
1 Lyman-α linear approximation

This is more or less a collection of my own notes on this, so there might be uncertainties or gaps in the
derivation. I would appreciate any comments.

The absorption due to any process can be derived using the following differential equation for the
amount of photons (nγ) of a given (emitted) frequency (νe) evolving through time:

ṅγ(νe, t) = −Λ

(
νe
a(te)

a(t)
, t

)
nγ(νe, t)→ nγ(νe, t) = e−τnγ(νe, te), (1)

where we’ve taken into account that while the photon is travelling through the Universe, the emitted
frequncy changes with time and will thus change the properties of the absorption function Λ.x

The deficeit of photon number density (or equivalently of flux) is thus given by the optical depth (τ):

τ(t) =

∫ t

te

Λ

(
νe
a(te)

a(t′)
, t′
)
dt′, (2)

where the integration limit goes from the time of emission (te) to a given (later) time at which we are
observing. Note however, that τ is also a function of emitted frequency νe.

Apart from the regular absorption (scattering) process, the correct equation should take into account
the contribtuion due to stimulated emission of the absorbing gas, which leads us to the full expression:

τ(t) =

∫ t

te

Λ

(
νe
a(te)

a(t′)
, t′
)[

1− exp

(
− hpνea(te)

kBT (t′)a(t′)

)]
dt′. (3)

However, for the Lyα the temperatures are very low and the exponential term in the brackets can be
neglected, thus neglecting stimulated emission contribution.

The absorption function Λ is proportional to the amount of (neutral hydrogen) gas that is absorbing
nHI and the cross-section of the Lyα transition:

Λ(ν, t) = cnHI(t)σα(ν). (4)

The cross-section for Lyα describes the absorption line profile

σα(ν) = aαΦ(ν) =
e2

4ε0mec
fαΦα(ν) =

αfshc

2mec
fαΦα(ν), (5)

where e is the electron charge, me the electron mas, fα = 0.4164 is the oscillator strength of the
transition, h is the planck constant and αfs = 7.2973525698 × 10−3 ≈ 1/137 is the fine structure constant.
The above relation for aα comes from the Einstein coefficients1 And Φ is the (normalized) profile function,
can be written using the Voigt line profile:

Φα(ν) =
1√
π

V (A,B)

bν
≈ 1

bν
√
π

[
e−B

2

+
A√

π(A2 +B2)

]
. (6)

where bν describes the (thermal) broadening of the line profile, B describes the frequency dependance
and A depends on the natural line width:

B =
ν − να
bν

, A =
Γα

4πbν
, bν =

bνα
c
, b2 =

2kBT

mH

+ b2
turb (7)

,

1In the literature it is usually written in cgs units as aα = πe2/(mec)fα.
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where Γα = A21 = 6.265× 108 s−1, where A21 is the Einstein’s coefficient for spontaneous emission.
In simulations the full relation is used (even some higher order corrections perhaps?) However it turns

out that the effect of the natural line width can be neglected with reasonably good accuracy, when dealing
with the flux power spectrum as the statistical property. Even though for each absorption (line) feature,
we pass from a regime where B dominates over A, there is always a regime towards the wings of the line
where A, being a constant, will dominate over the rapdily declining B. However, this is only true for a
very small portion of the spectrum, thus creating an effect on very small scales in the power spectrum.
Thus, for most analysis, it is reasonable to assume that the profile function Φ is given only by the Gaussian
term, negelcting dependance on A.

Also it is always assumed that the thermal broadening part dominates at all times over the turbulent
one - this seems to agree well with the simulations and observations. However it might play some role on
the small scale physics if present.

Since we are dealing with an absorption of cosmological nature, it is convenient to rewrite the integral
for optical depth in redshift or comoving distance along the line of sight. This are the steps taken in most
textbooks, and even assumed when dealing with simulations. By a simple change of coordinates (and not
using any assumptions so far) we can rewrite the integral as a function of redshift:

τ(t) =

∫ t

te

Λ(ν(t′), t′)dt′ =

∫ t

te

nHI(t
′)σα(ν(t′))cdt′ = (8)

=

∫ a

ae

nHI(a
′)σα(ν(a′))

cda′

a′H(a′)
= (9)

=

∫ ze

z

nHI(z
′)σα(ν(z′))

cdz′

H(z′)(1 + z′)
(10)

However, as stated earlier, optical depth τ is a function of time it took a photon to pass a region where
the absorption occured, and also of the emitted frequency. In other words, optical depth tells us that for
a given frequency νe, the amount of absorption will be equal to a sum of absorption function since the
beginning of the absorption to the end. Thus we could’ve taken the limits of the integration from point A
to point B, which would bracket the time in which the absorption occured.

In the context of Lyα forest the absorption is present from the word go, as we have already indicated
by setting the lower integration limit to the time of emission te. But from the same reasoning, we can take
the upper integration limit to today, thus setting z = 0. The optical depth is thus only a function of the
emitted frequency.

Assuming that the line profile is a very peaked function around the absorbing frequency να, we can
extend the upper limit of the integral to infinity. This is a fair assumption, since for one in simulations
and in observations, we are never dealing with the absorption close to the quasar when talking about the
Lyα forest, because the continuum is hard to model and proximity effects take place. This assumption
will also make our life easier later on, since an integral from 0 ot ∞ is much easier to deal with than the
one with variable integration limit.

Since in observations we are not dealing with the emitted frequency but with the observed ones, we
can make a change of the variables and get the following expression:
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τ(νe, z(t)) =

∫ ze

z(t)

nHI(z
′)σα

(
νe

(1 + z′)

(1 + ze)

)
cdz′

H(z′)(1 + z′)
(11)

τ(νe) = τ(νe, 0) =

∫ ze

0

nHI(z
′)σα

(
νe

(1 + z′)

(1 + ze)

)
cdz′

H(z′)(1 + z′)
≈ (12)

≈
∫ ∞

0

nHI(z
′)σα

(
νe

(1 + z′)

(1 + ze)

)
cdz′

H(z′)(1 + z′)
(13)

τ(νo) =

∫ ∞
0

nHI(z
′)σα (νo(1 + z′))

cdz′

H(z′)(1 + z′)
, (14)

where we have assumed that the frequency of photons decays as 1/a (making the product of a times
the frequcny a constant through time):

ν

(1 + z)
=

νe
(1 + ze)

=
νo

(1 + 0)
= νo. (15)

It is common to rewrite the integral over the redshift path to the one over the comoving coordinate
length as follows:

τ(νo) =

∫ ∞
0

nHI(z
′)σα [νo(1 + z′)]

cdz′

H(z′)(1 + z′)
≈
∫ ∞
−∞

nHI(z(x))σα [νo(1 + z(x))]
dx

(1 + z(x))
(16)

where a flat and unpterubed Universe was assumed for the null geodesic (cdt = adx) for conversion
between time and coordinate (or eqivalently redshift and coordinate). At this point I have explicitly
written down that the redshift will be a function of x, indicating that the two are not unrelated, since
we are following a light cone and thus a null geodesic trajectory. I will comment on how this is usually
resolved in a moment.

But first let’s look at what assumptions go into deriving the finer points of neutral hydrogen dependence
on the underlying matter perturbation.

The main assumption, which seems to hold, is the approximation of the photo-ionization equilibrium.
In this scheme, the photoionizing flux of the (in this case UV - since we are dealing with Lyα line) photons,
Γγ,HI , ionizies the neutral hydrogen, nHI . This process is in equilibrium with the recombination (and no
time delay between the two is assumed, since any such time delay due to recombination is assumed to be
much smaller than the Hubble times on which we are observing). The recombination forms back neutral
hydrogen, from the free protons (or ionized hydrogen atoms, if you prefer the terminology) with free
electrons. The recimbination coefficient however is dependant on the temperature of the gas, which traces
the underlying matter as well (i.e. where there is more gas it’s hotter - we’ll quantify this in a second).
Always an assumptions is made that np ≈ ne, which is claimed to be due to thermal equilibrium :

Γγ,HI nHI(x) = np(x)ne(x)αγ(T ) ≈ n2
p(x)αγ(T ). (17)

At this point no spatial or time dependence of the UV background present through the ionization
coefficient Γγ,HI is assumed, although it has been pointed out that it may play a role on large scales,
especially at higher redshifts, closer to reionization (due to patchiness of the later).2

The temperature dependence of the recombination coefficient αγ(T ) is universally assumed to follow
relation :

2see papers by Gontcho-a-Gonctho & Miralda-Escude, and Pontzen et al.
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αγ(T ) = α0T
−0.7
4 , T4 =

T

104 K
. (18)

In the above the constant α0 is usually equal to α0 ≈ 4.3 × 10−13 cm3/s. Furthermore, it is assumed
that all the protons come from reionization of hydrogen:

np(x) ≈ nH(x) =
Xρb(x)

mH

. (19)

where X is the (mass?) fraction of hydrogen in the IGM (since it is believed IGM is more or less pure
primoridal gas it is assumed X to be equatl to ∼ 0.75) . This assumption is based on the low temperature
of the IGM gas we are probing (typical values 104 K).

The density of baryons can be written as a background density contrast and some fluctuations on top
of that :

ρb(x) = ρ̄b(z)∆b(x) = ρ̄b(z) [1 + δb(x)] , (20)

ρ̄(z) = Ωb(z)ρcrit(z) =
3H(z)2

8πG

Ωb,0H
2
0 (1 + z)3

H(z)2
(21)

=
3H2

0

8πG
Ωb,0(1 + z)3 (22)

Combining the above results into one relation between the neutral hydrogen density and gas density
and temperature we arrive at the following expression:

nHI(x) =
α0

Γγ,HI

X2

m2
H

ρ̄2
b(z) [1 + δb(x)]2 T−0.7

4 (x). (23)

The above relation is used in the simulations as well. There have been attempts to test it validity, but
are mainly focused on assuming that the gas density fluctuations probed (δb) do not follow the underlying
dark matter in a linear fashion. Usually a Jeans-like smoothing relation is assumed (on large scales)
between the baryon density and the underlying dark matter density, e.g. (in k-space):

δb(k) =
δdm(k)

1 + k2/k2
J

, (24)

where kJ is the Jeans scale. However, it has been pointed out (Bi & Davidson et al 1999?), that due to the
fact we are probing slightly non-linear structure where the overdensity are around ∼ 1, a more non-linear
relation should be assumed (in real space this time):

1 + δb(x) = eδL(x)−σ2
L/2, (25)

where the δL stands for the linear (dark-matter) density fluctuations.The normalization is such that 〈1 +
δb〉 = 1, as pointed out by a paper a few years ago3 , one should always consider this kind of a normalization
since it leads to a proper account of the normalizaton for the series expansion. The function that normalizes
this log-normal transformation is the rms of the overdensity contrasts, σ2

L. However in literature there is
some dispute (or at least no consistency) on what exactly is this function. Most assume just the rms of
the linear dark-matter field, while some including also a window function with the usual Jeans smoothin
to this normalization factor.

3Frusciante & Sheth 2012
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The last thing that is usually assumed in (semi-) analytical calculations is the temperature-density
relation.This kind of relation is adopted after looking at the relevant distribution from simulations and
it seems to be rather valid, in a tight regime of low densities and low temperature, with huge scatter in
temperature towards the more dense part of the diagram. One could always choose a more complicated
(non-deterministic) model than this, but it seems to work rather well, and the differences seem mostly
relevant on small scales:

T (x) = T0∆γ−1
b (x), (26)

where T0 is some mean gas temperature (simulations and observations suggest it to be around 14000 K,
and γ is the slope of the power law relation, and is estimated to be around 1.36. In principle it is assumed
that T0 and γ follow a specific redshift evolution as well, i.e. that they are redshift dependant quantities4.

Putting it all together we can derive the relation between the neutral hydrogen and the underlying
baryon density as

nHI(x) =
α0

Γγ,HI

X2

m2
H

ρ̄2(z)

(
T0

104 K

)−0.7

[1 + δb(x)]2−0.7(γ−1) = nHI,0(z)∆p
b(x). (27)

In a similar fashion one can describe the thermal broadening parameter as

b(x) =

√
2kbT (x)

mH

=

√
2kbT0(z)

mH

∆q
b(x) = b0(z)∆q

b(x), (28)

where q(z) = (γ(z)− 1)/2. It might be important to include the redshift evolution of the two parameters
of T − ρ relation, but for the purpose of the integral it is probably negligable change (as in we can assume
they’re evaluated at some mean redshift for that integral).

To return to the expression for the optical depth and the integral, we had

τ(νo) =

∫ ∞
0

nHI(z
′)σα [νo(1 + z′)]

cdz′

H(z′)(1 + z′)
. (29)

What is usually assumed is that the line profile function Φ is peaked enough, to assumed that the
path integral dz′ where the integral will return non-negligable result is small. In the light of this one
can approximate the integration along the light cone as an integral at fixed (mean) redshift (time) over
comoving coordinate long the line of sight5. This is an approximation, but a valid one (corrections are of
the order of v/c, same size as higher-order relativistic corrections6).

z = z̄ + ∆z = z̄ +
H(z̄)

c
(x− x̄) , (30)

where in the last step we’ve used the null-geodesic relation of (a(t)dx = cdt). The mean redshift z̄ would
correspond to the redshift of the simulation being analyzed or the redshift bin of the observational data.
So in a sense this kind of approximation is used in analyzing the simulation outputs, as well as in data
analysis. The comoving position x̄ is the one that corresponds to the mean redshift z̄.

But for the purpose of non-relativistic treatement the above assumption seem to work very well.
The above approximation is then used in the relation for the optical depth (to the first order) which

gives us

4see Haardt-Madau papers and similar
5See for example the paper by Bi et al. 1997
6see paper Irsic, Di Dio & Viel 2015
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τ(νo) =

∫ ∞
−∞

nHI(x, z̄)σα (ν)
dx

(1 + z̄)
. (31)

Note that the integral is extended from minus to plus infinity. The plus infinity was justified before, the
minus can be justified in the similar sense - that the integral will be picking up only on a small portion of
the line of sight, and that is not close to z = 0. The convolution integrals later on are easier to solve if we
extend these integrals.

Furthermore, the frequency ν dependence on redshift is also corrected for the peculiar velocities, so
instead of just ν = νo(1 + z) we have

ν = νo(1 + z)

(
1 +

vpec(x)

c

)
≈ νo(1 + z̄)

(
1 +

u(x)

c

)
, u =

H(z̄)

1 + z̄
(x− x̄) + vpec(x), (32)

with u being the redshift space coordinate and where the peculiar velocities vpec = vb trace the underlying
baryon field. In fact it is often assumed that even if the baryon density doesn’t linearly trace the (linear)
dark matter field, the velocities do.

Peculiar velocity of the observer (us) is neglected here, as it would only shift the redshift space coor-
dinate u by a constant amount (see Hui et al. 1997 for details).

Also note in the last relation we have approximated it to the first order, where we’ve dropped a term
of the order of ∆z vb.

With the above in mind one can define a specific uo which corresponds to exactly the frequency of the
Lyα absorption:

να = νo(1 + z̄)
(

1 +
uo
c

)
, (33)

where uo now corresponds to the observed redshift space coordinate, with the above relation linking it
observed frequency νo.

If we change the integration variable to the redshift space coordinate, we can rewrite the optical depth
as

τ(uo) = A(z̄)

∫ ∞
−∞

du (1 + δb(u))p
1

b(u)
√
π
e
− (u−uo)2

b2(u)

∣∣∣∣dudx
∣∣∣∣−1

(34)

≈ τ0(z̄)

∫ ∞
−∞

du (1 + δb(u))p
1

b(u)
√
π
e
− (u−uo)2

b2(u)

(
1− ∂vb

∂u

)
, (35)

with b = b0(1 + δb(u))q. In the above we have assumed that when z → 0 in the integral limits, so does
u→ −∞, which is not strictly speaking correct. It assumes, once again, that the exponential function is
peaked around uo, so that u − uo is small, otherwise we are not getting any signal. This means that the
true lower limit can be replaced by a −∞.

We have also crammed all the constatns that depend only on the mean redshift into A and τ0 such
that

τ0(z) = A(z)
1 + z

H(z)
=

1

H(z)
nHI,0(z)λαaα (36)

≈ 1.26468942 ×
(

Γγ,HI
10−12 s−1

)−1(
X

0.75

)2(
T0

104 K

)−0.7
(Ωb,0h

2)2

h

(
H0

H(z)

)
(1 + z)6, (37)

where the lyman alpha wavelength is λα = 1215.6701Å.
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The constant at a typical redshift z = 3 has a value of

τ0(z = 3) = 0.665435, (38)

for the cosmology of Ωm = 0.274247, Ωb = 0.0458, ΩΛ = 0.725753, h = 0.7 and for astrophysical parameters
of T0 = 1.47088× 104 K, Γγ,HI = 10−12 s−1, X = 0.75.

We see that the optical depth is a sort of a convolution between the cosmology part from the redshift
space distortions, cosmology and astrophysics part from the density of neutral hydrogen, and a Gaussian
profile. It is not quite a convolution since the Gaussian profile has a density dependant width. What is
then done in the linear approximation is assume that δb � 1 (also means that vb � 1 if we believe linear
theory) and expand various functions:

τ(uo) = τ0(z̄)

∫ ∞
−∞

du

[
1 + pδb(u)− ∂vb

∂u
− q

(
1− 2

(u− uo)2

b2
0

)
δb(u)

]
W (u− uo), (39)

where the kernel function W is now only explicitly dependant on u, so that

W (s) =
1

b0

√
π
e
− s

2

b20 . (40)

The last term in the optical depth equation can be further manipulated using per-partes integration,
once we realize that the term is closely related to the second derivative of the kernel function W . The first
two terms remain intact (in linear approximation) so we can write

3rd term = −τ0(z̄)

∫ ∞
−∞

du q

(
1− 2

(u− uo)2

b2
0

)
δb(u)W (u− uo) = (41)

= τ0(z̄)
qb2

0

2

∫ ∞
−∞

δb(u)
∂2W

∂u2
du = (42)

= τ0(z̄)
qb2

0

2

[
∂W

∂u
δb(u)

∣∣∣∣∞
−∞
− W

∂δb
∂u

∣∣∣∣∞
−∞

+

∫ ∞
−∞

W (u− uo)
∂2δb
∂u2

du

]
, (43)

the last term here is what we need. The upper limit (∞) of the per-partes limit tersm is obvious, as W
goes to zero faster than anything else - the only thing that is assumed here is that δb doesn’t monotonously
increase with u, which is a fair assumption. Same holds for lower limit.

Having dealt with the per-partes terms we are left with:

τ(uo) = τ0(z̄)

∫ ∞
−∞

duW (u− uo)
[
1 + pδb(u)− ∂vb

∂u
+
qb2

0

2

∂2δb
∂u2

]
, (44)

where p = 2 − 0.7(γ − 1) and q = (γ − 1)/2. This is the result of the linear approximation found in the
literature. What you can do then is define τ fluctuations and a power spectrum of the optical depth - this
agree relatively well with the simulations of optical depth, on large scales the only difference is a constant
bias, on small scales some k-dependence is a bit off.

Before going to Fourier space let’s just review the above equation if we’re working in 3D space. Every-
thing stays the same, since the line-of-sight physics and integration doesn’t change, except that quantities
now depend on perpendicular direction u⊥ = H(z)DA(z)∆θ, where ∆θ is the angular seperation on the
sky. The optical depth can then be written as

τ(u) = τ(u⊥, uo) = τ0(z̄)

∫ ∞
−∞

du‖W (u‖ − uo)

[
1 + pδb(u⊥, u‖)−

∂vb
∂u‖

+
qb2

0

2

∂2δb
∂u2
‖

]
. (45)
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Let’s also define a optical depth fluctuations as

1 + δτ (u) =
τ(u)

〈τ(u)〉
, (46)

where we explicitly note that the mean optical depth may not necessarily be τ0. If the above relation were
the full description of the optical depth then yes, the mean would be τ0. But in general the mean would
also depend on the higher order moments of the underlying matter distribution, due to the non-linear
relations between optical depth and the density field. If you evaluate the optical depth power spectrum
from the numerical simulations you’d get a different value of the mean optical depth, which has to be
taken into account. However to systematically use terms only up to linear order the mean of the τ field is
τ0 (check yourself). Thus:

δτ =

∫ ∞
−∞

du‖W (u‖ − uo)

[
pδb(u⊥, u‖)−

∂vb
∂u‖

+
qb2

0

2

∂2δb
∂u2
‖

]
. (47)

Defining the Fourier transform as

τ(u) =

∫
d3k

(2π)3
τ(k)e−ik·u (48)

Noting that the integral along the line of sight is now nothing but a convolution we can write the Fourier
transform of the linearized optical depth fluctuations as:

δτ (k) =

[
pδb(k)− ik‖vb(k)− qb2

0

2
k2
‖δb(k)

]
Wk. (49)

If the peculiar velocities are small, one can use linear relation (coming from linear evolution equations7).
The linear relation says

vb(k) = i
k‖
k2
Hfδb(k) (50)

What people used to do is also expand F = exp(−τ) relation to first order, from where you get that
the fluctuations in flux are just fluctuations in τ . Introducing the fluctuations in the flux 1 + δF = F/〈F 〉,
we can write

1 + δF =
e−τ0(1+δτ )

〈e−τ0(1+δτ )〉
≈

e−τ0
(
1− τ0δτ + 1

2
τ 2

0 δ
2
τ + . . .

)
〈e−τ0

(
1− τ0δτ + 1

2
τ 2

0 δ
2
τ + . . .

)
〉
≈ 1− τ0δτ +

1

2
τ 2

0

(
δ2
τ − 〈δ2

τ 〉
)

+ . . . , (51)

thus in linear approximation the relation between (observed) flux fluctuations and optical depth fluctuation
is simple and linear

δF ≈ −τ0δτ . (52)

The negative sign means that for a positive optical depth fluctuation (which means a positive overdensity),
a flux fluctuation is negative. This is simply a consequence of the denser the region, the more absorption
in the flux.

The flux power spectrum is then (as usual)

PF (k) = 〈δF δ∗F 〉 = τ 2
0 〈δτδ∗τ 〉. (53)

7See Large Scale Structure Lectures by Emiliano Sefusatti
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What we have computed above holds for 3D!. While usually one observed flux statistics averaged over
all QSO lines of sight, and thus in 1D only. This is easily achieved by integrating flux over k⊥ in the
Fourier space.

P 1D
F (k‖) =

1

2π

∫
P 3D
F (k)d2k⊥ =

1

2π

∫ ∞
k‖

P 3D
F (k‖, k) k dk =

1

2π

∫ ∞
k‖

K(k‖, k)Pb(k) k dk, (54)

with the integration kernel K(k‖, k) being

K(k‖, k) = τ 2
0 e
− 1

2
k2‖b

2
0

[
p+

k2
‖

k2
Hf − qb2

0

2
k2
‖

]2

(55)

The above relation is a very nice example in describing the workings behind the Lyα absorption and
relation to cosmology. However its usefulness and validity is very limited, and never used in practice, since
numerical simulations work so much better. The reason why the relation doesn’t work very well is because
of the highly-nonlinear relation between flux and optical depth and the Taylor expansion done is not very
justified for the larger optical depth fluctuations. However, the above relation is a motivation for empirical
fits to simulations which give similar result (see Arinyo-i-Prats et al.) which gives a relation of a sort

PF (k, µ = k‖/k) = PL(k)
(
bF + fbηµ

2
)2
D(k, µ) (56)
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