

A mysterious radiation

1903: Rutherford and others found that that the ionization was reduced when electroscopes were shielded of radioactivity.

- The belief spread that the penetrating radiation came from radioactive material in Earth's crust...!
- How should such radiation decrease with increasing height ...?

1909: Theodor Wulf could measure ion-production rates as low as one ion-pair/s. Took his electroscope to top of Eiffel Tower and found the rate much larger than expected.

1909-11: Swiss physicist Albert Gockel carried a Wulf-type electroscope on three balloon flights (4500m). He ascribed a considerable part of the ionization to gamma rays from 'radioactive substances in the atmosphere'.

1910-14: Italian physicist Domenico Pacini made important but little noticed ionization measurements with an electroscope on land, at sea, and underwater He concluded that there was penetrating radiation in the atmosphere, independent of radioactive material in the crust...!

1911-13: Hess designed Wulf-type electroscopes with 3 mm thick brass walls. He then made 10 balloon flights. On 7 August 1912 the hydrogen filled balloon would carry him to an altitude of about 5000 m.

This flight revealed a very significant increase of the ionization at high altitude A month after the decisive flight he reported his results which became known as the discovery of galactic cosmic rays at a meeting in Munster.

V. F. Hess (1912). "Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten". Physikalische Zeitschrift 13: 1084–1091

Victor Hess

1883: Born in Austria... **1910**: Earned his PhD at the University of Graz.

1912: August 7, conclusive 6 hour balloon flight to 4500m drifted 200 km north.

1925: Professor of Experimental Physics, University of Graz.
1931: Professor, and Director Institute of Radiology, University of Innsbruck.
1936: He was awarded Nobel Prize in Physics in 1936.

1938: Relocated to the USA. Fordham University appointed Professor of Physics.
1944: Became an American citizen.
1964: Died on December 17th.

Mysterious space radiation

1914: Werner Kolhörster improved the Wulf electroscope, made five balloon flights in 1914. He reached 9300 m, measuring an ionization six times larger than at ground level, confirming Hess' result.

An unknown radiation from space with extreme penetrating power was causing the ionization.

No mentioning of cosmic rays or particles.

Some scientists were sceptical, especially Millikan in the USA. He could NOT confirm results with an unmanned balloon flight to 15 km over Texas.

Mysterious cosmic radiation

1926-32:

Millikan denied a latitude effect – said it was local radiation. But, Arthur Compton supported the 'particle' view. The debate between the two giants went on for some time.

Compton undertook several expeditions in 1932 to confirm the latitude effect.

Millikan finally accepted the latitude effect after making measurements from airplanes in 1933.

He coined the name "cosmic rays." In Central Europe, the names 'Höhenstrahlung' (high-altitude radiation) and 'Ultra-Gammastrahlung' became current.

It took a long time before the particle nature and composition of cosmic rays were understood.

Cosmic rays as charged particles

1927: Dmitri Skobeltsyn in the Soviet Union had obtained a cloud-chamber photo that showed a cosmic-ray track...!

1932: Bruno Rossi found that the cosmic-ray flux contained a soft component and a hard component of charged particles with energies above 1 GeV...!

Then Carl Anderson (Caltech) discovered the positron. For this he shared the Nobel Price with Hess...!

1932-1953: Many new particles were discovered by studying cosmic ray showers... After two decades of such fundamental discoveries, 1953 marked the transition to accelerator-based particle physics.

Per Carlson's paper in Physics Today Feb. 2012

..."At the invitation of Fermi, I gave an introductory speech on the problem of cosmic rays. The main thrust of this talk was to present what, to my mind, were irrefutable arguments against Millikan's theory of the "birth cry" of atoms. Such a brash behavior on the part of a mere youngster (I was then 26 years old) clearly did not please Millikan, who for a number of years thereafter, chose to ignore my work altogether."

Large detectors but short duration. Atmospheric overburden ~5 g/cm². Till 2008 almost all data on cosmic antiparticles from these experiments.

0 m

Galactic Cosmic Ray Abundance and Composition

[LEP / CERN]

Cosmic Rays in the Milky Way

1 kpc~3x1018 cm

BE, P	~ 0.1	83 eV	Ene	egy den	s: ry
SE, nu Mag	net:c	f: e e d	energy	densi T;	Y
w : 0	B ²	8 2 3 µ	Gauss		
= -	3 × 10 2 × 12.6	$\frac{1}{57 - 10^{-7}}$	1A-2 1.6 ×	10-19 3	22.0
21	m³	7	um ³		cm ³
, .	i rea	guized	cosmi 40	c zays	y Cacific
LCR :	ER Volume	2 3.3	Rachie di	s K	
1	TR2J Zesi	n TT (1 dence	5 Kpc)2 (200 pc) 2	4×1066 cm3
1	6 × 1 C	y ents	~ 1.9 * -	10 14 5	
Ree	lease yeaze	of ener	egy from	type II 10 Mo (s	supernovae, sent mass),
Spee Lsk	d n n 3 x	5 × 108 en 10 42 ez.	> /s		
		5			

Galactic cosmic rays - energetics

Ginzburg, 1958, ...

- Cosmic ray power in our Galaxy: ~ 5 x 10⁴⁰ ergs/s
 - Supernovae and their remnants: Release 10⁵¹ ergs, happen 1/30 years. Q ~ 10⁴² ergs/s
 - Novae (accretion of matter onto white dwarf): 100/year, release 10⁴⁷ ergs, Q ~ 10⁴² ergs/s
 - Rotating neutron stars: Majority of Galactic Fermi-LAT sources, Q ~ 10⁴¹ ergs/s
 - Stellar winds from hot O/B stars: Strong winds from rad. pressure (10⁹ M
 _{sun}), Q~10⁴¹ ergs/s

Stefan Funk, April 1st 2012, APS Atlanta

Cosmic-Rays' "Life"

Acceleration and Sources

Problems

- *i.* $\frac{v}{c} \le 10^{-4}$ Mean free path ≈ 0.1 pc \rightarrow collision about 1 per year;
- ii. Energy losses: ionization?
- iii. Why $\gamma \approx 1$? Why the same for all species?

Fig. 17.3 The dynamics of high energy particles in the vicinity of a strong shock wave. (*a*) A strong shock wave propagating at a supersonic velocity *U* through stationary interstellar gas with density ρ_1 , pressure p_1 and temperature T_1 . The density, pressure and temperature behind the shock are ρ_2 , p_2 and T_2 , respectively. The relations between the variables on either side of the shock front are given by the relations (11.72)–(11.74). (*b*) The flow of interstellar gas in the vicinity of the shock front in the reference frame in which the shock front is at rest. In this frame of reference, the ratio of the upstream to the downstream velocity is $v_1/v_2 = (\gamma + 1)/(\gamma - 1)$. For a fully ionised plasma, $\gamma = 5/3$ and the ratio of these velocities is $v_1/v_2 = 4$ as shown in the figure. (*c*) The flow of gas as observed in the frame of reference in which the velocity distribution of the high energy particles is isotropic. (*d*) The flow of gas as observed in the frame of reference in which the downstream gas is stationary and the velocity distribution of the high energy particles is isotropic.

M. S. Longair, "High Energy Astrophysics", Volume 2.

Maximum energy from any EM accelerator is proportional to Z

ENERGY

- Steepeing of the spectrum
- Composition becomes progressively enriched in jeavir nuclei as energy increases
- But not unique characteristic of this model

DIFFUSIVE ACCELERATION AT COLLISIONLESS NEWTONIAN SHOCKS 'test particles'

In test particle theory, all approaches lead to:

-POWER LAW SPECTRA

-SLOPE ONLY FUNCTION OF COMPRESSION

-INDEPENDENT OF D(E)

-NO CLEAR RECIPE FOR EMAX

-NO DESCRIPTION OF WHY PARTICLES RETURN TO THE SHOCK (SCATTERING)

-NO DESCRIPTION OF INJECTION

NON LINEAR THEORY

A theory of particle acceleration that allows one to describe:

- Dynamical reaction of accelerated particles
 Streaming instability CR-induced B-field
 Dynamical reaction of amplified fields
 Phenomenological recipe for injection (selfregulation of the system)
- 5. Escape of particles from boundaries (Cosmic Rays)

BUT DO WE OBSERVE ANY OF THESE?

Photon emission by accelerated charged particles

Stefan Funk, April 1st 2012, APS Atlanta

Photon emission by accelerated charged particles

Stefan Funk, April 1st 2012, APS Atlanta

H.E.S.S. Highlight: Resolved Supernova-

- Index ~ 2.1 2.2
 Little variation across SNR
- Cutoff or break at high energy

EXAMPLE: SNR RXJ1713.7-3946

Cosmic Rays & the γ -ray Sky

AGILE discovery of pion emission from the SNR W44

AGILE intensity map, smoothing3 E: 400-10000 VLA contours (green) NANTEN2 CO map 41 km/s (green), 43 km/s (blue) AGILE 400-10000 cont. (magenta) VLA contours (white)

Fermi: CR protons in SNR

- Unambiguous and robust detection of the pion-decay bump in W44 and IC443
- Possible for the two brightest LAT SNRs due to significant increase in effective area at 100 MeV through Pass 7
- Proof that SNRs accelerate protons

Detection of the pion-decay cutoff in Supernova remnants

2013, Science, 339, 807

15