Energies and rates of the cosmic-ray particles

CALorimetric **E**lectron **T**elescope

A Dedicated Detector for Electron Observation in 1GeV - 10,000 GeV

CALET Collaboration Team

O. Adriani¹⁹,Y. Akaike³, K. Asano¹⁷, M.G. Bagliesi²², G. Bigongiari²², W.R. Binns²⁴, M. Bongi¹⁹, J.H. Buckley²⁴, G. Castellini¹⁹, M.L. Cherry⁹, G. Collazuol²⁶, K. Ebisawa⁵, V. Di Felice²¹, H. Fuke⁵, A. Gherardi¹⁹, T.G. Guzik⁹, T. Hams¹⁰, N. Hasebe²³, M. Hareyama⁵, K. Hibino⁷, M. Ichimura², K. Ioka⁸, M.H. Israel²⁴, A. Javaid⁹, E. Kamioka¹⁵, K. Kasahara²³, Y. Katayose^{4,25}, J. Kataoka²³, R. Kataoka¹⁷, N. Kawanaka⁸, M.Y. Kim²², H. Kitamura¹¹, Y. Komori⁶, T. Kotani²³, H.S. Krawczynski²⁴, J.F. Krizmanic¹⁰, A. Kubota¹⁵, S. Kuramata², T. Lomtadze²⁰, P. Maestro²², L. Marcelli²¹, P.S. Marrocchesi²², V. Millucci²², J.W. Mitchell¹⁰, S. Miyake²⁸, K. Mizutani¹⁴, A.A. Moiseev¹⁰, K. Mori^{5,23}, M. Mori¹³, N. Mori¹⁹, K. Munakata¹⁶, H. Murakami²³, Y.E. Nakagawa²³, S. Nakahira⁵, J. Nishimura⁵, S. Okuno⁷, J.F. Ormes¹⁸, S. Ozawa²³, P. Papini¹⁹, B.F. Rauch²⁴, S. Ricciarini¹⁹, Y. Saito⁵, T. Sakamoto¹, M. Sasaki¹⁰, M. Shibata²⁵, Y. Shimizu⁴, A. Shiomi¹², R. Sparvoli²¹, P. Spillantini¹⁹, M. Takayanagi⁵, M. Takita³, T. Tamura^{4,7}, N. Tateyama⁷, T. Terasawa³, H. Tomida⁵, S. Torii^{4,23}, Y. Tunesada¹⁷, Y. Uchihori¹¹, S. Ueno⁵, E. Vannuccini¹⁹, J.P. Wefel⁹, K. Yamaoka^{4,23}, S. Yanagita²⁷, A. Yoshida¹, K. Yoshida¹⁵, and T. Yuda³

Aoyama Gakuin University, Japan
 Hirosaki University, Japan
 ICRR, University of Tokyo, Japan
 JAXA/SEUC, Japan
 JAXA/ISAS, Japan
 Kanagawa University of Human Services, Japan
 Kanagawa University, Japan
 KEK, Japan
 Louisiana State University, USA
 NASA/GSFC, USA
 National Inst. of Radiological Sciences, Japan
 Ritsumeikan University, Japan
 Ritsumeikan University, Japan
 Saitama University, Japan

15) Shibaura Institute of Technology, Japan
16) Shinshu University, Japan
17) Tokyo Technology Institute, Japan
18) University of Denver, USA
19) University of Florence, IFAC (CNR) and INFN, Italy
20) University of Pisa and INFN, Italy
21) University of Rome Tor Vergata and INFN, Italy
22) University of Siena and INFN, Italy
23) Waseda University, Japan
24) Washington University-St. Louis, USA
25) Yokohama National University, Japan
26) University of Padova and INFN, Italy
27) Ibaraki University, Japan
28)Tokiwa University, Japan

Main Telescope: CAL (Calorimeter)

Expected Performance (from Simulations and/or Beam Tests) · SO: 1200 cm²sr for electrons, light nuclei 1000 cm²sr for gamma-rays 4000 cm²sr for ultra-heavy nuclei* * for E > 600 MeV/nucleon • ΔE/E :

~2% (>10 GeV) for e's, y's

~30 % for protons

- e/p separation: 10⁻⁵
- Charge resolution: 0.15-0.3 e
- Angular resolution: ~0.1° e's, y's

	CHD (Charge Detector)	IMC (Imaging Calorimeter)	TASC (Total Absorption Calorimeter)
Function	Charge Measurement (Z=1-46)	Arrival Direction, Particle ID	Energy Measurement, Particle ID
Sensor (+ Absorber)	Plastic Scintillator : 14 × 1 layer (x,y) Unit Size: 32mm x 10mm x 450mm	SciFi : 448 x 8 layers (x,y) = 7168 Unit size: 1mm ² x 448 mm Total thickness of Tungsten: 3 X ₀	PWO log: 16 x 6 layers (x,y)= 192 Unit size: 19mm x 20mm x 326mm Total Thickness of PWO: 27 X ₀
Readout	PMT+CSA	64 -anode PMT+ ASIC	APD/PD+CSA PMT+CSA (for Trigger)
January 4, 2016		COSMICsig @ AAS	5

CALET/CAL Shower Imaging Capability (Simulation)

- Proton rejection power of 10⁵ can be achieved with IMC and TASC shower imaging capability.
- ϕ Charge of incident particle is determined to σ_7 =0.15-0.3 with the CHD.

S. Torii, TeVPA 2013, Irvine, USA

CALET is now on the ISS !

4 August 25th: CALET is emplaced on port #9 of the

JEM-EF and data communication with the payload is established.

January 4, 2016

August 19th: After a successful launch of the Japanese H2-B rocket by the Japan Aerospace Exploration Agency (JAXA) at 20:50:49 (local time), CALET started its journey from Tanegashima Space Center to the ISS.

2 August 24th: The HTV-5 Transfer Vehicle (HTV-5) is grabbed by the ISS robotic arm.

3 August 24th: The HTV-5 docks to the ISS at 19:28 (JSTT).

COSMICsig @ AAS

CALET Capability for Electron (+ Positron) Observation : Nearby Sources

The DAMPE Collaboration

- China
 - Purple Mountain Observatory, CAS, Nanjin
 - Chief Scientist: Prof. Jin Chang
 - Institute of High Energy Physics, CAS, Be
 - National Space Science Center, CAS, Beijing
 - University of Science and Technology of China, Hefei
 - Institute of Modern Physics, CAS, Lanzhou
- Switzerland
 - University of Geneva
- Italy
 - INFN and University of Perugia
 - INFN and University of Bari
 - INFN and University of Lecce

The DAMPE Detector

W converter + thick calorimeter (total 33 X_0) + precise tracking + charge measurement high energy γ -ray, electron and CR telescope

Dark Matter Particle Explorer Satellite

- One of the 5 satellite missions of the Chinese Strategic Priority Research Program in Space Science of CAS
 - Approved for construction (phase C/D) in Dec. 2011
 - Launched on 17 December 2015 from Jiuquan Satellite Launch Center

- Satellite ≈ 1900 kg, payload ≈1300kg
- Power consumption ≈640W
- Lifetime > 3 years
- Launched by CZ-2D rockets
- Altitude 500 km
- Inclination 97.4°
- Period 95 minutes
- Sun-synchronous orbit

Dec. 24 2015 First Light of DAMPE

G. Ambrosi, CSN2, 09/02/2016, Rome

G. Ambrosi, CSN2, 09/02/2016, Rome

G. Ambrosi, CSN2, 09/02/2016, Rome

Nuclei: CR Spectra & Composition toward the knee(s)

Energy (GeV/n)

Comparison of Detector Performance for Electrons

DAMPE is optimized for the electron observation in the tran-TeV region, and the performance is best also in 10-1000 GeV.

Detector	Energy Range (GeV)	Energy Resolution	e/p Selection Power	Key Instrument (Thickness of CAL)	SΩT (m²srday)
ATIC1+2 (+ ATIC4)	10 - a few 1000	<3% (>100 GeV)	~10,000	Thick Seg. CAL (BGO: 22 X ₀) + C Targets	3.08
PAMELA	1-700	5% @200 GeV	10 ⁵	Magnet+IMC (W:16 X ₀)	~1.4 (2 years)
FERMI-LAT	20-1,000	5-20 % (20-1000 GeV)	10 ³ -10 ⁴ (20-1000GeV) Energy dep. GF	Tracker+ACD + Thin Seg. CAL (W:1.5X ₀ +CsI:8.6X ₀)	60@TeV (1 year)
AMS	1-1,000 (Due to Magnet)	∼2-4% @100 GeV	10 ⁴ (x 10 ² by TRD ⁾	Magnet+IMC +TRD+RICH (Lead: 17X _o)	~50(?) (1year)
CALET	1-10,000	~2-3% (>100 GeV)	~ 10 ⁵	IMC+CAL (W: 3 X _o + PWO : 27 X _o)	44 (1years)
DAMPE	1-10,000	~1% (>100 GeV)	~ 10 ⁶	IMC+CAL+Neutron (W: 2 X _o + BGO: 32 X _o)	180 (1 years)

Electrons: Dark Matter vs Nearby Sources

OBSERVATION MODES AND THE GAMMA-400 ORBIT EVOLUTION

Observation modes:

- <u>continuous long-duration (~100 days)</u>

observation of some regions of celestial

sphere, including point and extended gamma-

ray sources;

-monitoring of the celestial sphere.

Initial orbit parameters:

- apogee: 300,000 km:
- perigee: 500 km;
- inclination: 51.4°

After ~5 months the orbit will transform to nearly circular with a radius of ~150,000 km.

GAMMA-400

- AC anticoincidence detectors
- C Conveter-Tracker
- S1, S2 ToF detectors
- S3, S4 calorimeter scintillator detectors
- $\begin{array}{l} \text{CC1}-\text{imaging calorimeter (2 } X_0) \\ \text{2 layers: } \text{CsI}(\text{Ti}) \ 1 \ X_0 + \text{Si}(x,y) \ (\text{pitch } 0.1 \ \text{mm}) \end{array}$
- CC2 electromagnetic calorimeter CsI(TI) 20 X_0 3.6x3.6x3.6 cm³ – 22x22x10 = 4840

HERD Design : 3D Calo & 5-Side Sensitive

Shuang-Nan Zhang, 3rd HERD Workshop, XiAn, Jan 2016

HERD detectors

	type	size	Х0,٨	unit	main functions
tracker (top)	Si strips	70 cm × 70 cm	2 X0	7 x-y (W foils)	Charge Early shower Tracks
tracker 4 sides	Si strips	65 cm × 50 cm	2 X0	7 x-y (W foils)	Charge Early shower Tracks
CALO	~10K LYSO cubes	63 cm × 63 cm × 63 cm	55 X0 3 A	3 cm × 3 cm × 3 cm	e/γ energy nucleon energy e/p separation

Shuang-Nan Zhang, 3rd HERD Workshop, XiAn, Jan. 2016

Detection prospects

Fornengo, Maccione, Vittino, JCAP 1309 (2013) 031

GAPS detects atomic X-rays and annihilation products from exotic atoms

GAPS project history

2002 (original GAPS) Cubic detector 3 X-rays 2004/2005 **KEK Beam Test** 2006 Multi-layer detector TOF stopping depth X-rays **Pion multiplicity** 2008 **Proton multiplicity** 2009 dE/dX2012 pGAPS flight Start Si(Li) fabrication

GAPS science summary

- Antideuterons as DM signatures

E < 0.25 GeV

- no astrophysical background at low energy
- **complementary** to direct/indirect searches and collider experiments
- search for: **light DM**, heavy DM, gravitino DM,

LZP in extra-dimensions theories, (evaporating PBH)

- Antiprotons as DM and PBH signatures
 - precision flux measurement at ultra-low energy (E < 0.25 GeV)
 - **complimentary** to direct/indirect searches and collider experiments
 - ~ **10 times more statistics** @ 0.2 GeV, compared to BESS/PAMELA
 - search for: light DM, gravitino DM,

LZP in extra-dimensions theories, evaporating PBH

Expected to launch from Antarctica in 2018/2019

 1 LDB flight (~35 days) -> precision antiproton flux measurement ~1500 antiprotons in GAPS E < 0.25 GeV, while 30 for BESS, 7 for PAMELA at E ~ 0.25 GeV
 2 LDB flights (~70 days) -> improved antideuteron statistics Antideuteron sensitivity: ~3.0 x 10⁻⁶ [m⁻² s⁻¹ sr¹ (GeV/n)⁻¹] at E < 0.25 GeV
 3 LDB flights (~105 days) -> Antideuteron sensitivity: ~2.0 x 10⁻⁶ [m⁻² s⁻¹ sr¹ (GeV/n)⁻¹] at

GAPS instrument summary

TOF plastic scintillators

- outer TOF: 3.6m x 3.6m, 2m height
- inner TOF: 1.6m x 1.6m, 2m height
- 1m b/w outer and inner TOFs
 - 500 ps timing resolution

Si(Li) detectors

- 10 layers, 1.6m x 1.6m
- layer space: 20 cm
- Si(Li) wafer (~1500 wafers)
 - 4 inch diameter
 - 2.5mm thick wafer
 - 12 x 12 rectangular
- segmented into 4 strips

 \rightarrow 3D particle tracking

- timing resolution: ~ 100 ns
- energy resolution: 3 keV
- operation temperature: -35 C
- dual channel electronics X-ray: 20 - 80 keV charged particles: 0.1 - 100 MeV

Cooling system

- oscillating heat pipe (OHP)
- demonstrated in pGAPS

Cosmic-ray Antideuterons

T. Aramaki et al., Astropart. Phys. 74 (2016) 6, arXiv: 1506.02513

GAPS precision antiproton flux measurement provides strong constraints on DM and PBH models

Complementary to direct/indirect DM searches and collider experiments for light DM

GAPS antiprotons probe light DM and gravitino DM

Light DM

- in non-universal gaugino model
- good agreement with experimental data
 - uncertainty on propagation model
 - uncertainty on annihilation cross-section
 - different annihilation channels

gravitino DM

- stable in galactic time scale
- small R-parity violation
 - avoid gravitino overproduction

Unique probes for DM in extra-dimensions and evaporating PBHs

LZP

- Lightest Z₃ charged particle
- stable under Z₃ symmetry
- right-handed neutrino

Primordial Black Hole Evaporation

- density fluctuations, phase transitions, collapse of cosmic strings in the early universe
- R < 0.02-0.05 pc⁻³ yr⁻¹ (γ , Fermi, EGRET)

