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Recap

The galaxy 2-point function is the excess

probability of finding two galaxies in the volume |
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Recap
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The power spectrum is a Standard
measure of the amplitude of * CMASS DR9
bati f . ——best—fit model
perturbations as a function =815 / 59
of scale ...
... and the Fourier 0 |
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Today’s goal

Goal:

predict the correlation functions
describing the statistical properties
of the Large-Scale Structure

for this we study the evolution of

0z (t)

We need:
|. Equations of motion
2. Initial conditions

Standard
« CMASS DR9
——Dbest—fit model
¥*=81.5 / 59







Big Bang ... Problems

Size of the horizon at CMB
decoupling

The Horizon Problem:
In the CMB we observe a large number (~10%) of causally disconnected patches
... all at the same temperature!



Big Bang ... Problems
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The Flatness Problem:
The curvature contribution at present time is small ...
implying that in the Early Universe should be extremely (i.e. unnaturally) small!
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Big Bang ... Problems
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Unwanted Relics:
Grand Unified Theories (GUTs) predict an overabundance of topological defects

(e.g. magnetic monopoles) from phase transitions in the Early Universe ... but
we don’t seen any of such things!



The inflationary solution

Horizon, flatness, unwanted relics ...

Guth’s idea, 1980: Inflation can solve all these problems at once!

The Universe underwent a
period of accelerated expansion
in its early history

I”

NB: this is not a “theory”, nor a “mode



The “Hubble horizon”

(9
Hubble’s law v = H d can also be written like this: d = —

H

The distance d where the velocity v equals the speed of light is the “Hubble horizon”
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Solving the horizon problem

Inflation

observable Universe horizon (H')

10-22 cm

v=Hd



Solving the horizon problem

Inflation

observable Universe horizon (H')



Solving the horizon problem

Inflation

observable Universe horizon (H")




Solving the horizon problem

Inflation

observable Universe horizon (H")

~ | cm



Solving the horizon problem

Radiation
domination

observable Universe horizon (H")



Solving the horizon problem

Radiation
domination




Solving the horizon problem

Matter
domination




Solving the horizon problem




Solving the flatness problem




Getting rid of GUT relics




Energy content

Linde (1982), Albrecht & Steinhardt (1982)
How do we get acceleration?

a2 - 8nG
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— = — g (p —P» We need something with “negative pressure” ...
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Slow Roll Inflation

Linde (1982), Albrecht & Steinhardt (1982)
How do we get acceleration?
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A scalar field ... with some potential



Slow Roll Inflation

Linde (1982), Albrecht & Steinhardt (1982)
How do we get acceleration?

a* 8nG
2 37
..2 4
a—Q — —W—G +‘—> We need something with “ negatlve pressure” ...
a
= —Cbo V(o)
= 5% — V(o)
A scalar field ... with some potential
AV
flat potential v, | @ - end of inflation
gy =W o
V'(9) =G5 =0
> %q% ~ 0 inflation




Slow Roll Inflation

Linde (1982), Albrecht & Steinhardt (1982)
How do we get acceleration?

a* 8nG

a? 3
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— = — g (p —P» We need something with “negative pressure” ...
a
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A scalar field ... with some potential

the potential energy dominates over the kinetic one, then



Slow Roll Inflation

Linde (1982), Albrecht & Steinhardt (1982)
How do we get acceleration?

a* 8nG

a? 3

..2

a 4G

— = — g (p —P» We need something with “negative pressure” ...
a

[ p~+V(¢o)

\ p~ —V(eo)

A scalar field ... with some potential

the potential energy dominates over the kinetic one, then

1/2

K» H — é ~ [¥V(¢O)l ~ constant =P a(t) ~ €Ht
a

exponential expansion!



SO ...

The horizon problem, the flatness problem are solved
while unwanted relics are swept away ...

... but these are “theorists’ problems”:
inflation does not solve any tension of the theory with the data!



SO ...

The horizon problem, the flatness problem are solved
while unwanted relics are swept away ...

... but these are “theorists’ problems”:
inflation does not solve any tension of the theory with the data!

Moreover, there is plenty of models implementing slow-roll inflation
(and other varieties of inflation), covering a wide range of energy scales
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SO ...

The horizon problem, the flatness problem are solved
while unwanted relics are swept away ...

... but these are “theorists’ problems”:
inflation does not solve any tension of the theory with the data!

Moreover, there is plenty of models implementing slow-roll inflation

(and other varieties of inflation), covering a wide range of energy scales

Still ... Inflation provides two, crucial, unrequested predictions:

density perturbations and gravitational waves



Density Perturbations from Inflation

¢(f, t) = ¢ (t) quantum fluctuations of the inflaton

for slow-roll inflation, their equation of motion in Fourier space is

5¢;§ + ZCLH&% + k*6¢7 =0 =——P quantum harmonic oscillator for &k 2, aH

one can compute the power spectrum of inflaton fluctuations
HZ

Psy(k) = ’5¢E|2 — o%3

W
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“frozen’ curvature

quantum fluctuations bati . .
perturbations observed density perturbations

— |nflation ﬁ
Today



Density Perturbations from Inflation

¢(f, t) = Qg (t) quantum fluctuations of the inflaton

for slow-roll inflation, their equation of motion in Fourier space is

5¢;§ + QCLH&% + k*6¢7 =0 =——P quantum harmonic oscillator for &k 2, aH

one can compute the power spectrum of inflaton fluctuations
H2

Ps4(k) = |0¢z|* = 213

}

and (after a lot of pain) the power spectrum
of the gravitational potential perturbations
as they enter the horizon again

2 V2 H? 1
C9MAV? RS

Py (k)

8rG observed density perturbations

aH=k Today



Density Perturbations from Inflation

Inflation predicts the power spectrum of the
perturbations in the gravitational potential
(and in the energy density) today!

2 H?V?
T 9Mi v

! \ aH=k

scale-dependence
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The evolution of density perturbations before decoupling
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amplitude!!) of a perturbation
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definition of scale factor ...)
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The evolution of density perturbations before decoupling

In A

physical distance,

p largest-s
v

cale

smallest4scale

we can observe today (with
CMBB or LSS) perturbations
over a finite range of scales

time, Ina

today!




The evolution of density perturbations before decoupling

In A

physical distance,

inflation

<

radiation
L

matter dark energy
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~ constant
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in order to study the
evolution of perturbation we

time,

In a

need to compare their linear
size to the Hubble horizon at
any given time




The evolution of density perturbations before decoupling

super-horizon

In A

physical distance,

----- ’ sub-horizon

time, Ina

Super-horizon curvature perturbations are “frozen” I




The evolution of density perturbations before decoupling

Perturbations at different scales have a
different sub-horizon evolution: perturbations
(in the potential) already sub-horizon during
radiation domination are suppressed

—> scale entering the
horizon at matter
radiation equality

Feq

In A

physical distance,

time, Ina



My initial conditions

inflation radiation matter dark energy
L

< i [ il 1l >

In A

physical distance,

time, In? T

matter/radiation eq. today

photon decoupling / CMB
last scattering surface



My initial conditions

inflation radiation matter dark energy
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The “initial” matter power spectrum

Let’s consider a scale (mode £ ) that re-enters the horizon
during matter domination (that is a large scale today!)

In

al distance

physic:

Ay (k) = 4mk® Py (k) ~ constant Py (k) ~ k—C:;

To obtain the matter power spectrum | should relate matter and gravitational potential
perturbations via Poisson’s equation
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The “initial” matter power spectrum

The linear matter power spectrum at z =~ 1000

P(k) ~ k* Py (k) ~ CkT?(k) Primordial
scale-invariant
_ —~ power spectrum

1071 ~ 8

Suppression due to
radiation pressure

P(k) ~ k
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The “initial” matter power spectrum

The linear matter power spectrum at z =~ 1000

P(k) ~ k* Py (k) ~ CkT?(k)
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The “initial” matter power spectrum

The linear matter power spectrum at z =~ 1000

P(k) ~ k* Py (k) ~ CkT?(k)

o0(x)

density,

P.(k)
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Evolution of matter perturbations

We will consider now the following approximations for the
evolution of matter perturbations:

|. All matter is cold (ignore the effects of baryons & neutrinos)

2. Newtonian approximation:
k> a H(a) scales much smaller than the horizon
v K ¢ velocities much smaller than the speed of light

3. Matter domination (ignore effects of dark energy at late times)



Evolution of matter perturbations

Cold Dark Matter

Warm Dark Matter




Evolution of matter perturbations

Cold Dark Matter

Warm Dark Matter

\f\i/ free-streaming

scale




Fluid equations

Assuming CDM as ideal fluid we need the following equations:

continuity equation
(conservation of mass)

Euler’s equation
(conservation of momentum)

pressure term force
(vanishing for CDM)
V%(I)tot — 47TGp Poisson’s equation

Single-stream
approximation

3 equations, 3 unknowns: P, v and Py




Single-stream approximation

for Cold Dark Matter we can ignore the
thermal motion of individual particles,
and study the evolution of perturbations




Perturbations

We want the equations of motions for perturbations and as a function of comoving
coordinates  and conformal time

dr = i
a(t)

For the matter density we have

p(Z,7) = p(7)[1 4+ 6(Z, T)] 6(Z,7) matter perturbations



Perturbations

We want the equations of motions for perturbations and as a function of comoving
coordinates  and conformal time

dr = A
a(t)

For the matter density we have

p(Z,7) = p(7)[1 4+ 6(Z, T)] 6(Z,7) matter perturbations
For the matter velocity, instead we have
- S L dr da_ dr . Y 1d
r=a(t) T UE—::d—iw—l—ad—f:H(T)T(T)+U($,T) Ead_i:aH
Hubble flow

?7(:1?, 7') = 7’[(7‘) f(T) + ﬁ(f, 7') u(Z,7) peculiar velocities



Perturbations

We want the equations of motions for perturbations and as a function of comoving
coordinates  and conformal time

dr = i
a(t)

For the matter density we have

p(Z,7) = p(7)[1 4+ 6(Z, T)] 6(Z,7) matter perturbations
For the matter velocity, instead we have
- S dr d dx 1d
F=o)F  §=0 = ShF+as = H(n)i(r) + (@, 7) H=_—=aH
Hubble flow
?7(3?, 7') = H(T) f(T) + ﬁ(i}’, 7') u(Z,7) peculiar velocities

O(Z,7) grawtatlo?al potential
perturbations




Equations for the perturbations

Assuming CDM as ideal fluid we need the following equations:

continuity equation

Euler’s equation

8rG 2
3 P

V20 = 47G pa?s but from Friedmann’s eq. H? =

Poisson’s equation

Again: 3 equations, 3 unknowns: d, @ and @



Equations for the perturbations

Linearizing ...
5 - )
o7 + V- [(1+90)u] =0 continuity equation
oi o o
- +Hi+ (u-V)u=-Vo Euler’s equation
T

7’[25 Poisson’s equation

V20 =
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Equations for the perturbations

Linearizing ...

— +V.-u=0 continuity equation

Euler’s equation

7‘[25 Poisson’s equation

V20 =

DN | o




Equations for the perturbations

Linearizing ...
A =
— +V.-u=0 continuity equation
ot
ou -
- + Hiui = -V Euler’s equation
-

Poisson’s equation




Equations for the perturbations

Linearizing ...
b =
— +V.-u=0 continuity equation
ot
= [ 0u
V- ( P + Hit = -V ) Euler’s equation
T

3
Vip = 5 {25  Poisson’s equation
then introducing the velocity divergence

0(z,7) =V -4z, 1)



Linear equations for the perturbations

o +60=0 tinuit ti
5 = continuity equation
00 9 :
P + HO + H 0=20 Euler’s equation
024 do 3
+H——-H§=0 -
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Linear growth of perturbations
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Linear growth of perturbations

0?0 00 3

5 274 T H 5 ko_ 57-[2 0z =0 2nd order equation in Fourier space
T T
Look for a separable solution like  §3(7) = D(7) A; D(7) growth factor
D (a) ~ Q growing mode
: D (CL) N a_3/2 decaying mode

(5];(&) = AE a + BE a_3/2

00> 3
QE(CL) — ——k —H (AECL — 5 BE a_3/2)

ot




Linear growth of perturbations

0?0 00 3

k k 2 ion | :
+ H — —H*d-=20 2nd order equation in Fourier space
07?2 or 2 &
Look for a separable solution like  §-(7) = D(1) A D(7) growth factor
D (a) ~ a growing mode
i D (CL) N a_3/2 decaying mode

5,;(@) = AE a + BE a_3/2

00> 3
QE(CL) — ——k —H (AEG’ — 5 BE CL_3/2)
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growing mode decaying mode
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Linear growth in a ACDM cosmology

redshift z
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Linear growth in a flat, ACDM cosmology

redshift z
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Linear vs Nonlinear evolution
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Linear vs Nonlinear evolution
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Linear vs Nonlinear evolution
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Linear vs Nonlinear evolution
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Linear vs Nonlinear evolution
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Linear vs Nonlinear evolution
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Linear vs Nonlinear evolution

Pr(k) + APy (k)

Pni (k)

nonlinear

corrections!
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Linear vs Nonlinear evolution

Pr(k) + APy (k)

Pni (k)

nonlinear

corrections!
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Linear vs Nonlinear evolution
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Linear vs Nonlinear evolution
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Linear vs Nonlinear evolution

100}
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Linear vs Nonlinear evolution

100 PNL(k):PL(/C>+APNL(k)

1

nonlinear
corrections!

This is a proof of Dark Matter!




The growth of matter perturbations
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The growth of matter perturbations

T N

Linear & mildly nonlinear regime:
Analytical, Perturbation Theory

P(k: Z) — Di(Z)PO(k) + Pl loop(k’ Z) + P2100p(k’ Z) ...

A(k) = 4rk3 P(k)
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A(k)

Nonlinear regime:
Phenomenological models, N-body simulations
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Accurate
predictions
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