

- Stage 1: volume ~0.5 km³
- Stage 2: volume ~ 1.5 km³
 - Stage 1: ~0.5 km³ volume
 - Stage 2: ~1.5 km³ volume
 - > 27 clusters with 8 strings each
 - > Height 700 m (depth 600 m– 1300 m)
 - > 48 OMs per string

PMT Hamamatsu R7081-HQE $\emptyset = 10''$ $QE \sim 35\%$ Page 108

Anna Franck
South Pole infrastructure

Device Volume Threshold Primary Goal

- PINGU few Mton 2-3 GeV v mass hierarchy
- > DecaCube^{*} 7-12 km³ ~10 TeV ν astronomy, GZK ν
- Surface veto ~120 km²

- veto for IceCube, CR physics
- > ARA ~120 km² ~50 PeV GZK neutrinos

* including IceCube (1 km³ with 100 GeV threshold)

PINGU: determine v mass hierarchy

~40 additional strings

DecaCube Version with 240 m spacing

- > 100 strings
- ~ 7 km³ volume
- > Muons: 3 times IC
- Cascades: 7 times IC
- > Threshold ~ 10 TeV

Fiducial region	Volume Gton	#events >60TeV	#events > 1PeV
HESE	0.4	8	1
IC+1ring	1.6	32	4
IC+3rings	4	80	10

A surface veto

- > 943 stations on surface
- > Radius 6.7 km
- Efficient down to 72°
- Efficiency > 99.99% for
 > 4000 PE in IceCube

ARA Askaryan Radio Array

> Threshold ~ 50 PeV

New Detection Techniques

- Radio
- > Acoustic
- > Air showers

Askaryan effect

Radio is sensitive to high-energy neutrinos

Acoustic neutrino detection

- The pressure signals produced by the particle cascades
- Local heating of the medium
- Temperature change induces expansion → pressure pulse of bipolar shape

Acoustic detection sensitivity

DESY

119

Air showers

Summary

- > Pauli was right: Neutrinos exist!
- > Two extraterrestrial neutrino sources found: Sun and SN1987A
- IceCube measured diffuse flux of astrophysical neutrinos
 - Sources still unknown
 - Multiwavelength analyses might help to identify sources
- New bigger better neutrino detectors planned

Back up

Solar Neutrinos with Borexino

Borexino Collaboration, arXiv:1104.1816

IceCube Veto

Neutrino Interaction Length

