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Figure 7. Histogram of (α − ⟨α⟩)/σα measured from ξ (r) of the post-
reconstruction mocks, where ⟨α⟩ is the mean. This quantity is a proxy
for the signal-to-noise ratio of our BAO measurement. We see that this
distribution is close to Gaussian as indicated by the near-zero K-S Dn. The
corresponding p-value indicates that we are 90 per cent certain our values
are drawn from a Gaussian distribution, indicating that the values of σα we
measure from the χ2 distribution are reasonable descriptors of the error on
α measured by fitting ξ (r).

also makes our distance estimates more robust to parameter choices
in our fitting algorithms and reduces the scatter between the distance
estimates from the the correlation function and the power spectrum.
We quantify these improvements further in the following sections.

We next compare the observed scatter in the best-fitting α in
the mocks to the σα estimated in each fit from the χ2(α) curve.
In Fig. 7, we plot a histogram of (α − ⟨α⟩)/σα from the mocks
and compare the result to the unit normal distribution. We find
excellent agreement; a Kolmogorov–Smirnov (K-S) test finds a
high likelihood that the observed distribution is drawn from a unit
normal. Hence the Gaussian probability distribution obtained from
the χ2 statistic is an appropriate characterization of the error on α.

6 TH E P OW E R SP E C T RU M

6.1 Measuring the power spectrum

The power spectra recovered from the CMASS DR9 data are shown
in Fig. 8 before (left) and after (right) reconstruction. The inset
shows the oscillations in these data, calculated by dividing by a
smooth model (see Section 6.2 for details). The effect of the re-
construction algorithm is clear – the large-scale power is decreased
corresponding to the removal of RSD effects, with the small-scale
power being further reduced by the reduction in non-linear power.
These data represent the most accurate measurement of a redshift-
space galaxy power spectrum ever obtained.

Power spectra were calculated using the Fourier method first de-
veloped by Feldman et al. (1994), as described in Percival et al.
(2007b) and Reid et al. (2010). We work in redshift-space as if ob-
served recession velocities solely arise from the Hubble expansion.
As we focus on measuring angle-averaged baryon acoustic oscilla-
tions, we do not convert from a galaxy density field to a halo density
field as in Reid et al. (2010), or apply corrections for Finger-of-God
effects. Given a weight wi for galaxy i at location r i , the overdensity
field can be written

F (r) = 1
N

[
∑

i

wiδD(r i − r) − ⟨w(r)n(r)⟩
]

, (31)

where N is a normalization constant

N ≡
{∫

d3r⟨w(r)n(r)⟩2
}1/2

, (32)

and ⟨w(r)n(r)⟩ is the expected weighted distribution of galaxies at
location r in the absence of clustering, and n(r) is the galaxy density.
The quantity δD is the standard Dirac-δ function. We do not apply
luminosity-dependent weights (as applied by Percival et al. 2007b
and Reid et al. 2010), as we are only interested in the BAO, and not
the overall shape of the power spectrum.

We chose to model the expected distribution of galaxies using a
random catalogue with points selected at the mean galaxy density

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fitting models overplotted. The vertical dotted lines
show the range of scales fitted (0.02 < k < 0.3 h Mpc−1), and the inset shows the BAO within this k-range, determined by dividing both model and data by
the best-fitting model calculated (including window function convolution) with no BAO. Error bars indicate

√
Cii for the power spectrum and the rms error

calculated from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).
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Yesterday we study 
predictions for the 
matter power 
spectrum only …



Today

The galaxy power spectrum

Baryonic Acoustic Oscillations 

Redshift Space Distortions

The effect of neutrino mass



  Galaxies

[Orsi et al. (2009)]

Hα versus H-band selection in future redshift surveys 9

Figure 8. The spatial distribution of galaxies and dark matter in the Bow06(r)model at z = 1. Dark matter is shown in grey, with the densest regions shown
with the brightest shading. Galaxies selected by their Hα emission with log(FHα[erg s−1 cm−2]) > −16.00 and and EWobs > 100Å are shown in red
in the left-hand panels. Galaxies brighter than HAB = 22 are shown in green in the right-hand panels. Each row shows the same region from the Millennium
simulation. The first row shows a slice of 200h−1Mpc on a side and 10h−1Mpc deep. The second row shows a zoom into a region of 50h−1Mpc on a side
and 10h−1Mpc deep, which corresponds to the white square drawn in the first row images. Note that all of the galaxies which pass the selection criteria are
shown in these plots.

tion. First, a form must be adopted for the distribution of sources
in redshift. Second, some papers quote results in terms of proper
separation whereas others report in comoving units. Lastly, an evo-
lutionary form is sometimes assumed for the correlation function
(Groth & Peebles 1977). In this case, the results obtained for the
correlation length depend upon the choice of evolutionary model.

Estimates of the correlation length of Hα emitters are avail-
able at a small number of redshifts from narrow band sur-
veys, as shown in Fig. 9 (Morioka et al. 2008; Shioya et al. 2008;
Nakajima et al. 2008; Geach et al. 2008). These surveys are small
and sampling variance is not always included in the error bar quoted
on the correlation length (see Orsi et al. 2008 for an illustration of
how sampling variance can affect measurements of the correlation
function made from small fields). The models are in reasonable
agreement with the estimate by Geach et al. (2008) at z = 2.2, but
overpredict the low redshift measurements. The z = 0.24 measure-
ments are particularly challenging to reproduce. The correlation

length of the dark matter in the ΛCDM model is around 5h−1Mpc
at this redshift, so the z = 0.24 result implies an effective bias of
b < 0.5. Gao & White (2007) show that dark matter haloes at the
resolution limit of the Millennium Simulation,M ∼ 1010h−1M⊙,
do not reach this level of bias, unless the 20% of the youngest
haloes of this mass are selected. In the Bow06(r) model, the Hα
emitters populate a range of halo masses, with a spread in forma-
tion times, and so the effective bias is closer to unity. Another possi-
ble explanation for the discrepancy is that the observational sample
could be contaminated by objects which are not Hα emitters and
which dilute the clustering signal.

The bottom panel of Fig. 9 shows the correlation length evo-
lution for different H-band selections, compared to observational
estimates from Firth et al. (2002). Note that the samples analysed
by Firth et al. are significantly brighter than the typical samples
considered in this paper (HAB = 20 versus HAB = 22). Firth
et al. use photometric redshifts to isolate galaxies in redshift bins



If galaxies form in regions of large 
dark matter density, I can at least 
expect a direct dependence of the 
galaxy overdensity on the 
matter overdensity

  Local galaxy bias

�g(x) ⌘
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n̄g
= f [�(x)]local galaxy bias

A very simple assumption …
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  Local galaxy bias

At large scales, we can expand it in 
a Taylor series

linear bias nonlinear bias corrections

⇠g(x) ' b

2
⇠(x)

Pg(k) ' b2P (k)

�g(x) = b �(x) +
1

2
b2 �

2(x) + . . .

h�g�gi = b2 h��i

local galaxy bias

At large scales, we expect a 
very simple, linear relation 
between galaxy and matter 
correlation functions the value of the bias 

parameter depends 
on the galaxy type



  Non-linear bias and non-linear gravitational instability 

at small scales, non-
linear bias is degenerate 
with non-linear 
corrections to the matter 
power spectrum!

at small scales we also 
have better statistics 
(smaller error bars)



Baryonic Acoustic Oscillations
in the galaxy distribution
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The BAO generation description
Baryonic Acoustic Oscillations

[credit: Daniel Eisenstein]

Radiation 
domination

at species start as a 
spherical overdensity 
with the same profile
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Matter 
domination



Bar

  

The BAO generation description

  

The BAO generation description

  

The BAO generation description
Baryonic Acoustic Oscillations

[credit: Daniel Eisenstein]

Radiation 
domination

coupled baryon-photon fluid
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The BAO generation description
Baryonic Acoustic Oscillations

[credit: Daniel Eisenstein]

Photon decoupling: the density is low 
enough that photon free-stream away … 

cs tls

cs tls k = ⇡

sound-horizon: sound-speed of 
the baryon-photon fluid times 
the time of last scattering
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A standard ruler

SDSS LRG sample:
first detection of the BAO peak
Eisenstein et al. (2005)

we know the size of 
the “oscillation 
ring” very well from 
CMB observations

the galaxy 2-point 
function provides an 
“isotropic” measurement 
of the feature (if we get 
the cosmology right!)

!8 to 1.0 for the halofit calculation changes the corrections at
r > 10 h!1 Mpc by less than 2%.

We stress that while galaxy clustering bias does routinely
affect large-scale clustering (obviously so in the LRG sample,
with bias b " 2), it is very implausible that it would mimic the
acoustic signature, as this would require galaxy formation phys-
ics to have a strong preferred scale at 100 h!1 Mpc. Galaxy for-
mation prescriptions that involve only small-scale physics, such
as that involving dark matter halos or even moderate-scale radia-
tion transport, necessarily produce smooth effects on large scales
(Coles 1993; Fry&Gaztanaga 1993; Scherrer &Weinberg 1998).
Even long-range effects that might be invoked would need to
affect 100 h!1 Mpc scales differently from 80 or 130. Our detec-
tion of the acoustic peak cannot reasonably be explained as an
illusion of galaxy formation physics.

4.3. Measurements of the Acoustic and Equality Scales

The observed LRG correlation function could differ from that
of the correct cosmological model in amplitude, because of
clustering bias and uncertain growth functions, and in scale, be-
cause we may have used an incorrect cosmology in converting
from redshift into distance. Our goal is to use the comparison
between observations and theory to infer the correct distance
scale.

Note that in principle a change in the cosmological model
would change the distances differently for different redshifts, re-
quiring us to recompute the correlation function for each model
choice. In practice, the changes are small enough and the redshifts
close enough that we treat the variation as a single dilation in scale
(similar to Blake & Glazebrook 2003). This would be a superb
approximation at low redshift, where all distances behave inversely
with the Hubble constant. By z ¼ 0:35, the effects of cosmolog-
ical acceleration are beginning to enter. However, we have checked
explicitly that our single-scale approximation is good enough
for !m between 0.2 and 0.4. Relative to our fiducial scale at
z ¼ 0:35, the change in distance across the redshift range 0:16 <
z < 0:47 is only 3% peak to peak for!m ¼ 0:2 compared to 0.3,
and even these variations largely cancel around the z ¼ 0:35 mid-
point where we will quote our cosmological constraints.

The other error in our one scale parameter approximation is to
treat the line-of-sight dilation equivalently to the transverse di-
lation. In truth, the Hubble parameter changes differently from
the angular diameter distance (the Alcock-Paczyński [1979] ef-
fect). For small deviations from !m ¼ 0:3 and !" ¼ 0:7, the
change in the Hubble parameter at z ¼ 0:35 is about half that of
the angular diameter distance. We model this by treating the di-
lation scale as the cube root of the product of the radial dilation
times the square of the transverse dilation. In other words, we
define

DV (z) ¼ DM (z)
2 cz

H(z)

! "1=3
; ð2Þ

where H(z) is the Hubble parameter and DM(z) is the comoving
angular diameter distance. As the typical redshift of the sample is
z ¼ 0:35, we quote our result for the dilation scale as DV(0.35).
For our fiducial cosmology of !m ¼ 0:3, !" ¼ 0:7, and h ¼
0:7, DV (0:35) ¼ 1334 Mpc.

We compute parameter constraints by computing "2 (using
the full covariance matrix) for a grid of cosmological models. In
addition to cosmological parameters of !mh

2, !bh
2, and n, we

include the distance scaleDV(0.35) of the LRG sample and mar-
ginalize over the amplitude of the correlation function. Param-

eters such as h,!m,!K, and w(z) are subsumed withinDV(0.35).
We assume h ¼ 0:7 when computing the scale at which to apply
the nonlinear corrections; having set those corrections, we then
dilate the scale of the final correlation function.

The WMAP data (Bennett et al. 2003), as well as combina-
tions of WMAP with large-scale structure (Spergel et al. 2003;
Tegmark et al. 2004b), the Ly# forest (McDonald et al. 2004;
Seljak et al. 2005), and big bang nucleosynthesis (e.g., Burles
et al. 2001; Coc et al. 2004), constrain !bh

2 and n rather well,
and so to begin, we hold these parameters fixed (at 0.024 and
0.98, respectively), and consider only variations in !mh

2. In
practice, the sound horizon varies only as (!bh

2)!0.08, which
means that the tight constraints fromWMAP (Spergel et al. 2003)
and big bang nucleosynthesis (Burles et al. 2001) make the
uncertainties in the baryon density negligible.

Figure 6 shows "2 as a function of the dilation for three dif-
ferent values of !mh

2, 0.11, 0.13, and 0.15. Scanning across all
!mh

2, the best-fit "2 is 16.1 on 17 degrees of freedom [20 data
points and three parameters: !mh

2, DV(0.35), and the amplitude].
Figure 7 shows the contours of equal "2 in !mh

2 and DV(0.35),
corresponding to 1 ! up to 5 ! for a two-dimensional Gauss-
ian likelihood function. Adopting a likelihood proportional to
exp(!"2/2), we project the axes to find !mh

2 ¼ 0:130 & 0:010
and DV (0:35) ¼ 1370 & 64 Mpc (4.7%), where these are 1 !
errors.

Figure 7 also contains two lines that depict the two physical
scales. The solid line is that of constant !mh

2DV , which would
place the (matter-radiation) equality scale at a constant apparent
location. This would be the degeneracy direction for a pure CDM
cosmology and would be a line of constant # ¼ !mh were the
LRG sample at lower redshift. The dashed line holds constant the

Fig. 6.—The "2 values of the models as a function of the dilation of the scale
of the correlation function. This corresponds to altering DV (0.35) relative to the
baseline cosmology of! ¼ 0:3,!" ¼ 0:7, and h ¼ 0:7. Each line (save the line
with open squares) in the plot is a different value of !mh

2, 0.11, 0.13, and 0.15
from left to right; !bh

2 ¼ 0:024 and n ¼ 0:98 are used in all cases. The am-
plitude of the model has been marginalized over. The best-fit "2 is 16.1 on
17 degrees of freedom, consistent with expectations. The line with open squares
shows the pure CDMmodel with!mh

2 ¼ 0:10; it has a best "2 of 27.8, which is
rejected at 3.4 !. Note that this curve is also much broader, indicating that the
lack of an acoustic peak makes the scale less constrainable. [See the electronic
edition of the Journal for a color version of this figure.]

DETECTION OF BARYON ACOUSTIC PEAK 567No. 2, 2005
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acoustic signature, as this would require galaxy formation phys-
ics to have a strong preferred scale at 100 h!1 Mpc. Galaxy for-
mation prescriptions that involve only small-scale physics, such
as that involving dark matter halos or even moderate-scale radia-
tion transport, necessarily produce smooth effects on large scales
(Coles 1993; Fry&Gaztanaga 1993; Scherrer &Weinberg 1998).
Even long-range effects that might be invoked would need to
affect 100 h!1 Mpc scales differently from 80 or 130. Our detec-
tion of the acoustic peak cannot reasonably be explained as an
illusion of galaxy formation physics.

4.3. Measurements of the Acoustic and Equality Scales

The observed LRG correlation function could differ from that
of the correct cosmological model in amplitude, because of
clustering bias and uncertain growth functions, and in scale, be-
cause we may have used an incorrect cosmology in converting
from redshift into distance. Our goal is to use the comparison
between observations and theory to infer the correct distance
scale.

Note that in principle a change in the cosmological model
would change the distances differently for different redshifts, re-
quiring us to recompute the correlation function for each model
choice. In practice, the changes are small enough and the redshifts
close enough that we treat the variation as a single dilation in scale
(similar to Blake & Glazebrook 2003). This would be a superb
approximation at low redshift, where all distances behave inversely
with the Hubble constant. By z ¼ 0:35, the effects of cosmolog-
ical acceleration are beginning to enter. However, we have checked
explicitly that our single-scale approximation is good enough
for !m between 0.2 and 0.4. Relative to our fiducial scale at
z ¼ 0:35, the change in distance across the redshift range 0:16 <
z < 0:47 is only 3% peak to peak for!m ¼ 0:2 compared to 0.3,
and even these variations largely cancel around the z ¼ 0:35 mid-
point where we will quote our cosmological constraints.

The other error in our one scale parameter approximation is to
treat the line-of-sight dilation equivalently to the transverse di-
lation. In truth, the Hubble parameter changes differently from
the angular diameter distance (the Alcock-Paczyński [1979] ef-
fect). For small deviations from !m ¼ 0:3 and !" ¼ 0:7, the
change in the Hubble parameter at z ¼ 0:35 is about half that of
the angular diameter distance. We model this by treating the di-
lation scale as the cube root of the product of the radial dilation
times the square of the transverse dilation. In other words, we
define

DV (z) ¼ DM (z)
2 cz

H(z)

! "1=3
; ð2Þ

where H(z) is the Hubble parameter and DM(z) is the comoving
angular diameter distance. As the typical redshift of the sample is
z ¼ 0:35, we quote our result for the dilation scale as DV(0.35).
For our fiducial cosmology of !m ¼ 0:3, !" ¼ 0:7, and h ¼
0:7, DV (0:35) ¼ 1334 Mpc.

We compute parameter constraints by computing "2 (using
the full covariance matrix) for a grid of cosmological models. In
addition to cosmological parameters of !mh

2, !bh
2, and n, we

include the distance scaleDV(0.35) of the LRG sample and mar-
ginalize over the amplitude of the correlation function. Param-

eters such as h,!m,!K, and w(z) are subsumed withinDV(0.35).
We assume h ¼ 0:7 when computing the scale at which to apply
the nonlinear corrections; having set those corrections, we then
dilate the scale of the final correlation function.

The WMAP data (Bennett et al. 2003), as well as combina-
tions of WMAP with large-scale structure (Spergel et al. 2003;
Tegmark et al. 2004b), the Ly# forest (McDonald et al. 2004;
Seljak et al. 2005), and big bang nucleosynthesis (e.g., Burles
et al. 2001; Coc et al. 2004), constrain !bh

2 and n rather well,
and so to begin, we hold these parameters fixed (at 0.024 and
0.98, respectively), and consider only variations in !mh

2. In
practice, the sound horizon varies only as (!bh

2)!0.08, which
means that the tight constraints fromWMAP (Spergel et al. 2003)
and big bang nucleosynthesis (Burles et al. 2001) make the
uncertainties in the baryon density negligible.

Figure 6 shows "2 as a function of the dilation for three dif-
ferent values of !mh

2, 0.11, 0.13, and 0.15. Scanning across all
!mh

2, the best-fit "2 is 16.1 on 17 degrees of freedom [20 data
points and three parameters: !mh

2, DV(0.35), and the amplitude].
Figure 7 shows the contours of equal "2 in !mh

2 and DV(0.35),
corresponding to 1 ! up to 5 ! for a two-dimensional Gauss-
ian likelihood function. Adopting a likelihood proportional to
exp(!"2/2), we project the axes to find !mh

2 ¼ 0:130 & 0:010
and DV (0:35) ¼ 1370 & 64 Mpc (4.7%), where these are 1 !
errors.

Figure 7 also contains two lines that depict the two physical
scales. The solid line is that of constant !mh

2DV , which would
place the (matter-radiation) equality scale at a constant apparent
location. This would be the degeneracy direction for a pure CDM
cosmology and would be a line of constant # ¼ !mh were the
LRG sample at lower redshift. The dashed line holds constant the

Fig. 6.—The "2 values of the models as a function of the dilation of the scale
of the correlation function. This corresponds to altering DV (0.35) relative to the
baseline cosmology of! ¼ 0:3,!" ¼ 0:7, and h ¼ 0:7. Each line (save the line
with open squares) in the plot is a different value of !mh

2, 0.11, 0.13, and 0.15
from left to right; !bh

2 ¼ 0:024 and n ¼ 0:98 are used in all cases. The am-
plitude of the model has been marginalized over. The best-fit "2 is 16.1 on
17 degrees of freedom, consistent with expectations. The line with open squares
shows the pure CDMmodel with!mh

2 ¼ 0:10; it has a best "2 of 27.8, which is
rejected at 3.4 !. Note that this curve is also much broader, indicating that the
lack of an acoustic peak makes the scale less constrainable. [See the electronic
edition of the Journal for a color version of this figure.]
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regime by a factor of!4. The LRG sample should therefore out-
perform these surveys by a factor of 2 in fractional errors on large
scales. Note that quasar surveys cover much more volume than
even the LRG survey, but their effective volumes are worse, even
on large scales, due to shot noise.

3. THE REDSHIFT-SPACE CORRELATION FUNCTION

3.1. Correlation Function Estimation

In this paper, we analyze the large-scale clustering using the
two-point correlation function (Peebles 1980, x 71). In recent
years, the power spectrum has become the common choice on
large scales, as the power in different Fourier modes of the linear
density field is statistically independent in standard cosmology
theories (Bardeen et al. 1986). However, this advantage breaks
down on small scales due to nonlinear structure formation, while
on large scales elaborate methods are required to recover the sta-
tistical independence in the face of survey boundary effects (for
discussion, see Tegmark et al. 1998). The power spectrum and
correlation function contain the same information in principle,
as they are Fourier transforms of one another. The property of
the independence of different Fourier modes is not lost in real
space, but rather it is encoded into the off-diagonal elements of
the covariance matrix via a linear basis transformation. One must
therefore accurately track the full covariance matrix to use the
correlation function properly, but this is feasible. An advantage
of the correlation function is that, unlike in the power spectrum,
small-scale effects such as shot noise and intrahalo astrophysics
stay on small scales, well separated from the linear regime fluc-
tuations and acoustic effects.

We compute the redshift-space correlation function using
the Landy-Szalay estimator (Landy & Szalay 1993). Random
catalogs containing at least 16 times asmany galaxies as the LRG
sample were constructed according to the radial and angular se-
lection functions described above. We assume a flat cosmology
with !m ¼ 0:3 and !" ¼ 0:7 when computing the correlation
function. We place each data point in its comoving coordinate
location based on its redshift and compute the comoving sep-
aration between two points using the vector difference. We use
bins in separations of 4 h#1 Mpc from 10 to 30 h#1 Mpc and
bins of 10 h#1 Mpc thereafter out to 180 h#1 Mpc, for a total of
20 bins.

We weight the sample using a scale-independent weighting
that depends on redshift. When computing the correlation func-
tion, each galaxy and random point is weighted by 1/½1þ n(z)Pw&
(Feldman et al. 1994), where n(z) is the comoving number density
and Pw ¼ 40;000 h#3 Mpc3. We do not allow Pw to change with
scale so as to avoid scale-dependent changes in the effective bias
caused by differential changes in the sample redshift. Our choice
of Pw is close to optimal at k ' 0:05 h Mpc#1 and within 5% of
the optimal errors for all scales relevant to the acoustic oscillations
(kP0:15 h Mpc#1). At z < 0:36, nPw is about 4, while nPw ' 1
at z ¼ 0:47. Our results do not depend on the value of Pw; chang-
ing the value wildly alters our best-fit results by only 0.1 !.

Redshift distortions cause the redshift-space correlation func-
tion to vary according to the angle between the separation vector
and the line of sight. To ease comparison to theory, we focus
on the spherically averaged correlation function. Because of the
boundary of the survey, the number of possible tangential sep-
arations is somewhat underrepresented compared to the number
of possible line-of-sight separations, particularly at very large
scales. To correct for this, we compute the correlation functions
in four angular bins. The effects of redshift distortions are ob-
vious: large-separation correlations are smaller along the line-of-

sight direction than along the tangential direction. We sum these
four correlation functions in the proportions corresponding to
the fraction of the sphere included in the angular bin, thereby re-
covering the spherically averaged redshift-space correlation func-
tion. We have not yet explored the cosmological implications of
the anisotropy of the correlation function (Matsubara & Szalay
2003).

The resulting redshift-space correlation function is shown in
Figure 2. A more convenient view is shown in Figure 3, where
we have multiplied by the square of the separation, so as to flatten
out the result. The errors and overlaid models will be discussed
below. The bump at 100 h#1 Mpc is the acoustic peak, to be de-
scribed in x 4.1.

The clustering bias of LRGs is known to be a strong function
of luminosity (Hogg et al. 2003; Eisenstein et al. 2005; Zehavi
et al. 2005a), and while the LRG sample is nearly volume-limited
out to z ! 0:36, the flux cut does produce a varying luminosity
cut at higher redshifts. If larger scale correlations were prefer-
entially drawn from higher redshift, we would have a differential
bias (see discussion in Tegmark et al. 2004a). However, Zehavi
et al. (2005a) have studied the clustering amplitude in the two
limiting cases, namely the luminosity threshold at z < 0:36 and
that at z ¼ 0:47. The differential bias between these two samples
on large scales is modest, only 15%. We make a simple param-
eterization of the bias as a function of redshift and then compute
b2 averaged as a function of scale over the pair counts in the
random catalog. The bias varies by less than 0.5% as a function
of scale, and so we conclude that there is no effect of a possible
correlation of scale with redshift. This test also shows that the

Fig. 2.—Large-scale redshift-space correlation function of the SDSS LRG
sample. The error bars are from the diagonal elements of the mock-catalog co-
variance matrix; however, the points are correlated. Note that the vertical axis
mixes logarithmic and linear scalings. The inset shows an expanded view with a
linear vertical axis. The models are !mh

2 ¼ 0:12 (top line), 0.13 (second line),
and 0.14 (third line), all with !bh

2 ¼ 0:024 and n ¼ 0:98 and with a mild non-
linear prescription folded in. The bottom line shows a pure CDM model (!mh

2 ¼
0:105), which lacks the acoustic peak. It is interesting to note that although the
data appear higher than the models, the covariance between the points is soft as
regards overall shifts in "(s). Subtracting 0.002 from "(s) at all scales makes the
plot look cosmetically perfect but changes the best-fit #2 by only 1.3. The bump
at 100 h#1 Mpc scale, on the other hand, is statistically significant. [See the electronic
edition of the Journal for a color version of this figure.]
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Figure 7. Histogram of (α − ⟨α⟩)/σα measured from ξ (r) of the post-
reconstruction mocks, where ⟨α⟩ is the mean. This quantity is a proxy
for the signal-to-noise ratio of our BAO measurement. We see that this
distribution is close to Gaussian as indicated by the near-zero K-S Dn. The
corresponding p-value indicates that we are 90 per cent certain our values
are drawn from a Gaussian distribution, indicating that the values of σα we
measure from the χ2 distribution are reasonable descriptors of the error on
α measured by fitting ξ (r).

also makes our distance estimates more robust to parameter choices
in our fitting algorithms and reduces the scatter between the distance
estimates from the the correlation function and the power spectrum.
We quantify these improvements further in the following sections.

We next compare the observed scatter in the best-fitting α in
the mocks to the σα estimated in each fit from the χ2(α) curve.
In Fig. 7, we plot a histogram of (α − ⟨α⟩)/σα from the mocks
and compare the result to the unit normal distribution. We find
excellent agreement; a Kolmogorov–Smirnov (K-S) test finds a
high likelihood that the observed distribution is drawn from a unit
normal. Hence the Gaussian probability distribution obtained from
the χ2 statistic is an appropriate characterization of the error on α.

6 TH E P OW E R SP E C T RU M

6.1 Measuring the power spectrum

The power spectra recovered from the CMASS DR9 data are shown
in Fig. 8 before (left) and after (right) reconstruction. The inset
shows the oscillations in these data, calculated by dividing by a
smooth model (see Section 6.2 for details). The effect of the re-
construction algorithm is clear – the large-scale power is decreased
corresponding to the removal of RSD effects, with the small-scale
power being further reduced by the reduction in non-linear power.
These data represent the most accurate measurement of a redshift-
space galaxy power spectrum ever obtained.

Power spectra were calculated using the Fourier method first de-
veloped by Feldman et al. (1994), as described in Percival et al.
(2007b) and Reid et al. (2010). We work in redshift-space as if ob-
served recession velocities solely arise from the Hubble expansion.
As we focus on measuring angle-averaged baryon acoustic oscilla-
tions, we do not convert from a galaxy density field to a halo density
field as in Reid et al. (2010), or apply corrections for Finger-of-God
effects. Given a weight wi for galaxy i at location r i , the overdensity
field can be written

F (r) = 1
N

[
∑

i

wiδD(r i − r) − ⟨w(r)n(r)⟩
]

, (31)

where N is a normalization constant

N ≡
{∫

d3r⟨w(r)n(r)⟩2
}1/2

, (32)

and ⟨w(r)n(r)⟩ is the expected weighted distribution of galaxies at
location r in the absence of clustering, and n(r) is the galaxy density.
The quantity δD is the standard Dirac-δ function. We do not apply
luminosity-dependent weights (as applied by Percival et al. 2007b
and Reid et al. 2010), as we are only interested in the BAO, and not
the overall shape of the power spectrum.

We chose to model the expected distribution of galaxies using a
random catalogue with points selected at the mean galaxy density

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fitting models overplotted. The vertical dotted lines
show the range of scales fitted (0.02 < k < 0.3 h Mpc−1), and the inset shows the BAO within this k-range, determined by dividing both model and data by
the best-fitting model calculated (including window function convolution) with no BAO. Error bars indicate

√
Cii for the power spectrum and the rms error

calculated from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).
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Figure 19. A plot of the distance–redshift relation from various BAO mea-
surements from spectroscopic data sets. We plot DV(z)/rs times the fiducial
rs to restore a distance. Included here are this CMASS measurement, the 6dF
Galaxy Survey measurement at z = 0.1 (Beutler et al. 2011), the SDSS-II
LRG measurement at z = 0.35 (Padmanabhan et al. 2012a; Xu et al. 2012;
Mehta et al. 2012), and the WiggleZ measurement at z = 0.6 (Blake et al.
2011a). The latter is a combination of three partially covariant data sets. The
grey region is the 1σ prediction from WMAP under the assumption of a flat
universe with a cosmological constant (Komatsu et al. 2011). The agreement
between the various BAO measurements and this prediction is excellent.

Figure 20. The BAO distance–redshift relation divided by the best-fitting
flat, "CDM prediction from WMAP (#m = 0.266, h = 0.708; note that
this is slightly different from the adopted fiducial cosmology of this paper).
The grey band indicates the 1σ prediction range from WMAP (Komatsu
et al. 2011). In addition to the SDSS-II LRG data point from Padmanabhan
et al. (2012a), we also show the result from Percival et al. (2010) using a
combination of SDSS-II DR7 LRG and main sample galaxies as well as
2dF Galaxy Redshift Survey data; because of the overlap in samples, we
use a different symbol. The BAO results agree with the best-fitting WMAP
model at the few per cent level. If #mh2 were 1σ higher than the best-fitting
WMAP value, then the prediction would be the upper edge of the grey region,
which matches the BAO data very closely. For example, the dashed line is
the best-fitting CMB+LRG+CMASS flat "CDM model from Section 9,
which clearly is a good fit to all data sets. Also shown are the predicted
regions from varying the spatial curvature to #K = 0.01 (blue band) or
varying the equation of state to w = −0.7 (red band).

Following Mehta et al. (2012), we divide the distance measure-
ments by the best-fitting WMAP prediction (#m = 0.266, h = 0.708)
to yield Fig. 20. Focusing first on the data points and the grey "CDM
region, the data points are consistent with the WMAP prediction,
but tend to lie closer to the 1σ upward trend in WMAP, towards
higher #mh2. In other words, if the WMAP value for #mh2 were 1σ

higher, then all of the BAO points would be in superb consistency

with themselves and the CMB under a flat "CDM cosmology;
recall that the swathe of grey models is a nearly one-parameter fam-
ily so all redshifts move together. We also include here the BAO
measurement from Percival et al. (2010). Because of the overlap
in sample with the LRG analysis of Padmanabhan et al. (2012a),
we use a different symbol for this measurement. The correlation
function analysis from Kazin et al. (2010) gives similar agreement.
The CMASS BAO value is in perfect agreement with the WiggleZ
measurement (Blake et al. 2011a). The WiggleZ acoustic scale er-
ror is 3.9 per cent (using their constraint on A(z)), so the CMASS
DR9 error of 1.7 per cent represents a five-fold improvement in the
variance.

Also shown in Fig. 20 is how the WMAP prediction changes as
one varies the assumptions about dark energy and spatial curvature.
For any specific choice of #K and w(z), WMAP predicts a narrow
region set by the range of #mh2 and #bh2. Here we present the case
of #K = 0.01 with a cosmological constant and a flat universe with
w = −0.7; both produce large differences from the observations.

There have also been BAO measurements at z ≈ 0.55 using pho-
tometric samples (Padmanabhan et al. 2007; Carnero et al. 2012;
Seo et al. 2012). These measure the angular diameter distance DA(z)
rather than DV(z). Carnero et al. (2012) measured (1 + z)DA/rs =
14.7 ± 1.4 at z = 0.55 using the angular correlation function (Crocce
et al. 2011) of SDSS DR7 imaging data (Abazajian et al. 2009). Seo
et al. (2012) on the other hand measured (1 + z)DA/rs = 14.18 ±
0.63 at z = 0.54 using the angular power spectrum (Ho et al. 2012)
of the SDSS-III DR8 imaging data (Aihara et al. 2011).7 Despite
the different estimators of two-point statistics used, both results
consistently show a larger distance scale than the prediction of the
WMAP best-fit by 1σ and 1.4σ , respectively. To compare these
values with spectroscopic measurements, we correct the difference
between DA(z) and DV(z) using the H(z) calculated from the fidu-
cial cosmology, while translating the percentage error on DA(z) to
be the percentage error on DV(z). The deviation from the WMAP
prediction will be reduced due to using the fiducial H(z) during
this transformation; the correction yields DV(z = 0.55)/rs = 13.6 ±
1.3 and DV(z = 0.54)/rs = 13.22 ± 0.58, respectively. Extrapolat-
ing these values from z ≈ 0.55 to z = 0.57 assuming the fiducial
cosmology gives DV(z = 0.57)/rs = 14.0 ± 1.4 for Carnero et al.
(2012) and DV(z = 0.57)/rs = 13.81 ± 0.61 for Seo et al. (2012).
Therefore, the photometric BAO measurements show an excellent
agreement with DV(z = 0.57)/rs = 13.67 ± 0.22 from the CMASS
measurement. It is clear that these photometric BAO measure-
ments also fall into the general upward trend relative to the WMAP
prediction.

Similarly, there have been spectroscopic BAO measurements that
attempt to separate the line-of-sight and transverse clustering so
as to measure H(z) and DA(z) separately (Okumura et al. 2008;
Chuang & Wang 2012). These measurements are at lower redshift
and hence not directly comparable to our CMASS result. How-
ever, the agreement in the recovered cosmological parameters is
good.

In summary, a precise view of the Hubble diagram from baryon
acoustic oscillations over the range 0.1 < z < 0.6 is taking shape.
These measurements appear highly consistent with the standard
cosmological model.

7 The DR8 measurement used 10 000 square degrees of the sky that includes
the coverage of the CMASS DR9 sample. Therefore the overlap in volume
between the two samples is approximately 30 per cent.
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Figure 19. A plot of the distance–redshift relation from various BAO mea-
surements from spectroscopic data sets. We plot DV(z)/rs times the fiducial
rs to restore a distance. Included here are this CMASS measurement, the 6dF
Galaxy Survey measurement at z = 0.1 (Beutler et al. 2011), the SDSS-II
LRG measurement at z = 0.35 (Padmanabhan et al. 2012a; Xu et al. 2012;
Mehta et al. 2012), and the WiggleZ measurement at z = 0.6 (Blake et al.
2011a). The latter is a combination of three partially covariant data sets. The
grey region is the 1σ prediction from WMAP under the assumption of a flat
universe with a cosmological constant (Komatsu et al. 2011). The agreement
between the various BAO measurements and this prediction is excellent.

Figure 20. The BAO distance–redshift relation divided by the best-fitting
flat, "CDM prediction from WMAP (#m = 0.266, h = 0.708; note that
this is slightly different from the adopted fiducial cosmology of this paper).
The grey band indicates the 1σ prediction range from WMAP (Komatsu
et al. 2011). In addition to the SDSS-II LRG data point from Padmanabhan
et al. (2012a), we also show the result from Percival et al. (2010) using a
combination of SDSS-II DR7 LRG and main sample galaxies as well as
2dF Galaxy Redshift Survey data; because of the overlap in samples, we
use a different symbol. The BAO results agree with the best-fitting WMAP
model at the few per cent level. If #mh2 were 1σ higher than the best-fitting
WMAP value, then the prediction would be the upper edge of the grey region,
which matches the BAO data very closely. For example, the dashed line is
the best-fitting CMB+LRG+CMASS flat "CDM model from Section 9,
which clearly is a good fit to all data sets. Also shown are the predicted
regions from varying the spatial curvature to #K = 0.01 (blue band) or
varying the equation of state to w = −0.7 (red band).

Following Mehta et al. (2012), we divide the distance measure-
ments by the best-fitting WMAP prediction (#m = 0.266, h = 0.708)
to yield Fig. 20. Focusing first on the data points and the grey "CDM
region, the data points are consistent with the WMAP prediction,
but tend to lie closer to the 1σ upward trend in WMAP, towards
higher #mh2. In other words, if the WMAP value for #mh2 were 1σ

higher, then all of the BAO points would be in superb consistency

with themselves and the CMB under a flat "CDM cosmology;
recall that the swathe of grey models is a nearly one-parameter fam-
ily so all redshifts move together. We also include here the BAO
measurement from Percival et al. (2010). Because of the overlap
in sample with the LRG analysis of Padmanabhan et al. (2012a),
we use a different symbol for this measurement. The correlation
function analysis from Kazin et al. (2010) gives similar agreement.
The CMASS BAO value is in perfect agreement with the WiggleZ
measurement (Blake et al. 2011a). The WiggleZ acoustic scale er-
ror is 3.9 per cent (using their constraint on A(z)), so the CMASS
DR9 error of 1.7 per cent represents a five-fold improvement in the
variance.

Also shown in Fig. 20 is how the WMAP prediction changes as
one varies the assumptions about dark energy and spatial curvature.
For any specific choice of #K and w(z), WMAP predicts a narrow
region set by the range of #mh2 and #bh2. Here we present the case
of #K = 0.01 with a cosmological constant and a flat universe with
w = −0.7; both produce large differences from the observations.

There have also been BAO measurements at z ≈ 0.55 using pho-
tometric samples (Padmanabhan et al. 2007; Carnero et al. 2012;
Seo et al. 2012). These measure the angular diameter distance DA(z)
rather than DV(z). Carnero et al. (2012) measured (1 + z)DA/rs =
14.7 ± 1.4 at z = 0.55 using the angular correlation function (Crocce
et al. 2011) of SDSS DR7 imaging data (Abazajian et al. 2009). Seo
et al. (2012) on the other hand measured (1 + z)DA/rs = 14.18 ±
0.63 at z = 0.54 using the angular power spectrum (Ho et al. 2012)
of the SDSS-III DR8 imaging data (Aihara et al. 2011).7 Despite
the different estimators of two-point statistics used, both results
consistently show a larger distance scale than the prediction of the
WMAP best-fit by 1σ and 1.4σ , respectively. To compare these
values with spectroscopic measurements, we correct the difference
between DA(z) and DV(z) using the H(z) calculated from the fidu-
cial cosmology, while translating the percentage error on DA(z) to
be the percentage error on DV(z). The deviation from the WMAP
prediction will be reduced due to using the fiducial H(z) during
this transformation; the correction yields DV(z = 0.55)/rs = 13.6 ±
1.3 and DV(z = 0.54)/rs = 13.22 ± 0.58, respectively. Extrapolat-
ing these values from z ≈ 0.55 to z = 0.57 assuming the fiducial
cosmology gives DV(z = 0.57)/rs = 14.0 ± 1.4 for Carnero et al.
(2012) and DV(z = 0.57)/rs = 13.81 ± 0.61 for Seo et al. (2012).
Therefore, the photometric BAO measurements show an excellent
agreement with DV(z = 0.57)/rs = 13.67 ± 0.22 from the CMASS
measurement. It is clear that these photometric BAO measure-
ments also fall into the general upward trend relative to the WMAP
prediction.

Similarly, there have been spectroscopic BAO measurements that
attempt to separate the line-of-sight and transverse clustering so
as to measure H(z) and DA(z) separately (Okumura et al. 2008;
Chuang & Wang 2012). These measurements are at lower redshift
and hence not directly comparable to our CMASS result. How-
ever, the agreement in the recovered cosmological parameters is
good.

In summary, a precise view of the Hubble diagram from baryon
acoustic oscillations over the range 0.1 < z < 0.6 is taking shape.
These measurements appear highly consistent with the standard
cosmological model.

7 The DR8 measurement used 10 000 square degrees of the sky that includes
the coverage of the CMASS DR9 sample. Therefore the overlap in volume
between the two samples is approximately 30 per cent.
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!8 to 1.0 for the halofit calculation changes the corrections at
r > 10 h!1 Mpc by less than 2%.

We stress that while galaxy clustering bias does routinely
affect large-scale clustering (obviously so in the LRG sample,
with bias b " 2), it is very implausible that it would mimic the
acoustic signature, as this would require galaxy formation phys-
ics to have a strong preferred scale at 100 h!1 Mpc. Galaxy for-
mation prescriptions that involve only small-scale physics, such
as that involving dark matter halos or even moderate-scale radia-
tion transport, necessarily produce smooth effects on large scales
(Coles 1993; Fry&Gaztanaga 1993; Scherrer &Weinberg 1998).
Even long-range effects that might be invoked would need to
affect 100 h!1 Mpc scales differently from 80 or 130. Our detec-
tion of the acoustic peak cannot reasonably be explained as an
illusion of galaxy formation physics.

4.3. Measurements of the Acoustic and Equality Scales

The observed LRG correlation function could differ from that
of the correct cosmological model in amplitude, because of
clustering bias and uncertain growth functions, and in scale, be-
cause we may have used an incorrect cosmology in converting
from redshift into distance. Our goal is to use the comparison
between observations and theory to infer the correct distance
scale.

Note that in principle a change in the cosmological model
would change the distances differently for different redshifts, re-
quiring us to recompute the correlation function for each model
choice. In practice, the changes are small enough and the redshifts
close enough that we treat the variation as a single dilation in scale
(similar to Blake & Glazebrook 2003). This would be a superb
approximation at low redshift, where all distances behave inversely
with the Hubble constant. By z ¼ 0:35, the effects of cosmolog-
ical acceleration are beginning to enter. However, we have checked
explicitly that our single-scale approximation is good enough
for !m between 0.2 and 0.4. Relative to our fiducial scale at
z ¼ 0:35, the change in distance across the redshift range 0:16 <
z < 0:47 is only 3% peak to peak for!m ¼ 0:2 compared to 0.3,
and even these variations largely cancel around the z ¼ 0:35 mid-
point where we will quote our cosmological constraints.

The other error in our one scale parameter approximation is to
treat the line-of-sight dilation equivalently to the transverse di-
lation. In truth, the Hubble parameter changes differently from
the angular diameter distance (the Alcock-Paczyński [1979] ef-
fect). For small deviations from !m ¼ 0:3 and !" ¼ 0:7, the
change in the Hubble parameter at z ¼ 0:35 is about half that of
the angular diameter distance. We model this by treating the di-
lation scale as the cube root of the product of the radial dilation
times the square of the transverse dilation. In other words, we
define

DV (z) ¼ DM (z)
2 cz

H(z)

! "1=3
; ð2Þ

where H(z) is the Hubble parameter and DM(z) is the comoving
angular diameter distance. As the typical redshift of the sample is
z ¼ 0:35, we quote our result for the dilation scale as DV(0.35).
For our fiducial cosmology of !m ¼ 0:3, !" ¼ 0:7, and h ¼
0:7, DV (0:35) ¼ 1334 Mpc.

We compute parameter constraints by computing "2 (using
the full covariance matrix) for a grid of cosmological models. In
addition to cosmological parameters of !mh

2, !bh
2, and n, we

include the distance scaleDV(0.35) of the LRG sample and mar-
ginalize over the amplitude of the correlation function. Param-

eters such as h,!m,!K, and w(z) are subsumed withinDV(0.35).
We assume h ¼ 0:7 when computing the scale at which to apply
the nonlinear corrections; having set those corrections, we then
dilate the scale of the final correlation function.

The WMAP data (Bennett et al. 2003), as well as combina-
tions of WMAP with large-scale structure (Spergel et al. 2003;
Tegmark et al. 2004b), the Ly# forest (McDonald et al. 2004;
Seljak et al. 2005), and big bang nucleosynthesis (e.g., Burles
et al. 2001; Coc et al. 2004), constrain !bh

2 and n rather well,
and so to begin, we hold these parameters fixed (at 0.024 and
0.98, respectively), and consider only variations in !mh

2. In
practice, the sound horizon varies only as (!bh

2)!0.08, which
means that the tight constraints fromWMAP (Spergel et al. 2003)
and big bang nucleosynthesis (Burles et al. 2001) make the
uncertainties in the baryon density negligible.

Figure 6 shows "2 as a function of the dilation for three dif-
ferent values of !mh

2, 0.11, 0.13, and 0.15. Scanning across all
!mh

2, the best-fit "2 is 16.1 on 17 degrees of freedom [20 data
points and three parameters: !mh

2, DV(0.35), and the amplitude].
Figure 7 shows the contours of equal "2 in !mh

2 and DV(0.35),
corresponding to 1 ! up to 5 ! for a two-dimensional Gauss-
ian likelihood function. Adopting a likelihood proportional to
exp(!"2/2), we project the axes to find !mh

2 ¼ 0:130 & 0:010
and DV (0:35) ¼ 1370 & 64 Mpc (4.7%), where these are 1 !
errors.

Figure 7 also contains two lines that depict the two physical
scales. The solid line is that of constant !mh

2DV , which would
place the (matter-radiation) equality scale at a constant apparent
location. This would be the degeneracy direction for a pure CDM
cosmology and would be a line of constant # ¼ !mh were the
LRG sample at lower redshift. The dashed line holds constant the

Fig. 6.—The "2 values of the models as a function of the dilation of the scale
of the correlation function. This corresponds to altering DV (0.35) relative to the
baseline cosmology of! ¼ 0:3,!" ¼ 0:7, and h ¼ 0:7. Each line (save the line
with open squares) in the plot is a different value of !mh

2, 0.11, 0.13, and 0.15
from left to right; !bh

2 ¼ 0:024 and n ¼ 0:98 are used in all cases. The am-
plitude of the model has been marginalized over. The best-fit "2 is 16.1 on
17 degrees of freedom, consistent with expectations. The line with open squares
shows the pure CDMmodel with!mh

2 ¼ 0:10; it has a best "2 of 27.8, which is
rejected at 3.4 !. Note that this curve is also much broader, indicating that the
lack of an acoustic peak makes the scale less constrainable. [See the electronic
edition of the Journal for a color version of this figure.]
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Figure 21. The distance-redshift relation from the BAO method on galaxy
surveys. This plot shows DV (z)(rs,fid/rd) versus z from the DR11
CMASS and LOWZ consensus values from this paper, along with those
from the acoustic peak detection from the 6dFGS (Beutler et al. 2011) and
WiggleZ survey (Blake et al. 2011; Kazin et al. 2014). The grey region
shows the 1� prediction for DV (z) from the Planck 2013 results, assum-
ing flat ⇤CDM and using the Planck data without lensing combined with
smaller-scale CMB observations and WMAP polarization (Planck Collab-
oration 2013b). One can see the superb agreement in these cosmological
measurements.

9.2 Comparison of BAO and CMB Distance Scales in ⇤CDM

Results from the BAO method have improved substantially in the
last decade and we have now achieved measurements at a wide
range of redshifts. In Fig. 21 we plot the distance-redshift rela-
tion obtained from isotropic acoustic scale fits in the latest galaxy
surveys. In addition to the values from this paper, we include the
acoustic scale measurement from the 6dFGS (Beutler et al. 2011)
and WiggleZ survey (Blake et al. 2011; Kazin et al. 2014). As the
BAO method actually measures DV /rd, we plot this quantity mul-
tiplied by rd,fid. The very narrow grey band here is the predic-
tion from the Planck CMB dataset detailed in Sec. 9.1. In vanilla
flat ⇤CDM, the CMB acoustic peaks imply precise measurements
of ⌦mh2 and ⌦bh

2, which in turn imply the acoustic scale. The
angular acoustic scale in the CMB then determines the distance
to z = 1089, which breaks the degeneracy between ⌦m and h
once the low-redshift expansion history is otherwise specified (e.g.,
given ⌦K , w, and wa). The comparison between low-redshift BAO
measurements and the predictions from the CMB assuming a flat
⇤CDM cosmology therefore allows percent-level checks on the ex-
pansion history in this model over a large lever arm in redshift. One
sees remarkably good agreement between the BAO measurements
and the flat ⇤CDM predictions from CMB observations.

Fig. 22 divides by the best-fit prediction from Planck Collabo-
ration (2013b) to allow one to focus on a percent-level comparison.
In addition to the BAO data from the previous figure, we also plot
older BAO measurements based primarily on SDSS-II LRG data
(Percival et al. 2010; Padmanabhan et al. 2012). This figure also
shows the flat ⇤CDM prediction from the WMAP+SPT/ACT data
set. The predictions from these two data sets are in mild conflict
due to the ⇠ 5 per cent difference in their ⌦mh2 values, discussed
in Section 9.1. One can see that the isotropic BAO data, and the
BOSS measurements in particular, fall between the two predictions
and are consistent with both. Note that the recent revision of Planck
data by Spergel et al. (2013) results in a value of ⌦mh2 that is in
excellent agreement with our isotropic BAO measurements, which

Figure 22. The DV (z)/rd measured from galaxy surveys, divided by
the best-fit flat ⇤CDM prediction from the Planck data. All error bars
are 1�. The Planck prediction is a horizontal line at unity, by construc-
tion. The dashed line shows the best-fit flat ⇤CDM prediction from the
WMAP+SPT/ACT results, including their smaller-scale CMB compilation
(Bennett et al. 2013). In both cases, the grey region shows the 1 � varia-
tion in the predictions for DV (z) (at a particular redshift, as opposed to
the whole redshift range), which are dominated by uncertainties in ⌦mh2.
As the value of ⌦mh2 varies, the prediction will move coherently up or
down, with amplitude indicated by the grey region. One can see the mild
tension between the two sets of CMB results, as discussed in Planck Col-
laboration (2013b). The current galaxy BAO data fall in between the two
predictions and are clearly consistent with both. As we describe in Sec. 7.5,
the anisotropic CMASS fit would yield a prediction for this plot that is 0.5
per cent higher than the isotropic CMASS fit; this value would fall some-
what closer to the Planck prediction. In addition to the BOSS data points,
we plot SDSS-II results as open circles, that from Percival et al. (2010) at
z = 0.275 and from Padmanabhan et al. (2012) at z = 0.35. These data
sets have a high level of overlap with BOSS LOWZ and with each other,
so one should not include more than one in statistical fitting. However, the
results are highly consistent despite variations in the exact data sets and dif-
ferences in methodology. We also plot results from WiggleZ from Kazin
et al. (2014) as open squares; however, we note that the distance measure-
ments from these three redshift bins are substantially correlated.

brings Planck predictions of the distance scale at z = 0.32 and
z = 0.57 much closer to BOSS measurements.

Our 68 and 95 per cent constraints in the DA(0.57)(r
fid

d /rd)�
H(0.57)(rd/r

fid

d ) plane from CMASS consensus anisotropic mea-
surements are highlighted in orange in Fig. 23. In grey we overplot
one-dimensional 1- and 2� contours of our consensus isotropic
BAO fit. Also shown in Fig. 23 are the flat ⇤CDM predictions from
the Planck and WMAP CMB data sets detailed in Section 9.1. The
CMB constraints occupy a narrow ellipse defined by the extremely
precise measurement of the angular acoustic scale of 0.06 per cent
(Planck Collaboration 2013b). The extent of the ellipse arises pri-
marily from the remaining uncertainty on the physical cold dark
matter density, ⌦ch

2; Planck narrows the allowed range by nearly
a factor of two compared with WMAP. The CMASS isotropic BAO
constraints are consistent with both CMB predictions shown here.
The anisotropic constraints in particular prefer larger values of
⌦ch

2 (right edge of the WMAP contour) also favored by Planck.
Also evident in this plot is the offset between the best fit anisotropic
constraint on H(0.57)(rd/r

fid

d ) (or ✏) and the flat ⇤CDM predic-
tions from the CMB.

To make the flat ⇤CDM comparison between the CMB
and our BAO measurements more quantitative, we report in Ta-
ble 13 the Planck, WMAP, and eWMAP ⇤CDM predictions for
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Figure 24. The DV (z)/rd measured from galaxy surveys, divided by the
best-fit flat ⇤CDM prediction from the Planck data. All error bars are 1 �.
We now vary the cosmological model for the Planck prediction. Red shows
the prediction assuming a flat Universe with w = �0.7; blue shows the pre-
diction assuming a closed Universe with ⌦K = �0.01 and a cosmological
constant.

about 1�. Within the context of the ⇤CDM model, the combina-
tion of CMB and BAO provides 1 per cent (3 per cent) constraints
on H

0

and ⌦m, respectively. These constraints relax by a factor of
3 (2) in the most general expansion history model, ow

0

waCDM.
In Anderson et al. (2012) we showed that the BAO distance-

redshift relation is consistent with that measured by Type Ia super-
novae. This remains true with these DR11 results.

9.3 Cosmological parameter estimates in extended models

While the flat ⇤CDM expansion history is sufficient to explain cur-
rent CMB and BAO measurements, the addition of precise low-
redshift BAO distances greatly improves constraints on parameters
that generalize the flat ⇤CDM expansion history. In this section we
allow for non-zero spatial curvature (⌦K ), a fixed equation of state
for dark energy (w), and a time-varying dark energy equation of
state (w

0

and wa).
Fig. 24 illustrates the utility of BAO measurements for con-

straining these additional parameters. As one changes the model
of the spatial curvature or dark energy equation of state, the ⌦m

and H
0

values required to simultaneously match the CMB mea-
surement of ⌦mh2 and the distance to z = 1089 change. Here, we
show the result assuming w = �0.7 for a flat cosmology, as well as
that for a closed Universe with ⌦K = �0.01 and a cosmological
constant. One can see that these predictions are sharply different
from flat ⇤CDM at low redshift.

In Fig. 25 we focus instead on the two effective redshifts of
our BAO observables, now examining how variations in the new
parameters alter predictions for both DA and H . For ease of com-
parison, we plot ��2

= 2.3, 6.1 contours for both the isotropic
(dashed) and anistropic (solid) fits; these values correspond to 68
and 95 per cent confidence regions when fitting two parameters.
The extremely narrow black ellipse (nearly parallel with the green
curve) shows the predictions from Planck in a flat ⇤CDM model;
the uncertainty in the Planck predictions are dominated by the
uncertainty in cold dark matter density, ⌦ch

2. The three colored
curves cross at the Planck best fit cosmology, and show how the
predictions for the BAO observables depend on each of the extra
parameters. To produce these curves, we held ⌦ch

2, ⌦bh
2, and

the CMB acoustic scale fixed; the reader should keep in mind that
marginalizing over ⌦ch

2 (the width of the Planck flat ⇤CDM pre-
diction) will allow a larger range of parameter values to be consis-
tent with both the CMB and BAO observables compared with the
fixed ⌦ch

2 case.
Fig. 25 already anticipates many of the results from detailed

joint parameter fitting reported in Tables 14 and 15. For instance,
by comparing the model variations to the isotropic BAO measure-
ment uncertainties, the constraint on ⌦K should be about 30 per
cent better from the z = 0.57 isotropic BAO feature than the
z = 0.32 measurement. For the case combining CMASS isotropic
and Planck constraints, the uncertainty on ⌦ch

2 (e.g., the extent
of the flat ⇤CDM Planck contour) degrades the constraint on ⌦K

from ⇠ 0.002 to 0.003. For the wCDM model, the situation is
reversed: the lower redshift isotropic BAO measurement is more
constraining even though the fractional measurement errors are
larger. The wCDM model curves also help explain why the Planck
+ CMASS-iso constraint, w = �1.34±0.25, does not improve the
error on w over our DR9 result, w = �0.87±0.25 (Anderson et al.
2012), even though our error on the BAO scale has improved from
1.7 per cent to 1 per cent: models with w < �1, favored by our
CMASS isotropic BAO measurement, produce smaller changes in
the BAO observables at z = 0.57 per unit change in w than mod-
els close to w = �0.7. Moreover, the best-fit parameters for both
the CMB and BAO datasets have shifted between DR9 and DR11.
In fact, combining CMASS-DR9 with Planck instead of WMAP7
yields w = �1.18 ± 0.25. In that case, the BAO and CMB flat
⇤CDM constraints have closer best fit ↵ values.

The left panel of Fig. 25 also demonstrates why the CMASS
anisotropic constraints are more constraining than the isotropic
ones, particularly for dark energy parameters. Variation in w at
fixed CMB acoustic scale primarily shifts DA(0.57), and the
anisotropic measurements provide tighter constraints in that direc-
tion. Note that none of these extra parameters drive the expansion
rate as high as our anisotropic best fit to H(0.57).

In order to explore our results on the full multi-dimensional
parameter space in which we derive our cosmological constraints,
we now describe the results of our MCMC chains. Here we use our
BAO measurements in combination with CMB results, and supple-
mented at times by SN data and other BAO measurements, doing
the analysis in the context of different cosmological models. We
first start by comparing constraints on the parameters ⌦

m

h2, ⌦
m

,
and H

0

from our different BAO datasets in Table 14. In this case
we combine BAO with different CMB datasets: Planck, WMAP9,
or eWMAP, in the ⇤CDM, oCDM, or wCDM cosmological mod-
els. We find that all CMB+BAO combinations return similar cos-
mological fits in ⇤CDM and oCDM models, with H

0

around 68
km s�1 Mpc�1, ⌦m around 0.30, and negligible spatial curvature.
Somewhat more variation is seen in the wCDM case, because of a
degeneracy between w and H

0

that is described later in this sec-
tion. However, these variations are accompanied by larger formal
errors and are highly consistent with the ⇤CDM fit. In our best
constrained case (Planck+CMASS in ⇤CDM), we find a 1 per cent
measurement of ⌦

m

h2, a 1 per cent measurement of H
0

, and a
3 per cent measurement of ⌦

m

. These broaden only slightly in
oCDM, to 2 per cent in ⌦

m

h2. We find a tight measurement of
curvature, consistent with a flat Universe with 0.003 error.

The degeneracy between ⌦

m

and H
0

is shown in Fig. 26. Here
we compare the allowed parameter space in the case of Planck
and WMAP9, for the minimal ⇤CDM model (left panel) and the
ow

0

waCDM model (Chevallier & Polarski 2001; Linder 2003)
(right panel) The latter was recommended by the Dark Energy Task
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!8 to 1.0 for the halofit calculation changes the corrections at
r > 10 h!1 Mpc by less than 2%.

We stress that while galaxy clustering bias does routinely
affect large-scale clustering (obviously so in the LRG sample,
with bias b " 2), it is very implausible that it would mimic the
acoustic signature, as this would require galaxy formation phys-
ics to have a strong preferred scale at 100 h!1 Mpc. Galaxy for-
mation prescriptions that involve only small-scale physics, such
as that involving dark matter halos or even moderate-scale radia-
tion transport, necessarily produce smooth effects on large scales
(Coles 1993; Fry&Gaztanaga 1993; Scherrer &Weinberg 1998).
Even long-range effects that might be invoked would need to
affect 100 h!1 Mpc scales differently from 80 or 130. Our detec-
tion of the acoustic peak cannot reasonably be explained as an
illusion of galaxy formation physics.

4.3. Measurements of the Acoustic and Equality Scales

The observed LRG correlation function could differ from that
of the correct cosmological model in amplitude, because of
clustering bias and uncertain growth functions, and in scale, be-
cause we may have used an incorrect cosmology in converting
from redshift into distance. Our goal is to use the comparison
between observations and theory to infer the correct distance
scale.

Note that in principle a change in the cosmological model
would change the distances differently for different redshifts, re-
quiring us to recompute the correlation function for each model
choice. In practice, the changes are small enough and the redshifts
close enough that we treat the variation as a single dilation in scale
(similar to Blake & Glazebrook 2003). This would be a superb
approximation at low redshift, where all distances behave inversely
with the Hubble constant. By z ¼ 0:35, the effects of cosmolog-
ical acceleration are beginning to enter. However, we have checked
explicitly that our single-scale approximation is good enough
for !m between 0.2 and 0.4. Relative to our fiducial scale at
z ¼ 0:35, the change in distance across the redshift range 0:16 <
z < 0:47 is only 3% peak to peak for!m ¼ 0:2 compared to 0.3,
and even these variations largely cancel around the z ¼ 0:35 mid-
point where we will quote our cosmological constraints.

The other error in our one scale parameter approximation is to
treat the line-of-sight dilation equivalently to the transverse di-
lation. In truth, the Hubble parameter changes differently from
the angular diameter distance (the Alcock-Paczyński [1979] ef-
fect). For small deviations from !m ¼ 0:3 and !" ¼ 0:7, the
change in the Hubble parameter at z ¼ 0:35 is about half that of
the angular diameter distance. We model this by treating the di-
lation scale as the cube root of the product of the radial dilation
times the square of the transverse dilation. In other words, we
define

DV (z) ¼ DM (z)
2 cz

H(z)

! "1=3
; ð2Þ

where H(z) is the Hubble parameter and DM(z) is the comoving
angular diameter distance. As the typical redshift of the sample is
z ¼ 0:35, we quote our result for the dilation scale as DV(0.35).
For our fiducial cosmology of !m ¼ 0:3, !" ¼ 0:7, and h ¼
0:7, DV (0:35) ¼ 1334 Mpc.

We compute parameter constraints by computing "2 (using
the full covariance matrix) for a grid of cosmological models. In
addition to cosmological parameters of !mh

2, !bh
2, and n, we

include the distance scaleDV(0.35) of the LRG sample and mar-
ginalize over the amplitude of the correlation function. Param-

eters such as h,!m,!K, and w(z) are subsumed withinDV(0.35).
We assume h ¼ 0:7 when computing the scale at which to apply
the nonlinear corrections; having set those corrections, we then
dilate the scale of the final correlation function.

The WMAP data (Bennett et al. 2003), as well as combina-
tions of WMAP with large-scale structure (Spergel et al. 2003;
Tegmark et al. 2004b), the Ly# forest (McDonald et al. 2004;
Seljak et al. 2005), and big bang nucleosynthesis (e.g., Burles
et al. 2001; Coc et al. 2004), constrain !bh

2 and n rather well,
and so to begin, we hold these parameters fixed (at 0.024 and
0.98, respectively), and consider only variations in !mh

2. In
practice, the sound horizon varies only as (!bh

2)!0.08, which
means that the tight constraints fromWMAP (Spergel et al. 2003)
and big bang nucleosynthesis (Burles et al. 2001) make the
uncertainties in the baryon density negligible.

Figure 6 shows "2 as a function of the dilation for three dif-
ferent values of !mh

2, 0.11, 0.13, and 0.15. Scanning across all
!mh

2, the best-fit "2 is 16.1 on 17 degrees of freedom [20 data
points and three parameters: !mh

2, DV(0.35), and the amplitude].
Figure 7 shows the contours of equal "2 in !mh

2 and DV(0.35),
corresponding to 1 ! up to 5 ! for a two-dimensional Gauss-
ian likelihood function. Adopting a likelihood proportional to
exp(!"2/2), we project the axes to find !mh

2 ¼ 0:130 & 0:010
and DV (0:35) ¼ 1370 & 64 Mpc (4.7%), where these are 1 !
errors.

Figure 7 also contains two lines that depict the two physical
scales. The solid line is that of constant !mh

2DV , which would
place the (matter-radiation) equality scale at a constant apparent
location. This would be the degeneracy direction for a pure CDM
cosmology and would be a line of constant # ¼ !mh were the
LRG sample at lower redshift. The dashed line holds constant the

Fig. 6.—The "2 values of the models as a function of the dilation of the scale
of the correlation function. This corresponds to altering DV (0.35) relative to the
baseline cosmology of! ¼ 0:3,!" ¼ 0:7, and h ¼ 0:7. Each line (save the line
with open squares) in the plot is a different value of !mh

2, 0.11, 0.13, and 0.15
from left to right; !bh

2 ¼ 0:024 and n ¼ 0:98 are used in all cases. The am-
plitude of the model has been marginalized over. The best-fit "2 is 16.1 on
17 degrees of freedom, consistent with expectations. The line with open squares
shows the pure CDMmodel with!mh

2 ¼ 0:10; it has a best "2 of 27.8, which is
rejected at 3.4 !. Note that this curve is also much broader, indicating that the
lack of an acoustic peak makes the scale less constrainable. [See the electronic
edition of the Journal for a color version of this figure.]
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Figure 26. 68 per cent contours for H0 versus w in the wCDM cosmological
model comparing different data sets. Contrast this with Fig. 25; the smaller
redshift lever arm of the BAO data makes them less sensitive to variations
in the equation of state.

Figure 27. 68 per cent contours for w0 versus !K in the owCDM cos-
mological model for CMB+LRG+CMASS+SN (shaded red), CMB+SN
(dashed blue), and CMB+LRG+CMASS (dashed black) data sets. Note the
relative orthogonality of the contours – the BAO data are very effective at
constraining curvature, while the SNe data constrain the equation of state.
Combining the two yields tight constraints on both !K and w0.

expansion rate from z ≃ 0.1 to z ∼ 0.6. The acoustic signature
measured in BOSS is in excellent agreement with earlier SDSS
results (Percival et al. 2010; Padmanabhan et al. 2012a), and the
distance to z ≃ 0.6 is in almost perfect agreement with that inferred
by WiggleZ (Blake et al. 2011a). In general the independent BAO
results are all consistent with the same underlying (flat, "CDM)
cosmology. Even with only a fraction of the survey completed,
the BOSS constraint is already the tightest distance constraint in
the ladder (1.7 per cent), with an error bar 2.3 times smaller at z
≃ 0.6 than the combined, earlier WiggleZ measurements (Blake
et al. 2011a). The BAO distance ladder suggests a slightly larger
distance scale than the best-fit to the 7-year WMAP data, lying
closer to the 1σ upper limit in WMAP towards higher !mh2. With
this slightly higher value of !mh2, the BAO measurements are in
superb agreement with each other and the CMB within the context
of a flat "CDM cosmology. While SNe do not provide an absolute

Figure 28. 68 per cent contours for w0 versus wa in the w0waCDM cos-
mological model for CMB+LRG+CMASS+SN (shaded red), CMB+SN
(dashed blue), and CMB+LRG+CMASS (dashed black) data sets. We have
used a prior on wa as follows: −3.0 ≤ wa ≤ 2.0. Compare the overlaps in
this case with Fig. 27; the constraints from the BAO and SNe are less
complementary.

Figure 29. 68 per cent contours for H0 versus !m (top left), w0 versus !K

(top right), and wa versus !K (bottom left), and wa versus w0 (bottom right),
in the ow0waCDM cosmological model for CMB+LRG+CMASS+SN
(solid red) and CMB+LRG+SN (dashed black) data sets. We have used a
prior on wa as follows: −3.0 ≤ wa ≤ 2.0.

distance, the relative distance scale inferred from SNLS SNe data
is in good agreement with that inferred from BAO.

BOSS continues to amass data, and we expect these constraints
to tighten significantly, as data will be collected through mid-2014.
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Figure 26. 68 per cent contours for H0 versus w in the wCDM cosmological
model comparing different data sets. Contrast this with Fig. 25; the smaller
redshift lever arm of the BAO data makes them less sensitive to variations
in the equation of state.

Figure 27. 68 per cent contours for w0 versus !K in the owCDM cos-
mological model for CMB+LRG+CMASS+SN (shaded red), CMB+SN
(dashed blue), and CMB+LRG+CMASS (dashed black) data sets. Note the
relative orthogonality of the contours – the BAO data are very effective at
constraining curvature, while the SNe data constrain the equation of state.
Combining the two yields tight constraints on both !K and w0.

expansion rate from z ≃ 0.1 to z ∼ 0.6. The acoustic signature
measured in BOSS is in excellent agreement with earlier SDSS
results (Percival et al. 2010; Padmanabhan et al. 2012a), and the
distance to z ≃ 0.6 is in almost perfect agreement with that inferred
by WiggleZ (Blake et al. 2011a). In general the independent BAO
results are all consistent with the same underlying (flat, "CDM)
cosmology. Even with only a fraction of the survey completed,
the BOSS constraint is already the tightest distance constraint in
the ladder (1.7 per cent), with an error bar 2.3 times smaller at z
≃ 0.6 than the combined, earlier WiggleZ measurements (Blake
et al. 2011a). The BAO distance ladder suggests a slightly larger
distance scale than the best-fit to the 7-year WMAP data, lying
closer to the 1σ upper limit in WMAP towards higher !mh2. With
this slightly higher value of !mh2, the BAO measurements are in
superb agreement with each other and the CMB within the context
of a flat "CDM cosmology. While SNe do not provide an absolute

Figure 28. 68 per cent contours for w0 versus wa in the w0waCDM cos-
mological model for CMB+LRG+CMASS+SN (shaded red), CMB+SN
(dashed blue), and CMB+LRG+CMASS (dashed black) data sets. We have
used a prior on wa as follows: −3.0 ≤ wa ≤ 2.0. Compare the overlaps in
this case with Fig. 27; the constraints from the BAO and SNe are less
complementary.

Figure 29. 68 per cent contours for H0 versus !m (top left), w0 versus !K

(top right), and wa versus !K (bottom left), and wa versus w0 (bottom right),
in the ow0waCDM cosmological model for CMB+LRG+CMASS+SN
(solid red) and CMB+LRG+SN (dashed black) data sets. We have used a
prior on wa as follows: −3.0 ≤ wa ≤ 2.0.

distance, the relative distance scale inferred from SNLS SNe data
is in good agreement with that inferred from BAO.

BOSS continues to amass data, and we expect these constraints
to tighten significantly, as data will be collected through mid-2014.
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Figure 27. Constraints in the H
0

–w plane for Planck+DR9,
Planck+CMASS-isotropic, Planck+CMASS (anisotropic), and
Planck+CMASS+LOWZ. This figure shows the degeneracy between
the Hubble constant and the dark energy equation of state, assumed
constant in time. Comparing with the Planck+CMASS-DR9 results (green
contours), we note that the additional volume in CMASS-DR11 did not
help that much (dark contours). However performing an anisotropic BAO
analysis of the same data really improves the constraints (red contours).
The addition of the LOWZ isotropic BAO measurement at lower redshift
(blue contours) has a marginal improvement over the CMASS anisotropic
constraints, but it is a significant improvement over CMASS isotropic (see
Table 14).

notably lower than some recent local measurements. For example,
Riess et al. (2011) finds H

0

= 73.8 ± 2.4 km s�1 Mpc�1 and
Freedman et al. (2012) finds H

0

= 74.3 ± 2.1 km s�1 Mpc�1.
The Riess et al. (2011) value would be decreased by a small re-
calibration of the water maser distance to NGC 4258 (Humphreys
et al. 2013). Efstathiou (2013) warns about possible biases in the
period-luminosity relation fits due to low-metallicity Cepheids and
finds a lower value of H

0

= 70.6± 3.3 km s�1 Mpc�1 using only
NGC 4258 as the primary distance standard, including the maser
recalibration, or H

0

= 72.5± 2.5 km s�1 Mpc�1 using three sets
of primary standards. While we believe that the comparison of these
direct measurements to our BAO results is important, the results are
also affected by the ongoing photometric recalibration of the SDSS
and SNLS SNe data (Betoule et al. 2013). We have therefore not
pursued a more quantitative assessment at this time.

We next discuss how BAO can help constrain additional de-
grees of freedom. In Table 15 we present our results in more general
cosmological models: ⇤CDM, oCDM (adding curvature), wCDM
(adding a equation of state parameter for dark energy), owCDM
(adding both), w

0

waCDM (allowing for time-dependence in the
e.o.s. of dark energy), and ow

0

waCDM (our most general model,
for DETF comparisons). In each case, we begin with the results of
combining our CMASS and LOWZ data with Planck, showing both
isotropic and anisotropic CMASS cases. We then extend the data
combination with anisotropic CMASS to include additional BAO
information from the 6dFGS and Ly↵ forest, as well as SNe results
from the Union 2 compilation. Finally, for the full combination of
BAO and SNe, we vary the CMB measurements between Planck,
WMAP, and eWMAP to explore any dependency on the tensions
between those data sets.

Figure 28. Constraints in the ⌦K–w plane for Planck+CMASS+LOWZ,
Planck+BAO, Planck+BAO+SN, and Planck+SN. The combination of
CMB and SNe (green contours) has a substantial statistical degeneracy in
this parameter space; however, combining CMB and BAO strongly con-
strains the curvature (grey contours for the LOWZ+CMASS results pre-
sented in this paper, and red contours when adding low and high redshift
BAO measurements). This makes the combination of CMB, BAO, and SNe
(blue contours) a powerful one in this parameter space, yielding a fit cen-
tered around the ⇤CDM values of ⌦K = 0 and w = �1.

We find that these datasets can constrain the equation of state
of dark energy to 6 per cent and curvature to 0.2 per cent, al-
though the time evolution of dark energy is still unconstrained.
In the DETF cosmology, we find a Figure of Merit value (inverse
square root of the minor of the covariance matrix containing the co-
variances of w

0

and wa) of 13.5. We find that the anisotropic BAO
measurement from CMASS-DR11 is much more powerful when
constraining the equation of state of dark energy (even when con-
sidering time-evolving dark energy) than its isotropic counterpart.

Fig. 27 shows the constraints in the H
0

–w plane for differ-
ent BAO datasets combined with Planck results. The degeneracy
between both parameters is quite evident, showing that a more neg-
ative value for w can result in a higher estimation for the Hubble
constant. This effect can also be seen in Fig. 24; for the wCDM
model, variations in the distance to intermediate redshift produce
larger variations in the local distance scale. The extent of the error
contours as we vary the choice BAO data set is somewhat compli-
cated, as was illustrated in Fig. 25. The efficacy of a given BAO
distance precision to constrain w degrades as the fit shifts to more
negative values of w; this is because models with w ⌧ �1 have
their dark energy disappear by intermediate redshift, leaving the
BAO and CMB constraints degenerate. The improvement when we
change from the isotropic CMASS results to the anisotropic ones
is partially due to a shift in w toward 0 and partially because of the
rotation of the contours to favor a DA constraint. Overall, this fig-
ure also shows the consistency between the various BOSS results
and the tight constraints on w that the BAO now provides.

We turn next to the owCDM case, attempting to measure a
constant dark energy equation of state in the presence of non-zero
spatial curvature. These constraints are shown in Fig. 28 for sev-
eral combinations of datasets. The allowed region in this parameter
space by the combination CMB+SN is large, due to a substantial

c� 2014 RAS, MNRAS 000, 2–39
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Euclid!
Consortium!w(z) from Baryonic Acoustic Oscillations 

20% of the Euclid slitless data at z~1 
 
Total effective  volume (of Euclid) 
Veff =  19.7 Gpc3h-3 

SDSS LRGs at z~0.35 
 
Total effective  volume 
Veff =  0.26 Gpc3h-3 

                                             

Expected measurements of 
the galaxy power spectrum 
for the Euclid satellite 
galaxy redshift survey

'''' 0.15<z<0.5 

Courtesy'W.'Percivall,''L.'Guzzo'and'the'Euclid''GC'SWG'

a'Veff'≈'19'ha3'Gpc3'≈'75x'larger'than'SDSS'

a' Percentage' difference' [expected' –' measured]'
power'spectrum:''recovered'to'1%'.'

 SDSS/BOSS   EUCLID 

 Measuring BAO: SDSS vs Euclid 

Valeria Pettorino, University of Geneva          ICTP Workshop, 02.08.2013 

Expected measurements of 
the galaxy power spectrum 
for the Euclid satellite 
galaxy redshift survey

[courtesy of G. Guzzo]
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Expected measurements of 
the galaxy power spectrum 
for the Euclid satellite 
galaxy redshift survey

[Euclid Theory Group]

Euclid and other experiments: spectroscopy 
Euclid Theory Review, arXiv 1206.1225 & Living Reviews in Relativity  

'DOE'chose'Berkeley'Lab'to'manage'design'and'
construc-on'and'operate'the'MidaScale'Dark'
Energy'Spectroscopic'Instrument'(MSaDESI)'

Valeria Pettorino, University of Geneva          ICTP Workshop, 02.08.2013 
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Redshift-Space Distortions (RSD)

Two effects: 

1.Kaiser effect on large scales

2.Finger-of-God effect on small scales



Kaiser effect

Real space

line-of-sight

line-of-sight

Redshift space

distant galaxies 
coherently in-falling 
toward a cluster

In redshift space 
they appear closer 
to the cluster: 
larger clustering!

large scales



Kaiser effect

Redshift-space galaxy overdensity

�s
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component of
peculiar velocity
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µ2
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◆2

Pg(k)
the redshift-space power 
spectrum is anisotropic! 
(and so is the correlation function)

f ⌘ d lnD(a)

d ln a
= ⌦�

m(z)
enhanced clustering along 
the line-of-sight, proportional 
to the growth rate 



Finger-of-God effect

Real space

line-of-sight

line-of-sight

Redshift space

virialized motion of 
galaxies within a 
cluster

In redshift space 
their positions are 
“spread” along the 
line-of-sight

small scales



Finger-of-God effect

Real spaceRedshift space

[SubbaRao et al. (2008)]



The galaxy power spectrum in redshift space

Ps(~k) = Pg(k)

✓
1 +

f

b
µ2
k

◆2

e�k2µ2
k�

2
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at small scales, non-linear 
bias is degenerate with 
non-linear corrections to 
the matter power spectrum 
and with redshift-space
distortions

at large scales we can 
measure the anisotropy 
induced by RSD to 
constrain the growth rate



The galaxy correlation function in redshift space
S. de la Torre et al.: Galaxy clustering and redshift-space distortions in VIPERS

The multipole moments are related to ⇠(s, µ) as,

⇠`(s) =
2` + 1

2

Z 1

�1
⇠(s, µ)L`(µ)dµ, (23)

where L` is the Legendre polynomial of order `. In practice
the integration of Eq. (23) is approximated by a Riemann sum
over the binned ⇠(s, µ). We use a logarithmic binning in s of
� log(s) = 0.1 and linear binning in µ with �µ = 0.02.

7.2. Covariance matrix, error estimation, and fitting

procedure

The di↵erent bins in the observed correlation function and as-
sociated multipole moments are correlated to some degree, and
this must be allowed for in order to fit the measurements with
theoretical models. We estimate the covariance matrix of the
monopole and quadrupole signal using the MultiDark (MD) and
Pinocchio (PN) HOD mocks. The generic elements of the matrix
can be evaluated as

Ci j =
1

NR � 1

NRX

k=1

⇣
yk(si) � ȳ(si)

⌘ ⇣
yk(s j) � ȳ(s j)

⌘
(24)

where NR is the number of mock realisations, y(s) is the quantity
of interest, and the indices i, j run over the data points.

The number of degrees of freedom in the multipole moments
varies between 11 and 15 depending on the scales considered.
Because we have only 26 MD mock realisations, the covari-
ance matrix elements cannot be constrained accurately with the
MD mocks only: the covariance matrix is unbiased, but it can
have substantial noise. To mitigate the noise and obtain an ac-
curate estimate of the covariance matrix, we apply the shrink-
age method (Pope & Szapudi 2008), using the covariance ma-
trix obtained with the 200 PN mocks as the target matrix. The
PN mocks are more numerous and therefore each element of
the associated covariance matrix is very well constrained, al-
though the covariance may be biased to some extent. This bias
is related to inaccuracies in the predicted moments, which are
mainly driven by the limited accuracy of the Zel’dovich approx-
imation used in the PN mocks to predict the peculiar velocity
field. The shrinkage technique allows the optimal combination
of an empirical estimate of the covariance with a target covari-
ance, minimising the total mean squared error compared to the
true underlying covariance. An optimal covariance matrix C is
then obtained with

C = �T + (1 � �)S, (25)

where � is the shrinkage intensity and the target T and empir-
ical S covariance matrices correspond respectively to those ob-
tained from the PN and MD mocks. � is calculated from (Pope
& Szapudi 2008)

� =

P
i, j Cov(S i j, S i j) � Cov(Ti j, S i j)P

i, j(Ti j � S i j)2 , (26)

where Cov(Ai j, Bi j) stands for the covariance between the el-
ements (i, j) of the matrices A and B. We note that, since
the empirical and target matrices are independent, the term
Cov(Ti j, S i j) vanishes in the numerator of Eq. (26). The e↵ect
of shrinkage estimation on the MD covariance matrix is shown
in Fig. 15.

Fig. 14. Anisotropic correlation functions of galaxies at 0.7 < z < 1.2.
The top panel shows the results for the VIPERS first data release, de-
duced by the Landy-Szalay estimator counting pairs in cells of side
1 h�1 Mpc. The lower two panels show the results of two simulations,
which span the 68% confidence range on the fitted value of the large-
scale flattening (see Sect. 7.4).
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Fig. 19. A plot of f�8 versus redshift, show-
ing VIPERS result contrasted with a compi-
lation of recent measurements. The previous
results from 2dFGRS (Hawkins et al. 2003),
2SLAQ (Ross et al. 2007), VVDS (Guzzo et al.
2008), SDSS LRG (Cabré & Gaztañaga 2009;
Samushia et al. 2012), WiggleZ (Blake et al.
2012), BOSS (Reid et al. 2012), and 6dFGS
(Beutler et al. 2012) surveys are shown with
the di↵erent symbols (see inset). The thick
solid (dashed) curve corresponds to the predic-
tion for General Relativity in a ⇤CDM model
with WMAP9 (Planck) parameters, while the
dotted, dot-dashed, and dot-dot-dashed curves
are respectively Dvali-Gabadaze-Porrati (Dvali
et al. 2000), coupled dark energy, and f (R)
model expectations. For these models, the ana-
lytical growth rate predictions given in di Porto
et al. (2012) have been used.

measurements at lower redshifts. This allows us to put a new
constraint on gravity at the epoch when the Universe was al-
most half its present age. Our measurement of f�8 is statisti-
cally consistent with a Universe where the gravitational interac-
tions between structures on 10 h�1 Mpc scales can be described
by Einstein’s theory of gravity.

The present dataset represents the half-way stage of the
VIPERS project, and the final survey will be large enough to
subdivide our measurements and follow the evolution of f�8
out to redshift one. This will allow us to address some issues
such as the suggestion from the WiggleZ measurements that
f�8 is lower than expected at z > 0.5. Our measurement at
z = 0.8 already argues against such a trend to some extent,
but the larger redshift baseline and tighter errors from the final
VIPERS dataset can be expected to deliver a definitive verdict
on the high-redshift evolution of the strength of gravity.
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Appendix A: Galaxy mock catalogue construction

We provide in this appendix some details about the method
that we used to create realistic galaxy catalogues based on the
Halo Occupation Distribution (HOD) and Stellar-to-Halo Mass
Relation (SHMR) formalisms. From the MultiDark simulation
and Pinocchio halo lightcones described in Sect. 5.1, we created
two types of galaxy mock catalogues: one containing B-band
absolute magnitudes and associated quantities, and a second one
containing stellar masses. We note that the stellar mass mock
catalogues have not been explicitly used in this analysis, but in
the accompanying VIPERS analyses of Marulli et al. (2013) and
Davidzon et al. (2013).

For the first set of catalogues we use the HOD formalism and
populated dark matter haloes according to their mass by specify-
ing the absolute B-band magnitude-dependent halo occupation.
We parametrised the latter using Eq. (15) and used the HOD
parameters obtained from the data and given in Sect. 6. We posi-
tioned central galaxies at halo centres with probability given by
a Bernoulli distribution function with mean taken from Eq. (16)
and assigned host halo mean velocities to these galaxies. The
number of satellite galaxies per halo is set to follow a Poisson
distribution with mean given by Eq. (17). We assumed that satel-
lite galaxies follow the spatial and velocity distribution of mass
and randomly distributed their halo-centric radial position so as
to reproduce a Navarro et al. (1996) (NFW) radial profile,

⇢NFW(r|m) /
 

cdm(m)r
rv(m)

!�1  
1 +

cdm(m)r
rv(m)

!�2

, (A.1)

where cdm is the concentration parameter and rv(m) is the virial
radius defined as

rv(m) =
 

3m
4⇡⇢̄(z)�NL

!1/3

· (A.2)
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Table 3. This table summarises cosmological parameter constraints obtained in section 9 using CMASS-DR11. The first four rows
contain constraints on the growth index γ and Ωm when combining CMASS with Planck and WMAP9 (see Figure 16). The fifth and
sixth row contains constraints on σ8 and Ωm using only the growth rate and the AP effect (fσ8 and FAP) of the CMASS dataset. The
last four rows contain constraints on σ8 and Ωm using all CMASS-DR11 constraints (DV /rs, FAP and fσ8) and assuming the sound
horizon of Planck or WMAP9 (see Figure 17) in co-moving units. In this case the constraint on Ωm is dependent on the CMB experiment
used to calibrate the standard ruler, while the constraint on σ8 is fairly independent of this choice.

parameter constraint based on assumptions

section 9.1
γ 0.772+0.124

−0.097 CMASS-(DV /rs, FAP, fσ8) + Planck ΛCDM, Ωγ
m(z)

Ωm 0.308± 0.011 CMASS-(DV /rs, FAP, fσ8) + Planck ΛCDM, Ωγ
m(z)

γ 0.76± 0.11 CMASS-(DV /rs, FAP, fσ8) + WMAP9 ΛCDM, Ωγ
m(z)

Ωm 0.298± 0.013 CMASS-(DV /rs, FAP, fσ8) + WMAP9 ΛCDM, Ωγ
m(z)

section 9.2
σ8 0.731± 0.052 CMASS-(FAP, fσ8) ΛCDM, Ω0.55

m (z)
Ωm 0.33+0.15

−0.12 CMASS-(FAP, fσ8) ΛCDM, Ω0.55
m (z)

σ8 0.719± 0.047 CMASS-(DV /rs, FAP, fσ8) ΛCDM, Ω0.55
m (z), rPlanck

s (zd) = 98.79Mpc/h
Ωm 0.341± 0.028 CMASS-(DV /rs, FAP, fσ8) ΛCDM, Ω0.55

m (z), rPlanck
s (zd) = 98.79Mpc/h

σ8 0.713± 0.047 CMASS-(DV /rs, FAP, fσ8) ΛCDM, Ω0.55
m (z), rWMAP9

s (zd) = 102.06Mpc/h
Ωm 0.274± 0.023 CMASS-(DV /rs, FAP, fσ8) ΛCDM, Ω0.55

m (z), rWMAP9
s (zd) = 102.06Mpc/h
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Figure 16. The 2D likelihood distribution for γ and Ωm from Planck+CMASS (left) and WMAP9+CMASS (right). We show the 68%
and 95% confidence regions. The different contours are for the CMB constraints alone (blue lines), CMB + fσ8 from CMASS-DR11
(brown contours) and CMB + (DV /rs, FAP, fσ8) from eq. 71 and 73 (cyan contours). Since we do not exploit the Integrated Sachs-Wolfe
(ISW) effect for this test, the CMB datasets cannot set constraints on γ. The CMB data are needed for tight constraints on Ωm and for
the normalisation of the power spectrum, σ8(z).

contours) the errors become smaller and the preferred value
of gamma changes from γ = 0.65+0.22

−0.14 (WMAP9+fσ8) to
γ = 0.76 ± 0.11 (WMAP9+DV /rs, FAP, fσ8), very similar
to the value we find in Planck+CMASS. The shift of γ to-
wards larger values when including geometric information is
caused by the slight tension between WMAP9 and our geo-
metric parameters. In both cases we see that the constraints
improve considerably, when including the geometric infor-
mation. Since the geometric parameters are not sensitive to
γ, this improvement comes through the improvement on Ωm

and σ8. We regard our measurement of γ using the Planck

chain as the final result of this consistency check and include
it in Figure 1 at the scale of ∼ 30Mpc (see section 6.4).

From the theoretical side it is difficult to find mod-
els of modified gravity which suppress the growth of
structure. Most models actually predict a stronger struc-
ture growth (see e.g. Mortonson, Hu & Huterer 2009;
Dodelson & Park 2013). One example of a model which
does predict smaller structure growth is the DGP
model (Dvali, Gabadadze & Porrati 2000), which however
has theoretical issues (Gorbunov, Koyama & Sibiryakov
2006) and also seems to predict the wrong expansion his-
tory (e.g. Davis et al. 2007; Fang et al. 2008).
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Constraints on Initial Conditions: As shown in Figure 2.5, Euclid will constrain the shape of the primor-
dial power spectrum parameterised by the spectral index ns to percent accuracy when combined with Planck 
results. If the assumption of a Gaussian random field is relaxed then Euclid can constrain the amplitude of 
the non-Gaussianity fNL through 3-point statistics of the weak lensing and galaxy clustering signals and 
through the correlation function of clusters of galaxies. We find agreement with previous results (e.g. Fedeli 
et al., 2011), where the combination of the galaxy power spectrum with the cluster-galaxy cross spectrum 
can decrease the error on the determination of fNL by up to a factor of 2 relative to either probe individually. 
Through the combination of lensing, galaxy clustering and clusters we find that Euclid can constrain ΔfNL~2, 
competitive and possibly superior to future CMB experiments. 

In fact, if the simplest inflationary scenario holds, Euclid is expected to detect a non-Gaussian signal due to 
large-scale corrections needed in the Poisson equation from general relativistic effects, while no such imprint 
should be detectable in the CMB. Here the unique combination of the two primary cosmological probes 
again enables the discrimination among models for the origin of cosmological structures. 

To conclude, we have presented the primary science goals of Euclid, and shown that these laudable objec-
tives can be met by the experiment that we present. Euclid provides a major step forward, reducing the un-
certainties of a number of key cosmological parameters by impressive factors. It will either confirm the con-
cordance model with unprecedented accuracy, or else lead the way to exciting alterations of it, signalling the 
need for a revision of fundamental physics. 

  

Figure 2.5: In the left panel we show the parameter space constraints on the J parameter describing the growth factor 
and the scalar spectral index. Green is lensing, blue galaxy clustering, orange includes the primary and secondary 
Euclid probes and red is combined with Planck. These errors are marginalised over all other parameters. Right panel: 
Predicted Euclid measurements of the growth rate of structure f(z) using redshift-space distortions alone. The cyan 
(shaded) area gives the expected 1σ error, with the red points illustrating a corresponding simulated observation. 
Current state-of-the-art measurements by the SDSS (filled pentagons), 2dF (filled square, Hawkins et al., 2003) and 
Wigglez (open hexagons, Blake et al. 2011) are also shown. The lines show predictions for f(z) by the concordance 
model and by three alternative models in which DE couples with DM (Di Porto & Amendola, 2007) or gravity is 
generalised to a 5-dimensional brane-world (DGP, Dvali et al., 2000). 

2.4 Legacy science 
The design of Euclid is driven by our desire to study some of the most fundamental problems in cosmology, 
but the survey that is needed to achieve these goals will provide a dataset that will be of immense value for 
astrophysics as well: it will be important for understanding the formation and evolution of structures in the 
Universe at all scales, from galaxy clusters to brown dwarfs. The Euclid wide survey required to achieve the 
cosmological goals (see Section 3) will image 15,000 deg2 of extra-galactic sky in the optical with a spatial 
resolution approaching that of HST, and to a depth in the near-IR at which only an area 1000 times smaller 
can feasibly be surveyed from the ground.  

Euclid Theory Group
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Neutrinos in the Universe

Neutrinos in the early Universe (at high 
temperature) are kept in equilibrium with 
other species by weak interactions

Fermi-Dirac distribution

T ⇠ 1MeVThey decouple when the temperature drops below

Therefore they decouple when ultra relativistic!

Two regimes:

• At high redshift they (mostly) contribute 
to the radiation energy density

• At low redshift they (mostly) contribute 
to the matter energy density

4 M. Zennaro, et al.

using the instantaneous decoupling value instead of the de-
fault one results in a 0.01% difference on the value of the
Hubble rate at z = 100.

In this work we will limit ourselves, for simplicity, to the
case of N

⌫

= 3 degenerate massive neutrinos of total mass

M
⌫

⌘
N⌫X

i=1

m
⌫,i

. (7)

Under this assumption, the evolution of the neutrino con-
tribution to the expansion rate of the Universe can be ex-
pressed therefore as

⌦
⌫

(z)E2(z) =
15
⇡4

�4
⌫

N
⌫

⌦
�,0 (1 + z)4

⇥ F

M

⌫

/(�
⌫

N
⌫

k
B

T
�,0)

1 + z

�
,

(8)

where E(z) describes the time dependence of the Hubble
rate, such that H(z) ⌘ H0E(z).

Eq. (8) is the expression we will adopt to describe the
neutrino energy density, accounting for both the radiation
and matter behaviour at different epochs. The Hubble pa-
rameter will therefore be given by

H(z) = H0[⌦�,0(1 + z)4 + ⌦
cb,0(1 + z)3+

+⌦
⌫

(z)E2(z) + ⌦⇤]
1/2 ,

(9)

where ⌦
cb,0 and ⌦⇤,0 represent the present cold matter and

cosmological constant relative contributions to the energy
density. ⌦

�,0, instead, represents the residual contribution
of photons, given by

⌦
�,0 h

2 = 2.469⇥ 10�5 , (10)

obtained from eq. (1) in terms of the CMB temperature,
assuming T

�,0 = 2.7255 K.1
In the non-relativistic, late-time limit m
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with the redshift of non-relativistic tran-
sition z
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1 eV
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one obtains F ! y 3
2⇣(3), where ⇣ is the Riemann zeta func-

tion so that
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n
⌫

(z) being the neutrino number density. In other words, at
late times neutrinos can be assimilated to an additional mat-
ter component. Dividing eq. (13) by the critical density one
obtains the well-known expression for the neutrino energy
density as a function of the total neutrino mass

⌦
⌫,0h

2 =
M

⌫

93.14 eV
. (14)

1 We remark that in a ⇤CDM cosmology with massless neutrinos,
in the computation of the Hubble function expressed as in eq. (9),
the neutrino energy density parameter is not given by eq. (8) but
by its relativistic limit,
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and will therefore contribute, to all effects, to the radiation energy
density.

2.2 Matter perturbations in two-fluid
approximation

A two-fluid approximation to describe the evolution of cou-
pled cold matter and massive neutrino perturbations has
been studied by Shoji & Komatsu (2010). More recently,
Blas et al. (2014) considered this approximation to describe
the evolution at relative low redshift (z ⌧ z

nr

) in order to
compute perturbative predictions for the subsequent nonlin-
ear evolution. By matching the approximate solution to the
exact Boltzmann solution at z = 25 they recover a z = 0 lin-
ear prediction with an accuracy, at k = 0.1hMpc�1, of 0.1%
and and 1% respectively for the cold matter and neutrino
components.

We should notice that in practical applications, sub-
percent accuracy in the determination of neutrino pertur-
bations is not required. In fact, in the first place, in the
expression for the total matter power spectrum

P
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the contributions of the cross-power spectrum between cold
matter and neutrinos, P

cb,⌫

(k), and of the neutrino power
spectrum, P

⌫

(k), are suppressed respectively by one and two
powers of the massive neutrino fraction

fnr
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(z) ⌘ ⌦nr
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(z)
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m

(z)
(16)

with respect to the contribution of the cold-matter power
spectrum P

cb

(k). In addition, in particle-based simulations,
the initial power spectrum of neutrino particles is usually
wiped-out at the first time-step by the effect of thermal ve-
locities and recovered dynamically only at later times.

We now introduce the equations describing the evolu-
tion of cold matter and neutrino fluctuations. In our treat-
ment, perturbations in the massive neutrino density will con-
tribute to the gravitational potential and therefore affect the
growth of cold matter perturbations. For the cold matter, at
linear order, the continuity and Euler equations can be ex-
pressed as those of a pressure-less fluid (see, e.g. Bernardeau
et al. 2002)
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is the cold matter density contrast
and ✓

cb

⌘ r · v
cb

is the divergence of its peculiar velocity
field. Regarding the neutrinos, the two-fluid approximation
consists in assuming that neutrino perturbations as well are
described just in term of two variables, that is the density
and velocity divergence, satisfying the same equations
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with the difference that the Euler equation accounts for an
effective sound speed c

s

given by (Blas et al. 2014)
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where E(z) describes the time dependence of the Hubble
rate, such that H(z) ⌘ H0E(z).

Eq. (8) is the expression we will adopt to describe the
neutrino energy density, accounting for both the radiation
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pled cold matter and massive neutrino perturbations has
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The free-streaming scale

�FS ⇠ 1/kFS

2

results to the results with the fluid approximation, i.e.,
solutions with the higher multipole moments (l ≥ 3) ig-
nored. Then, we shall examine the ranges of applicability
of fluid approximation in both spatial and time scales, as
a function of neutrino masses.
The rest of this paper is organized as follows. In § II,

we briefly review the effects of massive neutrino free-
streaming on the structure formation of the universe. In
§ III, we provide the basic fluid equations and the lin-
earized Boltzmann equation required for our theoretical
flame work. In § IV, we briefly discuss the analytic so-
lutions of the Boltzmann equation for collision-less par-
ticles. In § V, we compare the exact solutions of the
Boltzmann equations with the fluid approximation, and
discuss the limitation of the fluid approximation for sev-
eral masses of massive neutrino. Finally, in § VI, we
discuss the implications of our results and conclude. In
Appendix A, we discuss how to define the free-streaming
scale starting from the fluid equations. In Appendix B,
we give the detailed derivation of the exact solution of
the Boltzmann equation both for massless and massive
neutrinos. Even though our main interest is in massive
neutrinos, our results shown here are also applicable to
collision-less particles in general, whose time evolution of
the perturbed phase space distribution follows the lin-
earized collision-less Boltzmann equation with the zero-
th order phase space distribution function being frozen at
sufficiently early time (i.e., we set the initial conditions
of the neutrino transfer function after the decoupling of
neutrino, ∼ 1 MeV).

II. THE FREE-STREAMING OF THE MASSIVE
NEUTRINO

We are interested in the mass range of 0.05 < mν,i <
0.58 eV for the most massive species of neutrinos, which
became non-relativistic well after the matter radiation
equality. The mass density of the massive neutrinos rel-
ative to the total matter density is given by

fν ≡
Ωνh2

Ωmh2
=

1

Ωmh2

∑

i mν,i

94.1eV
, (5)

where the summation is taken over the different species
of neutrinos. Neutrinos become non-relativistic when the
mean energy per particle of neutrinos in the relativistic
limit,
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d3p p (exp[p/Tν(z)] + 1)−1

∫

d3p (exp[p/Tν(z)] + 1)−1
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7π4

180ζ(3)
Tν ≃ 3.15Tν, (6)

falls below mν,i. By solving 3.15Tν,0(1+ znr) = mν,i, one
finds the redshift of relativistic to non-relativistic transi-
tion epoch, znr, as

1 + znr,i ≃ 1890
(mν,i

1eV

)

, (7)

for the i-th neutrino species.
The density fluctuation of neutrinos cannot grow

within the horizon size until neutrinos become non-
relativistic. Once neutrinos become non-relativistic, the
neutrino density fluctuation begins to grow on scale
greater than the so called “free-streaming scale,” which
is set by the velocity dispersion of neutrinos:

σ2
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where p is the proper momentum of the massive neutrino
(see Appendix of [41]).
The wavenumber corresponding to the free-streaming

scale, kFS, is defined by the single-fluid continuity and
Euler equations:

δ̇(k, τ) + θ(k, τ) = 0 (9)

θ̇(k, τ) +H(τ)θ(k, τ) +

[
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Here, derivatives are with respect to a conformal time,
dτ = dt/a, H(τ) ≡ ȧ(τ)

a(τ) , and θ(k, τ) is a velocity di-

vergence of the fluid. Note that Eq.(8) assumes that
neutrinos are non-relativistic.
In Figure 1, we show kFS,i from Eq.(11) (dotted line),

comoving horizon scale, aH(a), (thick solid line) and
kFS,i calculated numerically from Eq.(8), where mν,i is

replaced by
√

p2 +m2
ν,i (thin solid line). In this figure,

we use mν,i = 0.13 eV.
We find that the free-streaming scale is close to the

horizon size until the relativistic to non-relativistic tran-
sition of a neutrino, and once the neutrino becomes
non-relativistic, the free-streaming scale decreases as
kFS(a) ∝ a1/2. Let us examine the evolution of the neu-
trino density fluctuations at three length scales:

1 Here, we say cs ≃ σν,i; however, strictly speaking, the velocity
dispersion defined in Eq.(8) should not be used to define the free-
streaming scale, kFS, as the Euler equation contains sound speed,
c2s ≡

δP
δρ

, not the velocity dispersion. In the non-relativistic

limit, we have cs =
√

5

3
σν,i ≃ 0.745σν,i. We derive this relation

in Appendix A.

Velocity dispersion
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The density fluctuation of neutrinos cannot grow

within the horizon size until neutrinos become non-
relativistic. Once neutrinos become non-relativistic, the
neutrino density fluctuation begins to grow on scale
greater than the so called “free-streaming scale,” which
is set by the velocity dispersion of neutrinos:

σ2
ν,i(z) ≡

∫

d3p p2/m2
ν,i(exp[p/Tν(z)] + 1)−1

∫

d3p (exp[p/Tν(z)] + 1)−1

=
15ζ(5)

ζ(3)

(

4

11

)
2
3 T 2

γ,0(1 + z)2

m2
ν,i

, (8)

where p is the proper momentum of the massive neutrino
(see Appendix of [41]).
The wavenumber corresponding to the free-streaming

scale, kFS, is defined by the single-fluid continuity and
Euler equations:

δ̇(k, τ) + θ(k, τ) = 0 (9)

θ̇(k, τ) +H(τ)θ(k, τ) +

[

3

2
H2(τ)− k2c2s (τ)

]

δ(k, τ) = 0,

(10)

where 1

kFS,i(z) ≡

√

3

2

H(z)

cs(z)
≃

√

3

2

H(z)

σν,i(z)

≃
0.677

(1 + z)2

(mν,i

1 eV

)

[Ωm(1 + z)3 + ΩΛ]
1
2 h Mpc−1.

(11)

Here, derivatives are with respect to a conformal time,
dτ = dt/a, H(τ) ≡ ȧ(τ)

a(τ) , and θ(k, τ) is a velocity di-

vergence of the fluid. Note that Eq.(8) assumes that
neutrinos are non-relativistic.
In Figure 1, we show kFS,i from Eq.(11) (dotted line),

comoving horizon scale, aH(a), (thick solid line) and
kFS,i calculated numerically from Eq.(8), where mν,i is

replaced by
√

p2 +m2
ν,i (thin solid line). In this figure,

we use mν,i = 0.13 eV.
We find that the free-streaming scale is close to the

horizon size until the relativistic to non-relativistic tran-
sition of a neutrino, and once the neutrino becomes
non-relativistic, the free-streaming scale decreases as
kFS(a) ∝ a1/2. Let us examine the evolution of the neu-
trino density fluctuations at three length scales:

1 Here, we say cs ≃ σν,i; however, strictly speaking, the velocity
dispersion defined in Eq.(8) should not be used to define the free-
streaming scale, kFS, as the Euler equation contains sound speed,
c2s ≡

δP
δρ

, not the velocity dispersion. In the non-relativistic

limit, we have cs =
√

5

3
σν,i ≃ 0.745σν,i. We derive this relation

in Appendix A.

the free-streaming scale is fairly 
large (almost linear scales) for 
viable values of the neutrino mass!

kFS,i ⇠
aH(a)

�⌫,i
kFS,i

kFS,i . 0.1hMpc�1

(m⌫,i . 0.1eV )
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neutrino mass as
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P
m⌫

93.14h2 eV
, (2.3)

where the proportionality factor depends on the assumed photon temperature and neutrino to photon
temperature ratio and it should be evaluated numerically in the most general case [35]. As a result,
at late times, i.e. z ⌧ znr, the e↵ect of neutrinos on the expansion rate of the Universe is completely
degenerate with a change of the CDM and baryon components.

On the other hand, at the perturbation level massive neutrinos have a peculiar e↵ect on matter
density fluctuations. Defining the density contrasts for neutrino and CDM respectively as �⌫ = �⇢⌫/⇢̄⌫
and �c = �⇢c/⇢̄c, where the total mass density is ⇢m = ⇢̄m + �⇢c + �⇢⌫ , ⇢̄m = ⇢̄c + ⇢̄⌫ being the total
background matter density, we can write

�m = (1� f⌫) �c + f⌫ �⌫ , (2.4)

where f⌫ represents the neutrino fraction defined as f⌫ ⌘ ⌦⌫/⌦m. It follows that the total matter
power spectrum can be written as the sum of three contributions corresponding respectively to the
CDM power spectrum, Pcc, the neutrinos power spectrum, P⌫⌫ , and the cross-power spectrum between
CDM and neutrinos, Pc⌫h�c�⇤⌫i, that is

Pmm = (1� f⌫)
2 Pcc + 2f⌫ (1� f⌫)Pc⌫ + f2

⌫ P⌫⌫ , (2.5)

which shows that the neutrino fraction has a direct impact on the total matter power spectrum by
modifying the relative contributions of the two components. Eqs. (2.2) to (2.5) introduce the notation
adopted throughout the rest of the paper.

Over the age of the Universe, neutrinos travel an average distance that depends on their thermal
velocity and, in turn, on their mass. This free streaming length determines the scale below which
neutrinos density perturbations are washed-out, and is given by (see, e.g. [5])

�
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H

0
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H(z)

✓
1 eV
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◆
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Notice that, for particles becoming non-relativistic during matter domination, as it is usually
the case for neutrinos, the comoving free streaming length, �

FS

/a, is actually decreasing in time,
and therefore assumes the largest value at the time of the non-relativistic transition. This peculiar
distance corresponds to the wave-number

knr = k
FS

(znr) ' 0.018⌦1/2
m

✓
1 eV

m⌫

◆
1/2

hMpc�1 . (2.7)

This scale is typically larger than the scale at which nonlinear e↵ects manifest themselves at low
redshifts. At any redshift, scales larger than 1/knr are a↵ected by the presence of massive neutrinos,
and, in first approximation, we can write

Pmm(k) '
(
Pcc(k) for k ⌧ knr

(1� f⌫)2 Pcc(k) for k � knr ,
(2.8)

while the exact value of the damping scale will retain a residual redshift dependence. In the left
panel of Figure 1 we plot the ratio Pmm/Pcc for ⌃m⌫= 0.3, 0.53 eV at redshifts z = 0, 2, showing
the two asymptotic regimes of Eq. (2.8). On very large scales the ratio goes to one, while at small
scales it approaches (1 � f⌫)2 regardless of the redshift. Intermediate scales are instead a↵ected by
the actual value of the free streaming wave number kFS(m⌫ , z) ⌘ 2⇡a/�

FS

(m⌫ , z), and by its redshift
dependence.

It can be shown [36] that, with respect to the massless case, the total linear power spectrum,
Pmm, in massive neutrino scenarios is asymptotically suppressed at z = 0 by a constant factor on
scales k � knr

Pmm(k; f⌫)

Pmm(k; f⌫ = 0)
' 1� 8f⌫ , (2.9)
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Figure 7. Two-dimensional likelihood for !m–σ 8 (left) and
∑

mν–σ 8 (right) when combining Planck MCMC chains within $CDM and free
∑

mν with
different low-redshift growth of structure constraints. We show the main Planck results in the two plots on the top. The two bottom plots show the results
where we used a Planck MCMC chain with the AL lensing signal marginalized out. The orange contours show Planck combined with the DV/rs, FAP and fσ 8
constraints of Beutler et al. (2014). The green contours additionally include CFHTLenS. The blue contours show Planck and Planck–AL combined with CMB
lensing from the four-point function (top left and bottom left, respectively). The results are summarized in Table 2.

on the 217 GHz spectra. From now on we will call this analysis
Spergel2013. Their result show ∼1σ shifts in σ 8 and !m towards
smaller values. Similar shifts caused by different foreground re-
moval techniques have been reported by the Planck collaboration
(Planck Collaboration XII 2013a). These changes in !m and σ 8

are smaller, but similar to the shifts we found by excluding the AL

lensing contribution. We saw that such shifts can significantly alter
the constraints on

∑
mν .

We now use the MCMC chains of Spergel et al. (2013), where
the neutrino mass is varied freely and importance sample these
chains. The chains we use include the AL lensing signal, meaning
they do not marginalize over AL. The CMB lensing signal from the
four-point function is not included. The result is shown in Figs 8
(bottom) and 9 and Table 2. Combining Spergel2013 with the re-
sults of Beutler et al. (2014) yields

∑
mν = 0.24 ± 0.12 eV. In-

cluding CFHTLenS, GGlensing and further BAO constraints gives∑
mν = 0.29 ± 0.10 eV (2.9σ ). These results are within 1σ with the

results we obtained when importance sampling the Planck and the
Planck–AL chains. Overall we see small (below 1σ ) shifts towards
WMAP.

6 D ISCUSSION

We can summarize the results of the last section as follows.

(i) We have a significant (>3σ ) detection of the neutrino
mass when combining WMAP9 and Planck − AL with low-redshift
growth of structure constraints. Planck − AL represents the Planck
data set without the lensing contribution to the temperature power
spectrum.
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LSS could be close to a 
neutrino mass detection …

… although we are 
probably not there yet
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Table 2. Constraints on σ 8, "m and
∑

mν combining different data sets. The errors on σ 8 and "m are 1σ , while for
∑

mν we report the 68 and 95 per
cent confidence levels. Planck stands for the Planck+WP result reported in Planck Collaboration XVI (2013b), WMAP9 represents the 9-year results of
WMAP reported in Hinshaw et al. (2013), Spergel2013 stands for the Planck re-analysis of Spergel et al. (2013), Beutler2013 represents the constraints
on DV/rs, FAP and fσ 8 from Beutler et al. (2014), CFHTLenS represents the weak lensing results from Kilbinger et al. (2013), GGlensing represents
the galaxy–galaxy lensing results reported in Mandelbaum et al. (2013) and BAO stands for the BAO constraint of 6dFGS (Beutler et al. 2011) and the
isotropic BAO constraints of LOWZ (Anderson et al. 2014b; Tojeiro et al. 2014). We also include the CMB lensing result from the four-point function
(CMBlensing) reported by the Planck collaboration (Planck Collaboration XVIII 2013c). In some cases we replace the results of Beutler et al. (2014)
(Beutler2013) with Samushia et al. (2014) (Samushia2013), Chuang et al. (2013) (Chaung2013) and the BAO only constraints of Anderson et al. (2014b)
(Anderson2013b). In the cases of Beutler2013, Samushia2013 and Chaung2013 we make use of the covariance matrix between the three constraints
(DV/rs, FAP and fσ 8) presented in the corresponding papers. We also include results using the Planck MCMC chains where the lensing effect on the
temperature power spectrum (AL lensing) has been marginalized out (Planck–AL). The Planck, Planck–AL and Spergel2013 chains include polarization
results from WMAP (WP).

Data set(s) σ 8 "m
∑

mν (eV)
68 per cent c.l. 95 per cent c.l.

WMAP9 0.706 ± 0.077 0.354+0.048
−0.078 <0.75 <1.3

WMAP9+CFHTLenS 0.696+0.094
−0.071 0.343+0.046

−0.078 <0.76 <1.3

WMAP9+Beutler2013 0.733 ± 0.038 0.309 ± 0.015 0.36 ± 0.14 0.36 ± 0.28

WMAP9+Beutler2013+CFHTLenS 0.731 ± 0.026 0.308 ± 0.014 0.37 ± 0.12 0.37 ± 0.24

WMAP9+Beutler2013+GGlensing 0.725 ± 0.029 0.307 ± 0.014 0.39 ± 0.12 0.39 ± 0.25

WMAP9+Beutler2013+CFHTLenS+GGlensing+BAO 0.733 ± 0.024 0.303 ± 0.011 0.35 ± 0.10 0.35 ± 0.21

WMAP9+Samushia2013 0.746 ± 0.036 0.303 ± 0.013 0.31 ± 0.13 0.31 ± 0.25

WMAP9+Samushia2013+CFHTLenS+GGlensing+BAO 0.740 ± 0.023 0.2991 ± 0.0097 0.32 ± 0.10 0.32 ± 0.20

WMAP9+Chuang2013 0.717 ± 0.046 0.311 ± 0.015 0.42 ± 0.17 0.42 ± 0.35

WMAP9+Chuang2013+CFHTLenS+GGlensing+BAO 0.728 ± 0.026 0.304 ± 0.011 0.36 ± 0.11 0.36 ± 0.23

WMAP9+Anderson2013 0.763+0.058
−0.040 0.295 ± 0.011 <0.31 <0.54

WMAP9+Anderson2013+BAO 0.763+0.060
−0.041 0.2946 ± 0.0093 <0.31 <0.53

WMAP9+Anderson2013+CFHTLenS+GGlensing+BAO 0.750 ± 0.029 0.2936 ± 0.0097 0.27 ± 0.12 0.27 ± 0.22

Planck 0.775+0.074
−0.031 0.353+0.021

−0.058 <0.41 <0.95

Planck+CFHTLenS 0.745+0.083
−0.112 0.332 ± 0.064 <0.51 <1.0

Planck+Beutler2013 0.791+0.034
−0.025 0.320 ± 0.014 0.20 ± 0.13 <0.40

Planck+Beutler2013+CFHTLenS 0.760+0.026
−0.047 0.314 ± 0.019 0.29 ± 0.13 0.29+0.29

−0.23

Planck+Beutler2013+GGlensing 0.769 ± 0.035 0.316 ± 0.016 0.26 ± 0.13 0.26 ± 0.24

Planck+Beutler2013+CFHTLenS+GGlensing+BAO 0.759+0.025
−0.033 0.306 ± 0.015 0.27 ± 0.12 0.27 ± 0.21

Planck+CMBlensing+Beutler2013+CFHTLenS+GGlensing+BAO 0.774+0.025
−0.037 0.304 ± 0.014 0.24 ± 0.14 0.24 ± 0.20

Planck+Samushia2013 0.800+0.029
−0.023 0.315 ± 0.013 0.161+0.068

−0.139 <0.33

Planck+Samushia2013+CFHTLenS+GGlensing+BAO 0.765 ± 0.031 0.303 ± 0.014 0.243+0.132
−0.088 0.24 ± 0.19

Planck+Chuang2013 0.797+0.038
−0.026 0.319 ± 0.014 <0.23 <0.40

Planck+Chuang2013+CFHTLenS+GGlensing+BAO 0.759+0.027
−0.037 0.306 ± 0.015 0.27 ± 0.12 0.27 ± 0.22

Planck+Anderson2013 0.821+0.023
−0.012 0.304 ± 0.010 <0.10 <0.22

Planck+Anderson2013+BAO 0.821+0.022
−0.013 0.3020 ± 0.0084 <0.09 <0.21

Planck+Anderson2013+CFHTLenS+GGlensing+BAO 0.782+0.029
−0.048 0.296+0.010

−0.015 0.17 ± 0.12 <0.33

Planck+CMBlensing+Anderson2013+CFHTLenS+GGlensing+BAO 0.794+0.025
−0.032 0.294 ± 0.012 0.15+0.15

−0.12 <0.30

Planck+CMBlensing 0.746+0.086
−0.038 0.373+0.048

−0.077 <0.62 <1.1

Planck − AL 0.716+0.092
−0.064 0.356+0.043

−0.065 <0.71 <1.2

Planck − AL+CFHTLenS 0.694+0.099
−0.079 0.351+0.048

−0.076 0.62+0.36
−0.50 <1.3

Planck − AL+Beutler2013 0.746 ± 0.035 0.316 ± 0.015 0.34 ± 0.14 0.34 ± 0.26

Planck − AL+Beutler2013+CFHTLenS 0.733 ± 0.027 0.314+0.013
−0.018 0.38 ± 0.11 0.38 ± 0.24

Planck − AL+Beutler2013+GGlensing 0.733 ± 0.031 0.314+0.013
−0.017 0.38 ± 0.12 0.38 ± 0.25

Planck − AL+Beutler2013+CFHTLenS+GGlensing+BAO 0.736 ± 0.024 0.307 ± 0.011 0.36 ± 0.10 0.36 ± 0.21

Planck − AL+CMBlensing+Beutler2013+CFHTLenS+GGlensing+BAO 0.731+0.030
−0.040 0.309 ± 0.015 0.38+0.12

−0.17 0.38 ± 0.20

Planck − AL+Samushia2013 0.759 ± 0.035 0.310 ± 0.013 0.28 ± 0.12 0.28 ± 0.23

Planck − AL+Samushia2013+CFHTLenS+GGlensing+BAO 0.743 ± 0.024 0.303 ± 0.011 0.324 ± 0.099 0.32 ± 0.19

Planck − AL+Chuang2013 0.737 ± 0.042 0.318 ± 0.016 0.38+0.15
−0.19 0.38 ± 0.32

Planck − AL+Chuang2013+CFHTLenS+GGlensing+BAO 0.730 ± 0.028 0.309 ± 0.012 0.38 ± 0.11 0.38 ± 0.22

Planck − AL+Anderson2013 0.784+0.046
−0.026 0.299+0.010

−0.013 <0.23 <0.43

MNRAS 444, 3501–3516 (2014)

 at IN
A

F Brera M
ilano (O

sservatorio A
stronom

ico di Brera) on O
ctober 2, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

Constraining neutrino masses



Beutler et al. (2014)
BOSS collaboration

Constraining neutrino masses & gravity

BOSS: Constraining the neutrino mass 3513

Figure 10. Two-dimensional likelihood of the growth index γ and
∑

mν .
We combine different parts of the CMASS results of Beutler et al. (2014)
with Planck − AL. Planck − AL is the Planck data set where the AL lensing
contribution has been marginalized out. Combining Planck − AL with the
DV/rs, FAP and fσ 8 constraint of Beutler et al. (2014) (cyan contours)
produces constraints on γ in good agreement with the prediction by GR
(black dashed line).

γ GR ≈ 0.55. The question is now, what are the implications of a
neutrino mass for these results?

As discussed in Beutler et al. (2014), the tension with GR is
mainly caused by the large σ 8 in the CMB data sets. Since intro-
ducing a neutrino mass reduces the CMB prediction of σ 8, we can
expect that a non-zero neutrino mass will also decrease the tension
with GR. The reason to combine the clustering result of CMASS
with a CMB data set is the need to add information on σ 8 to be able
to test gravity through the growth rate f(z). Since the uncertainty in
σ 8 significantly increases when the neutrino mass is varied freely,
we expect that the error on γ will increase as well.

Here we use the two CMB chains with the strongest signs of
a neutrino mass, which are WMAP9 and Planck − AL. We use the
chains which have the sum of the neutrino masses as a free pa-
rameter. We importance sample these chains and include γ as an
additional free parameter following the procedure of section 9.1
in Beutler et al. (2014). Marginalizing over all other parameters
we find γ = 0.72 ± 0.19 for WMAP9 and γ = 0.67 ± 0.14 for
Planck − AL. Both results are in 1σ agreement with the GR pre-
diction. The result for the Planck − AL chain is shown in Figs 10
and 11. Even though the constraints on the sum of the neutrino
masses for this test are significantly degraded, because of the de-
generacy with γ , we include them in Table 3. Fig. 11 compares the
result of this analysis (red data point) with the result in Beutler et al.
(2014) (blue data point). It might not be surprising that the tension
with GR in Beutler et al. (2014) can be reduced by introducing a
new parameter, especially if this parameter is degenerate with γ .

6.2 Implications for particle physics

Although our evidence of the neutrino mass has to be taken with care
given the significance of the detection (∼2.5–3.5σ ) and the tension

Figure 11. Summary of different tests of GR as a function of distance scale
(bottom axis) and densities (top axis). The figure includes the Pound–Rebka
experiment (Pound & Rebka 1960), Gravity Probe A (Vessot et al. 1980)
and the Hulse–Taylor binary pulsar (Hulse & Taylor 1975). The error bars
for Gravity Probe A and the Hulse–Taylor binary pulsar are smaller than
the data points in this plot. In blue we include the result of Beutler et al.
(2014), where Planck (within $CDM) has been combined with CMASS-
DR11 constraints, finding a 2σ tension. In this analysis we use the Planck
result where the AL lensing contribution has been marginalized out and vary∑

mν (red data point).

with the AL lensing contribution to the Planck measurement, it is
still interesting to investigate the implications of such a result.

What are the implications for the masses of the neutrino eigen-
states? We use the mass difference |%m2

31| = 2.4 × 10−3 eV2

(Beringer et al. 2012) and our measurement
∑

mν = 0.36 ± 0.10 eV,
which was obtained by combining Planck − AL with Beutler et al.
(2014), CFHTLenS, galaxy–galaxy lensing and BAO constraints
from 6dFGS and LOWZ. If we further assume three neutrinos
arranged by the normal hierarchy with the two light neutrinos
(mν1,2 ) having the same mass, we find mν3 = 0.127 ± 0.032 eV
and mν1,2 = 0.117 ± 0.032 eV. For the inverted hierarchy we get
instead mν1,2 = 0.123 ± 0.032 eV and mν3 = 0.113 ± 0.032 eV.

Given a certain hierarchy we can calculate the flavour eigenstates
using the mixing matrix (Pontecorvo–Maki–Nakagawa–Sakata
matrix):

UPMNS =

⎛

⎝
0.82 0.55 0.15

−0.50 0.58 0.64
0.26 −0.60 0.75

⎞

⎠ , (18)

where we assume any possible complex phase to be zero and use
the mixing angles from Beringer et al. (2012) and An et al. (2013).
The flavour eigenstates are then given as superposition of the mass
eigenstates:
⎛

⎝
|νe⟩
|νµ⟩
|ντ ⟩

⎞

⎠ = UPMNS

⎛

⎝
|ν1⟩
|ν2⟩
|ν3⟩

⎞

⎠. (19)

Because of neutrino mixing, the observable of different direct neu-
trino mass experiments is different to the flavour states. Neutrinoless
double β-decay (0νββ) experiments are sensitive to the mass:

mββ =
3∑

i=1

mνi
U 2

PMNS,1i , (20)
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Conclusions



Large-scale structure observations

Future galaxy redshift surveys (e.g. DESI from the ground or Euclid 
from the sky) will continue an on-going effort to map the large-scale 
galaxy distribution 

Different features of the galaxy power spectrum provide different 
constraint on the cosmological model:

• BAO are a standard ruler, a geometrical probe of the expansion 
history

• The anisotropy of the galaxy power spectrum (Redshift-Space 
Distortions) measure instead the growth of structure 

• The “shape” of the power spectrum provide an upper bound on 
neutrino masses  


